1
|
Etienne C, Viot J, Watson PJ, Fagan MJ, Houssaye A. How compactness affects long bone resistance to compression-An investigation into the rhinoceros humerus. J Anat 2024. [PMID: 39374349 DOI: 10.1111/joa.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The functional signal of bone internal structure has been widely studied. Isolated form-function relationships have often been assumed from the observation of presumed morphofunctional relationships, but have never been truly tested. Indeed, distinct bone microanatomical feature co-evolve in response to various constraints that are difficult to detangle. This study tested for the first time the impact of various microanatomical parameters taken one by one, plus some in pairs, on bone strength under compression using biomechanical modelling. We carried out finite element analyses on humerus models, obtained from a white rhinoceros, with different heterogeneous internal structures, and analysed the magnitude and distribution of von Mises stresses. These tests validated earlier hypotheses of form-function relationships about the greater resistance to compression provided by the thickening of the cortex and the filling of the medullary area by trabecular bone and highlighted the stronger impact of increasing trabecular bone compactness than of avoiding an open medullary cavity. By making it possible to estimate the relative impact of each parameter and of combinations of microanatomical features, they also showed the more limited impact of the trabecular bone compactness in the epiphyses to resist compression, and the fact that microanatomical changes of opposite but of similar amplitude impact can compensate each other, but that the impact of the sum of two negative microanatomical changes far exceeds the sum of the impacts of each of the two changes taken separately. These results contribute to a better understanding of bone adaptation and form-function relationships so that they later can be used with confidence for palaeobiological inferences on fossil specimens, contributing to a better understanding of skeletal evolution during the evolutionary history of vertebrates. They also highlight the potential of taking internal structure into account in the bone biomechanical analyses. In addition, they can be used in bioinspiration to design resistant structures subjected to compression.
Collapse
Affiliation(s)
- Cyril Etienne
- Mécanismes Adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| | - Jérémie Viot
- Mécanismes Adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| | - Peter J Watson
- Biomedical Engineering Research Group, School of Engineering, University of Hull, Hull, UK
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Michael J Fagan
- Biomedical Engineering Research Group, School of Engineering, University of Hull, Hull, UK
| | - Alexandra Houssaye
- Mécanismes Adaptatifs et évolution (MECADEV), UMR 7179, MNHN, CNRS, Paris, France
| |
Collapse
|
2
|
Wilken AT, Schultz JA, Luo ZX, Ross CF. A new biomechanical model of the mammal jaw based on load path analysis. J Exp Biol 2024; 227:jeb247030. [PMID: 39092673 PMCID: PMC11463961 DOI: 10.1242/jeb.247030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The primary function of the tetrapod jaw is to transmit jaw muscle forces to bite points. The routes of force transfer in the jaw have never been studied but can be quantified using load paths - the shortest, stiffest routes from regions of force application to support constraints. Here, we use load path analysis to map force transfer from muscle attachments to bite point and jaw joint, and to evaluate how different configurations of trabecular and cortical bone affect load paths. We created three models of the mandible of the Virginia opossum, Didelphis virginiana, each with a cortical bone shell, but with different material properties for the internal spaces: (1) a cortical-trabecular model, in which the interior space is modeled with bulk properties of trabecular bone; (2) a cortical-hollow model, in which trabeculae and mandibular canal are modeled as hollow; and (3) a solid-cortical model, in which the interior is modeled as cortical bone. The models were compared with published in vivo bite force and bone strain data, and the load paths calculated for each model. The trabecular model, which is preferred because it most closely approximates the actual morphology, was best validated by in vivo data. In all three models, the load path was confined to cortical bone, although its route within the cortex varied depending on the material properties of the inner model. Our analysis shows that most of the force is transferred through the cortical, rather than trabecular bone, and highlights the potential of load path analysis for understanding form-function relationships in the skeleton.
