1
|
Zhang X, Wang J, Su H, Liu X. Integrative analysis of single-cell and transcriptome sequencing with experimental validation reveals PKHD1L1 as a novel biomarker in lung adenocarcinoma. Sci Rep 2025; 15:2795. [PMID: 39843484 PMCID: PMC11754870 DOI: 10.1038/s41598-025-85981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is predicted to encode a large type I transmembrane protein involved in hearing transmission and mediating cellular immunity under physiological conditions. However, its role in cancer progression, especially in lung adenocarcinoma (LUAD), has not been fully elucidated. In this study, we observed significantly lower expression of PKHD1L1 in LUAD tissues than in normal lung tissues on the basis of the integration of public datasets from the TCGA and GEO cohorts. Furthermore, we found that low PKHD1L1 expression was a strong predictor of poor prognosis in patients with LUAD. Pathway enrichment analyses revealed that PKHD1L1 is associated primarily with asthma and multiple immune processes. Through meticulous analysis of immune cell infiltrates and single-cell datasets, we discerned a notable correlation between the expression of PKHD1L1 and the presence of B cells, with a particularly strong association observed in plasma cells. This finding led us to believe that the role of PKHD1L1 may extend beyond its previously reported involvement in cellular immunity, potentially impacting humoral immunity as well. In vitro experiments revealed that the over-expression of PKHD1L1 significantly inhibited the proliferation and migration ability of LUAD cell lines. These findings suggest that PKHD1L1 is an important prognostic indicator and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wang
- Department of Gastroenterology & National Clinical Research Centerfor Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hanyang Su
- Department of Respiratory Medicine & Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojin Liu
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Lin H, Li Z, Zeng T, Wang Y, Zhang L. The crucial involvement of gamma-Mangostin and CYP1B1 in the mechanism underlying the toxicity caused by cigarette smoke extract: In silico and in vitro insights. Toxicology 2025; 510:154016. [PMID: 39615578 DOI: 10.1016/j.tox.2024.154016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Cigarette smoke extracts (CSE) contain harmful substances that significantly contribute to respiratory conditions. Previous studies have primarily focused on the presence of carcinogens in CSE. However, it should be noted that other compounds may also synergistically contribute to a greater impact. This study proposes an innovative collaboration between natural products in CSE and carcinogens to enhance CSE-induced acute toxicity. Bioinformatics analysis coupled with experimental validation have elucidated the pivotal role of CYP1B1 in CSE-induced acute toxicity. Inhibitors targeting CYP1B1 have demonstrated preferential cytotoxicity towards cells exhibiting elevated levels of CYP1B1 expression. Afterwards, we conducted a virtual screening of the CSE composition database to identify a potential inhibitor for CYP1B1. After analyzing docking scores and complex interaction modes, γ-mangostin emerged as a highly promising CYP1B1 inhibitor. Molecular docking and dynamics were used to elucidate the complex structure formed between γ-mangostin and CYP1B1. Further investigations suggest that γ-mangostin can synergistically interact with carcinogens in CSE, causing cellular harm and contributing significantly to acute toxicity induced by CSE. Furthermore, γ-mangostin showed increased affinity towards CYP1B1 variants L432V and N453S, suggesting that organisms with these genetic variations may be more susceptible to cell damage caused by CSE. These new perspectives enhance our understanding of the mechanism behind acute toxicity associated with CSE and offer new possibilities for improving preventive measures and treatment strategies.
