1
|
d'Avila-Levy CM, Altoé ECF, Uehara LA, Branquinha MH, Santos ALS. GP63 function in the interaction of trypanosomatids with the invertebrate host: facts and prospects. Subcell Biochem 2014; 74:253-70. [PMID: 24264249 DOI: 10.1007/978-94-007-7305-9_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GP63 of the protozoan parasite Leishmania is a highly abundant zinc metallopeptidase, mainly glycosylphosphatidylinositol-anchored to the parasite surface, which contributes to a myriad of well-established functions for Leishmania in the interaction with the mammalian host. However, the role of GP63 in the Leishmania-insect vector interplay is still a matter of controversy. Data from GP63 homologues in insect and plant trypanosomatids strongly suggest a participation of GP63 in this interface, either through nutrient acquisition or through binding to the insect gut receptors. GP63 has also been described in the developmental forms of Trypanosoma cruzi, Trypanosoma brucei and Trypanosoma rangeli that deal with the vector. Here, the available data from GP63 will be analyzed from the perspective of the interaction of trypanosomatids with the invertebrate host.
Collapse
Affiliation(s)
- Claudia M d'Avila-Levy
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil,
| | | | | | | | | |
Collapse
|
2
|
Pereira FM, Dias FA, Elias CG, d’Avila-Levy CM, Silva CS, Santos-Mallet JR, Branquinha MH, Santos AL. Leishmanolysin-like Molecules in Herpetomonas samuelpessoai Mediate Hydrolysis of Protein Substrates and Interaction with Insect. Protist 2010; 161:589-602. [DOI: 10.1016/j.protis.2010.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
|
3
|
Abstract
Major surface protease (MSP or GP63) is the most abundant glycoprotein localized to the plasma membrane of Leishmania promastigotes. MSP plays several important roles in the pathogenesis of leishmaniasis, including but not limited to (i) evasion of complement-mediated lysis, (ii) facilitation of macrophage (Mø) phagocytosis of promastigotes, (iii) interaction with the extracellular matrix, (iv) inhibition of natural killer cellular functions, (v) resistance to antimicrobial peptide killing, (vi) degradation of Mø and fibroblast cytosolic proteins, and (vii) promotion of survival of intracellular amastigotes. MSP homologues have been found in all other trypanosomatids studied to date including heteroxenous members of Trypanosoma cruzi, the extracellular Trypanosoma brucei, unusual intraerythrocytic Endotrypanum spp., phytoparasitic Phytomonas spp., and numerous monoxenous species. These proteins are likely to perform roles different from those described for Leishmania spp. Multiple MSPs in individual cells may play distinct roles at some time points in trypanosomatid life cycles and collaborative or redundant roles at others. The cellular locations and the extracellular release of MSPs are also discussed in connection with MSP functions in leishmanial promastigotes.
Collapse
|
4
|
Santos ALS, Branquinha MH, D'Avila-Levy CM. The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. AN ACAD BRAS CIENC 2006; 78:687-714. [PMID: 17143406 DOI: 10.1590/s0001-37652006000400006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/15/2006] [Indexed: 11/22/2022] Open
Abstract
Plant and insect trypanosomatids constitute the "lower trypanosomatids", which have been used routinely as laboratory models for biochemical and molecular studies because they are easily cultured under axenic conditions, and they contain homologues of virulence factors from the classic human trypanosomatid pathogens. Among the molecular factors that contribute to Leishmania spp. virulence and pathogenesis, the major surface protease, alternatively called MSP, PSP, leishmanolysin, EC 3.4.24.36 and gp63, is the most abundant surface protein of Leishmania promastigotes. A myriad of functions have been described for the gp63 from Leishmania spp. when the metacyclic promastigote is inside the mammalian host. However, less is known about the functions performed by this molecule in the invertebrate vector. Intriguingly, gp63 is predominantly expressed in the insect stage of Leishmania, and in all insect and plant trypanosomatids examined so far. The gp63 homologues found in lower trypanosomatids seem to play essential roles in the nutrition as well as in the interaction with the insect epithelial cells. Since excellent reviews were produced in the last decade regarding the roles played by proteases in the vertebrate hosts, we focused in the recent developments in our understanding of the biochemistry and cell biology of gp63-like proteins in lower trypanosomatids.