Collapse
Affiliation(s)
- Alec T. Wilken
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| | - Julia A. Schultz
- Rheinische Friedrich-Wilhelms-Universität Bonn, Section Paleontology, Institute of Geosciences, 53115 Bonn, Germany
| | - Zhe-Xi Luo
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| | - Callum F. Ross
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Smith SM, Heaney LR, Angielczyk KD. Small skeletons show size-specific scaling: an exploration of allometry in the mammalian lumbar spine. Proc Biol Sci 2024; 291:20232868. [PMID: 38628132 PMCID: PMC11021941 DOI: 10.1098/rspb.2023.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Studies of vertebrate bone biomechanics often focus on skeletal adaptations at upper extremes of body mass, disregarding the importance of skeletal adaptations at lower extremes. Yet mammals are ancestrally small and most modern species have masses under 5 kg, so the evolution of morphology and function at small size should be prioritized for understanding how mammals subsist. We examined allometric scaling of lumbar vertebrae in the small-bodied Philippine endemic rodents known as cloud rats, which vary in mass across two orders of magnitude (15.5 g-2700 g). External vertebral dimensions scale with isometry or positive allometry, likely relating to body size and nuances in quadrupedal posture. In contrast to most mammalian trabecular bone studies, bone volume fraction and trabecular thickness scale with positive allometry and isometry, respectively. It is physiologically impossible for these trends to continue to the upper extremes of mammalian body size, and we demonstrate a fundamental difference in trabecular bone allometry between large- and small-bodied mammals. These findings have important implications for the biomechanical capabilities of mammalian bone at small body size; for the selective pressures that govern skeletal evolution in small mammals; and for the way we define 'small' and 'large' in the context of vertebrate skeletons.
Collapse
Affiliation(s)
- S. M. Smith
- Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - L. R. Heaney
- Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - K. D. Angielczyk
- Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
4
|
Keeffe R, Blackburn DC. Diversity and function of the fused anuran radioulna. J Anat 2022; 241:1026-1038. [PMID: 35962544 PMCID: PMC9482697 DOI: 10.1111/joa.13737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
In tetrapods, fusion between elements of the appendicular skeleton is thought to facilitate rapid movements during running, flying, and jumping. Although such fusion is widespread, frogs stand out because adults of all living species exhibit fusion of the zeugopod elements (radius and ulna, tibia and fibula), regardless of jumping ability or locomotor mode. To better understand what drives the maintenance of limb bone fusion in frogs, we use finite element modeling methods to assess the functional consequences of fusion in the anuran radioulna, the forearm bone of frogs that is important to both locomotion and mating behavior (amplexus). Using CT scans of museum specimens, measurement tools, and mesh‐editing software, we evaluated how different degrees of fusion between the radius and ulna affect the von Mises stress and bending resistance of the radioulna in three loading scenarios: landing, amplexus, and long‐axis loading conditions. We find that the semi‐fused state observed in the radioulna exhibits less von Mises stress and more resistance to bending than unfused or completely fused models in all three scenarios. Our results suggest that radioulna morphology is optimized to minimize von Mises stress across different loading regimes while also minimizing volume. We contextualize our findings in an evaluation of the diversity of anuran radioulnae, which reveals unique, permanent pronation of the radioulna in frogs and substantial variation in wall thickness. This work provides new insight into the functional consequences of limb bone fusion in anuran evolution.
