1
|
Brune MW, França EL, Moraes LCA, Ribeiro VP, Gomes MA, Honorio-França AC. Effects of Cytokines IFN-γ and TGF-β on the Functional Activity of Blood Mononuclear Cells against Giardia lamblia. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:209-218. [PMID: 34557235 PMCID: PMC8418650 DOI: 10.18502/ijpa.v16i2.6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Background: This study aimed to analyze cultures of mononuclear (MN) cells with Giardia lamblia to determine the levels of the cytokines IFN-γ and TGF-β and the functional activity of MN cells after incubation with cytokines. Methods: This study was conducted in 2018 in Barra do Garças, Mato Grosso State, Brazil. Blood samples were collected from 60 healthy volunteer donors to obtain leukocytes. The levels of IFN-γ and TGF-β were quantified in trophozoite cell culture supernatants. Superoxide release, phagocytosis, microbicidal activity, apoptosis and intracellular calcium release were analyzed. Results: The cytokines evaluated were detected in the culture supernatant of MN cells and G. lamblia. Regardless of the type of cytokine, MN cells increased superoxide release in the presence of G. lamblia. Phagocytosis, microbicidal activity and apoptosis were higher when MN phagocytes were treated with cytokines. The highest microbicidal activity and apoptosis rates were observed in MN cells cultured with TGF-β. IFN-γ increased the release of intracellular calcium by MN phagocytes. Conclusion: Cytokines play a beneficial role in the host by activating MN cells against G. lamblia. In addition, phagocytosis causes G. lamblia death and that the modulation of the functional activity of blood MN phagocytes by cytokines is an alternative mechanism for eliminating G. lamblia.
Collapse
Affiliation(s)
- Maximilian Wilhelm Brune
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.,Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | | | - Victor Pena Ribeiro
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Martínez-Ocaña J, Maravilla P, Olivo-Díaz A. Interaction between human mucins and parasite glycoproteins: the role of lectins and glycosidases in colonization by intestinal protozoa. Rev Inst Med Trop Sao Paulo 2020; 62:e64. [PMID: 32901761 PMCID: PMC7477959 DOI: 10.1590/s1678-9946202062064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023] Open
Abstract
Intestinal mucins are the first line of defense against microorganisms. Although knowledge about the mechanisms involved in the establishment of intestinal protozoa is limited, there is evidence that these parasites produce lectin-like molecules and glycosidases, that exert both, constitutive and secretory functions, promoting the establishment of these microorganisms. In the present review, we analyse the main interactions between mucins of the host intestine and the four main protozoan parasites in humans and their implications in intestinal colonization. There are lectin-like molecules that contain complex oligosaccharide structures and N-acetylglucosamine (GlcNAc), mannose and sialic acid as main components, which are excreted/secreted by Giardia intestinalis, and recognized by the host using mannose-binding lectins (MBL). Entamoeba histolytica and Cryptosporidium spp. express the lectin galactose/N-acetyl-D-galactosamine, which facilitates their adhesion to cells. In Cryptosporidium, the glycoproteins gp30, gp40/15 and gp900 and the glycoprotein lectin CpClec are involved in protozoan adhesion to intestinal cells, forming an adhesion-attack complex. G. intestinalis and E. histolytica can also produce glycosidases such as β-N-acetyl-D-glucosaminidase, α-d-glucosidase, β-d-galactosidase, β-l-fucosidase, α-N-acetyl-d-galactosaminidase and β-mannosidase. In Blastocystis, α-D-mannose, α-D-glucose, GlcNAc, α-D-fucose, chitin and sialic acid that have been identified on their surface. Fucosidases, hexosaminidases and polygalacturonases, which may be involved in the mucin degradation process, have also been described in the Blastocystis secretoma. Similarly, symbiotic coexistence with the intestinal microbiota promotes the survival of parasites facilitating cell invasion and nutrients obtention. Furthermore, it is necessary to identify and characterize more glycosidases, which have been only partially described by in silico analyses of the parasite genome.