Collapse
Affiliation(s)
- André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
5
|
d'Avila-Levy CM, Santos LO, Marinho FA, Dias FA, Lopes AH, Santos ALS, Branquinha MH. Gp63-like molecules in Phytomonas serpens: possible role in the insect interaction. Curr Microbiol 2006; 52:439-44. [PMID: 16732452 DOI: 10.1007/s00284-005-0222-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/02/2005] [Indexed: 10/24/2022]
Abstract
In this study, we demonstrated that metallopeptidase inhibitors (EDTA, EGTA, and 1,10-phenanthroline) were able to arrest Phytomonas serpens growth in distinct patterns. This parasite released exclusively metallopeptidases to the extracellular environment, whereas in cellular extracts only cysteine peptidases were detected. In addition, an extracellular polypeptide of 60 kDa reacted in Western blotting probed with polyclonal antibody raised against gp63 of Leishmania amazonensis. In the cellular parasite extract, this antibody recognized bands migrating at 63 and 52 kDa, which partitioned on both aqueous and membrane-rich fractions. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. Moreover, phospholipase C (PLC)-treated parasites reduced the number of gp63-positive cells. The anti-cross-reacting determinant (CRD) and anti-gp63 antibodies recognized the 60-kDa band in the supernatant from PLC-treated cells, suggesting that this protein is glycosylphosphatidylinositol-anchored to the plasma membrane. This is the first report on the presence of gp63-like molecules in members of the Phytomonas genus. The pretreatment of the parasites with anti-gp63 antibody significantly diminished their adhesion index to explanted salivary glands of the phytophagous insect Oncopeltus fasciatus, suggesting a potential involvement of the gp63-like molecules in the adhesive process of this plant trypanosomatid.
Collapse
Affiliation(s)
- Claudia M d'Avila-Levy
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Elias CGR, Pereira FM, Silva BA, Alviano CS, Soares RMA, Santos ALS. Leishmanolysin (gp63 metallopeptidase)-like activity extracellularly released byHerpetomonas samuelpessoai. Parasitology 2005; 132:37-47. [PMID: 16393352 DOI: 10.1017/s0031182005008802] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/12/2005] [Accepted: 07/13/2005] [Indexed: 11/06/2022]
Abstract
In previous studies, we showed thatHerpetomonas samuelpessoaiproduced a large amount of a surface-located metallopeptidase that presented similar biochemical properties to that of gp63 fromLeishmaniaspp., which is a well-known virulence factor expressed by these digenetic parasites. The present study aims to identify the proteolytic activity released by livingH. samuelpessoaicells. In this context, the parasites were incubated in phosphate buffer up to 4 h, and the supernatants were obtained by centrifugation and filtration steps and were then applied on SDS–PAGE to determine the secretory protein profile and on gelatin-SDS–PAGE to identify the proteolytic activity. The results demonstrated thatH. samuelpessoaisecreted at least 12 polypeptides and an extracellular peptidase of 66 kDa. This enzyme had its activity diminished by 1,10-phenanthroline, EDTA and EGTA. This metallopeptidase was active in a broad spectrum of pH, showing maximum activity at pH 6·0 at 37 °C. Casein was also cleaved by this secretory proteolytic enzyme, while bovine serum albumin and haemoglobin were not degraded under these conditions. Fluorescence microscopy and flow cytometry using anti-gp63 antibody against leishmanolysin ofL. amazonensisdemonstrated the presence of similar molecules on the cell-surface ofH. samuelpessoai. Moreover, immunoblot analysis showed the presence of a reactive polypeptide in the cellular extract and in the supernatant fluid ofH. samuelpessoai, which suggests immunological similarities between these two distinct trypanosomatids. The zinc-metallopeptidase inhibitor 1,10-phenanthroline was able to inhibit the secretion of the 66 kDa metallopeptidase in a dose-dependent manner, while the phospholipase C inhibitor (p-CMPS) did not alter the secretion pattern. Additionally, anti-cross-reacting determinant (CRD) antibody failed to recognize any secreted polypeptide fromH. samuelpessoai. Collectively, these results suggest that the gp63-like molecule was released from theH. samuelpessoaisurface by proteolysis instead of phospholipolysis, in a similar mechanism to that observed inLeishmania.