Collapse
Affiliation(s)
- Hao Lin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zijian Li
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Tao Zeng
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Wang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Strelkova OS, Osgood RT, Tian C, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. Commun Biol 2024; 7:1423. [PMID: 39482437 PMCID: PMC11527881 DOI: 10.1038/s42003-024-07121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a human deafness gene, responsible for autosomal recessive deafness-124 (DFNB124). Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. PKHD1L1 is a stereocilia protein required for the formation of the developmentally transient stereocilia surface coat. In this study, we carry out an in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-deficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-deficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knockout mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
- Olga S Strelkova
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Richard T Osgood
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Chunjie Tian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daniel M Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wen MG, Zheng HX, Zhao YZ, Xia P. Distinct roles and molecular mechanisms of nicotine and benzo(a)pyrene in ferroptosis of lung adenocarcinoma and lung squamous cell carcinoma. Tob Induc Dis 2024; 22:TID-22-121. [PMID: 38947555 PMCID: PMC11214278 DOI: 10.18332/tid/189490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION The essence of ferroptosis is the accumulation of membrane lipid peroxides caused by increased iron, which disrupts the redox balance within cells and triggers cell death. Abnormal metabolism of iron significantly increases the risk of lung cancer and induces treatment resistance. However, the roles and mechanisms of smocking in ferroptosis in patients with lung cancer are still unclear. METHODS Our study was a secondary bioinformatics analysis followed by an experimental cell culture analysis. In this study, we identified the different ferroptosis-related genes and established the signature in lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) patients with different smocking status, based on The Cancer Genome Atlas (TCGA) database. Fanyl diphosphate fanyl transferase 1 (FDFT1) in LUSC patients and solute carrier one family member 5 (SLC1A5) in LUAD patients were confirmed to be related to ferroptosis. Next, we checked the roles of two main components of smoke, nicotine, and benzo(a)pyrene (BaP), in ferroptosis of non-small-cell lung cancer (NSCLC) cells. RESULTS We confirmed that nicotine inhibited reactive oxygen species (ROS) levels and induced glutathione peroxidase (GPX4) expression, while the opposite roles of BaP were observed in NSCLC cells. Mechanically, nicotine protected NSCLC cells from ferroptosis through upregulation of epidermal growth factor receptor (EGFR) and SLC1A5 expression. BaP-induced ferroptosis in NSCLC cells depends on FDFT1 expression. CONCLUSIONS In this study, the ferroptosis-associated gene signature was identified in LUAD and LUSC patients with different smoking status. We confirmed nicotine-protected LUAD and LUSC cells from ferroptosis by upregulating EGFR and SLC1A5 expression. BaP-induced ferroptosis in these cells depends on FDFT1 expression.
Collapse
Affiliation(s)
- Min G. Wen
- Department of Community Nursing, College of Nursing, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Hui X. Zheng
- Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Ying Z. Zhao
- Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Pu Xia
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
5
|
Strelkova OS, Osgood RT, Tian CJ, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582786. [PMID: 38496629 PMCID: PMC10942330 DOI: 10.1101/2024.02.29.582786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a stereocilia protein required for normal hearing in mice, and for the formation of the transient stereocilia surface coat, expressed during early postnatal development. While the function of the stereocilia coat remains unclear, growing evidence supports PKHD1L1 as a human deafness gene. In this study we carry out in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-defficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-defficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knock-out mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel M. Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Artur A. Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Yang Y, Pan X, Chen S. Effect of Semaglutide and Empagliflozin on Pulmonary Structure and Proteomics in Obese Mice. Diabetes Metab Syndr Obes 2024; 17:1217-1233. [PMID: 38496002 PMCID: PMC10942255 DOI: 10.2147/dmso.s456336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study utilized proteomics to investigate changes in protein expression associated with lung health in obese mice exposed to semaglutide and empagliflozin through a high-fat diet. Methods Twenty-eight male C57BL/6JC mice were randomly assigned to two groups: a control diet group (n = 7) and a high-fat diet group (n = 21). The HFD group was further divided into three groups: HFD group (n = 7), Sema group (n = 7), and Empa group (n = 7). Post-treatment, mice underwent assessments including glucose tolerance, lipids, oxidative stress markers, body weight, lung weight, and structure. Proteomics identified differentially expressed proteins (DEPs) in lung tissue, and bioinformatics analyzed the biological processes and functions of these proteins. Results Semaglutide and empagliflozin significantly attenuated obesity-induced hyperglycemia, abnormal lipid metabolism, oxidative stress response, and can decrease alveolar wall thickness, enlarge alveolar lumen, and reduce collagen content in lung tissue. Both medications also attenuated lung elastic fibre cracking and disintegration. In the HFD/NCD group, there were 66 DEPs, comprising 30 proteins that were increased and 36 that were decreased. Twenty-three DEPs overlapped between Sema/HFD and Empa/HFD, with 11 up-regulated and 12 down-regulated simultaneously. After analysing DEPs in different groups, four proteins - LYVE1, BRAF, RGCC, and CHMP5 - were all downregulated in the HFD group and upregulated by semaglutide and empagliflozin treatment. Conclusion This study demonstrates that obesity induced by a high-fat diet causes a reduction in the expression of LYVE1, BRAF, RGCC, and CHMP5 proteins, potentially affecting lung function and structure in mice. Significantly, the administration of semaglutide and empagliflozin elevates the levels of these proteins, potentially offering therapeutic benefits against lung injury caused by obesity. Merging semaglutide with empagliflozin may exert a more pronounced impact.