Collapse
Affiliation(s)
- Rachel Keeffe
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - David C Blackburn
- Department of Biology, University of Florida, Gainesville, Florida, USA.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Engelkes K. Accuracy of bone segmentation and surface generation strategies analyzed by using synthetic CT volumes. J Anat 2020; 238:1456-1471. [PMID: 33325545 DOI: 10.1111/joa.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Different kinds of bone measurements are commonly derived from computed-tomography (CT) volumes to answer a multitude of questions in biology and related fields. The underlying steps of bone segmentation and, optionally, polygon surface generation are crucial to keep the measurement error small. In this study, the performance of different, easily accessible segmentation techniques (global thresholding, automatic local thresholding, weighted random walk, neural network, and watershed) and surface generation approaches (different algorithms combined with varying degrees of simplification) was analyzed and recommendations for minimizing inaccuracies were derived. The different approaches were applied to synthetic CT volumes for which the correct segmentation and surface geometry were known. The most accurate segmentations of the synthetic volumes were achieved by setting a case-specific window to the gray value histogram and subsequently applying automatic local thresholding with appropriately chosen thresholding method and radius. Surfaces generated by the Amira® module Generate Lego Surface in combination with careful surface simplification were the most accurate. Surfaces with sub-voxel accuracy were obtained even for synthetic CT volumes with low contrast-to-noise ratios. Segmentation trials with real CT volumes supported the findings. Very accurate segmentations and surfaces can be derived from CT volumes by using readily accessible software packages. The presented results and derived recommendations will help to reduce the measurement error in future studies. Furthermore, the demonstrated strategies for assessing segmentation and surface qualities can be adopted to quantify the performance of new segmentation approaches in future studies.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Engelkes K, Kath L, Kleinteich T, Hammel JU, Beerlink A, Haas A. Ecomorphology of the pectoral girdle in anurans (Amphibia, Anura): Shape diversity and biomechanical considerations. Ecol Evol 2020; 10:11467-11487. [PMID: 33144978 PMCID: PMC7593145 DOI: 10.1002/ece3.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Frogs and toads (Lissamphibia: Anura) show a diversity of locomotor modes that allow them to inhabit a wide range of habitats. The different locomotor modes are likely to be linked to anatomical specializations of the skeleton within the typical frog Bauplan. While such anatomical adaptations of the hind limbs and the pelvic girdle are comparably well understood, the pectoral girdle received much less attention in the past. We tested for locomotor-mode-related shape differences in the pectoral girdle bones of 64 anuran species by means of micro-computed-tomography-based geometric morphometrics. The pectoral girdles of selected species were analyzed with regard to the effects of shape differences on muscle moment arms across the shoulder joint and stress dissipation within the coracoid. Phylogenetic relationships, size, and locomotor behavior have an effect on the shape of the pectoral girdle in anurans, but there are differences in the relative impact of these factors between the bones of this skeletal unit. Remarkable shape diversity has been observed within locomotor groups indicating many-to-one mapping of form onto function. Significant shape differences have mainly been related to the overall pectoral girdle geometry and the shape of the coracoid. Most prominent shape differences have been found between burrowing and nonburrowing species with headfirst and backward burrowing species significantly differing from one another and from the other locomotor groups. The pectoral girdle shapes of burrowing species have generally larger moment arms for (simulated) humerus retractor muscles across the shoulder joint, which might be an adaptation to the burrowing behavior. The mechanisms of how the moment arms were enlarged differed between species and were associated with differences in the reaction of the coracoid to simulated loading by physiologically relevant forces.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | - Lena Kath
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | | | - Jörg U. Hammel
- Institute of Materials ResearchHelmholtz‐Zentrum GeesthachtGeesthachtGermany
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Hackel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| | | | - Alexander Haas
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| |
Collapse
|
7
|
Smith SM, Angielczyk KD. Deciphering an extreme morphology: bone microarchitecture of the hero shrew backbone (Soricidae: Scutisorex). Proc Biol Sci 2020; 287:20200457. [PMID: 32345168 DOI: 10.1098/rspb.2020.0457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Biological structures with extreme morphologies are puzzling because they often lack obvious functions and stymie comparisons to homologous or analogous features with more typical shapes. An example of such an extreme morphotype is the uniquely modified vertebral column of the hero shrew Scutisorex, which features numerous accessory intervertebral articulations and massively expanded transverse processes. The function of these vertebral structures is unknown, and it is difficult to meaningfully compare them to vertebrae from animals with known behavioural patterns and spinal adaptations. Here, we use trabecular bone architecture of vertebral centra and quantitative external vertebral morphology to elucidate the forces that may act on the spine of Scutisorex and that of another large shrew with unmodified vertebrae (Crocidura goliath). X-ray micro-computed tomography (µCT) scans of thoracolumbar columns show that Scutisorex thori is structurally intermediate between C. goliath and S. somereni internally and externally, and both Scutisorex species exhibit trabecular bone characteristics indicative of higher in vivo axial compressive loads than C. goliath. Under compressive load, Scutisorex vertebral morphology is adapted to largely restrict bending to the sagittal plane (flexion). Although these findings do not solve the mystery of how Scutisorex uses its byzantine spine in vivo, our work suggests potentially fruitful new avenues of investigation for learning more about the function of this perplexing structure.
Collapse
Affiliation(s)
- Stephanie M Smith
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Kenneth D Angielczyk
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| |
Collapse
|