Collapse
Affiliation(s)
- C G R Elias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, IMPPG, Centro de Ciências da Saúde, CCS, Universidade Federal do Rio de Janeiro, UFRJ, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
D'Avila-Levy CM, Araújo FM, Vermelho AB, Soares RMA, Santos ALS, Branquinha MH. Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids. Parasitology 2005; 130:413-20. [PMID: 15830815 DOI: 10.1017/s0031182004006705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Blastocrithidia culicis is an insect trypanosomatid that presents bacterial endosymbionts. The cell-associated and secreted proteinases of the endosymbiont-bearing and aposymbiotic strains were compared through the incorporation of proteinaceous substrates into sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Few qualitative changes could be detected in the proteolytic zymograms in the 2 strains studied when gelatin, casein, haemoglobin or bovine serum albumin (BSA) were tested. However, the level of proteolytic activities was significantly higher in the aposymbiotic strain. Some of the B. culicis proteins reacted in Western blots with antibodies raised against gp63, a zinc-metalloproteinase, and cruzipain, a cysteinyl-proteinase, which are virulence factors of the human pathogenic trypanosomatids, Leishmania spp. and Trypanosoma cruzi, respectively. The anti-cross-reacting determinant (CRD) antibody recognized 2 polypeptides (50 and 58 kDa) in the spent culture media and in the supernatant from glycosylphosphatidylinositol-phospholipase C (GPI-PLC)-treated cells, suggesting that these proteins are GPI-anchored to the plasma membrane. In addition, the anti-gp63 reacted with the 50 kDa protein. The identification of protein homologues in trypanosomatids with distinct life-cycles may help to determine the importance of proteinases in trypanosomatids.
Collapse
Affiliation(s)
- C M D'Avila-Levy
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
d'Avila-Levy CM, Souza RF, Gomes RC, Vermelho AB, Branquinha MH. A metalloproteinase extracellularly released by Crithidia deanei. Can J Microbiol 2004; 49:625-32. [PMID: 14663496 DOI: 10.1139/w03-081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The incorporation of gelatin into SDS-PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 degrees C and pH 6.0 and showed 25% of residual activity at 28 degrees C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.
Collapse
Affiliation(s)
- Claudia Masini d'Avila-Levy
- Dept. Microbiologica Geral, Inst. Microbiologia Prof. Paulo de Góes, CCS, Cidade Universitária, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
9
|
d'Avila-Levy CM, Souza RF, Gomes RC, Vermelho AB, Branquinha MH. A novel extracellular calcium-dependent cysteine proteinase from Crithidia deanei. Arch Biochem Biophys 2004; 420:1-8. [PMID: 14622969 DOI: 10.1016/j.abb.2003.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An extracellular cysteine proteinase from an aposymbiotic strain of Crithidia deanei was purified 39-fold by a combination of anion-exchange and gel filtration chromatographies. The native molecular mass of this proteinase was estimated to be 225 kDa by gel filtration chromatography and it migrates in SDS-PAGE as a single band of 80 kDa. The optimal enzymatic activity on gelatin was found to occur in the presence of calcium at a neutral pH and at 28 degrees C. The enzyme was completely blocked by E-64 and EGTA, and partially inhibited by iodoacetamide, leupeptin, and EDTA. Compounds such as PMSF, aprotinin, and pepstatin weakly inhibited the enzyme. The protein purified in the present work shares some features with those of the family of neutral calcium-dependent cysteine proteinases named calpains, previously detected in the family Trypanosomatidae as cell-associated enzymes in Leishmania donovani and Trypanosoma brucei. The cysteine proteinase from C. deanei is distinct from the well-characterized mammalian calpains, but some degree of similarity is displayed to invertebrate calpain-related enzymes.
Collapse
Affiliation(s)
- Claudia M d'Avila-Levy
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bl I, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
10
|
González-Halphen D, Maslov DA. NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens. Parasitol Res 2004; 92:341-6. [PMID: 14727190 DOI: 10.1007/s00436-003-1058-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
NADH-ubiquinone oxidoreductase activity is present in mitochondrial lysates of Phytomonas serpens. Rotenone at 2-10 microM inhibited the activity 50-75%, indicating that it belongs to respiratory complex I. The activity was also inhibited 50-60% in the presence of 10-30 nM atovaquone suggesting that inhibition of complex I represents a likely mechanism of the known antileishmanial activity of this drug. The complex was partially purified by chromatography on DEAE-Sepharose CL-6B and gel-filtration on Sepharose CL-2B. The NADH:ubiquinone oxidoreductase activity in this preparation was completely inactivated by 20 nM atovaquone. The partially purified complex was present in a low amount and its subunits could not be discerned by staining with Coomassie. However, one of its components, a homologue of the 39 kDa subunit of the bovine complex I, was identified immunochemically in the original lysate and in the partially purified material.
Collapse
Affiliation(s)
- Diego González-Halphen
- Department of Biology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | | |
Collapse
|