Collapse
Affiliation(s)
- Yu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
7
|
Redfield SE, De-la-Torre P, Zamani M, Wang H, Khan H, Morris T, Shariati G, Karimi M, Kenna MA, Seo GH, Xu H, Lu W, Naz S, Galehdari H, Indzhykulian AA, Shearer AE, Vona B. PKHD1L1, a gene involved in the stereocilia coat, causes autosomal recessive nonsyndromic hearing loss. Hum Genet 2024; 143:311-329. [PMID: 38459354 PMCID: PMC11043200 DOI: 10.1007/s00439-024-02649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.
Collapse
Affiliation(s)
- Shelby E Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA, 02115, USA
| | - Pedro De-la-Torre
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Hina Khan
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Tyler Morris
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Karimi
- Khuzestan Cochlear Implantation Center (Tabassom), Ahvaz, Iran
| | - Margaret A Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA, 02115, USA
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA
| | | | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-She Road, Zhengzhou, 450052, China
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Artur A Indzhykulian
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA.
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - A Eliot Shearer
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA, 02115, USA.
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Quan MY, Yan X, Miao W, Li X, Li J, Yang L, Yu C, Zhang Y, Yang W, Zou C, Liu B, Jin X, Chen C, Guo Q, Zhang JS. Metformin alleviates benzo[a]pyrene-induced alveolar injury by inhibiting necroptosis and protecting AT2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116094. [PMID: 38364759 DOI: 10.1016/j.ecoenv.2024.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.
Collapse
Affiliation(s)
- Mei-Yu Quan
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xihua Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wanqi Miao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xue Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiaqi Li
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linglong Yang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenhua Yu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yanxia Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weiwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengyang Zou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bin Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Qiang Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
9
|
Redfield SE, De-la-Torre P, Zamani M, Wang H, Khan H, Morris T, Shariati G, Karimi M, Kenna MA, Seo GH, Xu H, Lu W, Naz S, Galehdari H, Indzhykulian AA, Shearer AE, Vona B. PKHD1L1, A Gene Involved in the Stereocilia Coat, Causes Autosomal Recessive Nonsyndromic Hearing Loss. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.08.23296081. [PMID: 37873491 PMCID: PMC10593026 DOI: 10.1101/2023.10.08.23296081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modelling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modelling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.
Collapse
Affiliation(s)
- Shelby E. Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA 02115, USA
| | - Pedro De-la-Torre
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Hina Khan
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tyler Morris
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Karimi
- Khuzestan Cochlear Implantation Center (Tabassom), Ahvaz, Iran
| | - Margaret A. Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA 02115, USA
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
| | | | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052, China
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Artur A. Indzhykulian
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - A. Eliot Shearer
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA 02115, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
10
|
Wang Z, Wang Q, Tao Y, Chen J, Yuan Z, Wang P. Characterization of immune microenvironment in patients with HPV-positive and negative head and neck cancer. Sci Data 2023; 10:694. [PMID: 37828063 PMCID: PMC10570276 DOI: 10.1038/s41597-023-02611-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Human papillomavirus (HPV) status strongly predicts positive clinical outcomes in patients with head and neck squamous cell cancer (HNSCC); however, the potential reasons have not been fully elucidated. Here, we characterized the immune context in HPV+ and HPV- HNSCC by integrating scRNA-seq and bulk RNA-seq data. In scRNA-seq data, HPV + HNSCC displayed increased B cells, plasma cells, CD4+ effector T cells, and decreased macrophages and mast cells. This finding was validated using bulk-cell data. Plasma cells predicted improved survival, and macrophages were associated with survival disadvantage. 1403 upregulated and 1877 downregulated differential expressed genes (DEGs) were obtained. Gene Ontology and KEGG enrichment analysis showed these DEGs focused on cytokine-related activity. Transcriptional analysis of B and plasma cells revealed associations between B-cell surface marker FCER2 and improved survival. In vitro assays confirmed the ability of FCER2 to suppress cellular proliferation and migration of HPV + tumors. In conclusion, our analysis revealed a heterogeneous tumor immune environment (TME) for HPV+ and HPV- HNSCC. Further, FCER2+ B cells contribute to antitumor immunity.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Qingxin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxuan Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Jingru Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Peiguo Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China.
| |
Collapse
|