Collapse
Affiliation(s)
- Joel Martínez-Ocaña
- Hospital General "Dr. Manuel Gea González", Departamento de Ecología de Agentes Patógenos, Ciudad de México, Mexico
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea González", Subdirección de Investigación, Ciudad de México, Mexico
| | - Angélica Olivo-Díaz
- Hospital General "Dr. Manuel Gea González", Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
| |
Collapse
|
3
|
Li Z, Peirasmaki D, Svärd S, Åbrink M. Giardia excretory-secretory proteins modulate the enzymatic activities of mast cell chymase and tryptase. Mol Immunol 2019; 114:535-544. [PMID: 31518857 DOI: 10.1016/j.molimm.2019.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mast cells are involved in the host immune response controlling infection with the non-invasive intestinal protozoan parasite Giardia intestinalis. Experimental infections in rodents with G. intestinalis showed increased intestinal expression of mucosal and connective mast cell specific proteases suggesting that both mucosal and connective tissue mast cells are recruited and activated during infection. During infection Giardia excretory-secretory proteins (ESPs) with immunomodulatory capacity are released. However, studies investigating potential interactions between Giardia ESPs and the connective tissue mast cell specific serine proteases, i.e. human chymase and mouse mast cell protease (mMCP)-4 and, human and mouse tryptase (mMCP-6) remain scarce. RESULTS We first investigated if soluble Giardia proteins (sGPs), which over-lap extensively in protein content with ESP fractions, from the isolates GS, WB and H3, could induce mast cell activation. sGPs induced a minor activation of bone marrow derived mucosal-like mast cells, as indicated by increased IL-6 secretion and no degranulation. Furthermore, sGPs were highly resistant to degradation by human tryptase while human chymase degraded a 65 kDa sGP and, wild-type mouse ear tissue extracts degraded several protein bands in the 10 to 75 kDa range. In striking contrast, sGPs and ESPs were found to increase the enzymatic activity of human and mouse tryptase and to reduce the activity of human and mouse chymase. CONCLUSION Our finding suggests that Giardia ssp. via enhancement or reduction of mast cell protease activity may modulate mast cell-driven intestinal immune responses. ESP-mediated modulation of the mast cell specific proteases may also increase degradation of tight junctions, which may be beneficial for Giardia ssp. during infection.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| |
Collapse
|
4
|
Ma’ayeh SY, Liu J, Peirasmaki D, Hörnaeus K, Bergström Lind S, Grabherr M, Bergquist J, Svärd SG. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. PLoS Negl Trop Dis 2017; 11:e0006120. [PMID: 29228011 PMCID: PMC5739509 DOI: 10.1371/journal.pntd.0006120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/21/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Giardia intestinalis is a non-invasive protozoan parasite that causes giardiasis in humans, the most common form of parasite-induced diarrhea. Disease mechanisms are not completely defined and very few virulence factors are known. METHODOLOGY To identify putative virulence factors and elucidate mechanistic pathways leading to disease, we have used proteomics to identify the major excretory-secretory products (ESPs) when Giardia trophozoites of WB and GS isolates (assemblages A and B, respectively) interact with intestinal epithelial cells (IECs) in vitro. FINDINGS The main parts of the IEC and parasite secretomes are constitutively released proteins, the majority of which are associated with metabolism but several proteins are released in response to their interaction (87 and 41 WB and GS proteins, respectively, 76 and 45 human proteins in response to the respective isolates). In parasitized IECs, the secretome profile indicated effects on the cell actin cytoskeleton and the induction of immune responses whereas that of Giardia showed anti-oxidation, proteolysis (protease-associated) and induction of encystation responses. The Giardia secretome also contained immunodominant and glycosylated proteins as well as new candidate virulence factors and assemblage-specific differences were identified. A minor part of Giardia ESPs had signal peptides (29% for both isolates) and extracellular vesicles were detected in the ESPs fractions, suggesting alternative secretory pathways. Microscopic analyses showed ESPs binding to IECs and partial internalization. Parasite ESPs reduced ERK1/2 and P38 phosphorylation and NF-κB nuclear translocation. Giardia ESPs altered gene expression in IECs, with a transcriptional profile indicating recruitment of immune cells via chemokines, disturbances in glucose homeostasis, cholesterol and lipid metabolism, cell cycle and induction of apoptosis. CONCLUSIONS This is the first study identifying Giardia ESPs and evaluating their effects on IECs. It highlights the importance of host and parasite ESPs during interactions and reveals the intricate cellular responses that can explain disease mechanisms and attenuated inflammatory responses during giardiasis.
Collapse
Affiliation(s)
- Showgy Y. Ma’ayeh
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Katarina Hörnaeus
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemsitry and Microbiology, BMC, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
5
|
Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, Inal J, Borràs FE, Ramirez MI. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol 2017; 96:131-142. [DOI: 10.1016/j.ejcb.2017.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
|
6
|
Emery SJ, Lacey E, Haynes PA. Quantitative proteomics in Giardia duodenalis —Achievements and challenges. Mol Biochem Parasitol 2016; 208:96-112. [DOI: 10.1016/j.molbiopara.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
|
7
|
Lee HY, Hyung S, Lee NY, Yong TS, Han SH, Park SJ. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1. Parasite Immunol 2012; 34:183-98. [PMID: 22224945 DOI: 10.1111/j.1365-3024.2012.01354.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.
Collapse
Affiliation(s)
- H-Y Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Faso C, Hehl AB. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol 2011; 41:471-80. [PMID: 21296082 DOI: 10.1016/j.ijpara.2010.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 01/06/2023]
Abstract
The secretory transport capacity of Giardia trophozoites is perfectly adapted to the changing environment in the small intestine of the host and is able to deploy essential protective surface coats as well as molecules which act on epithelia. These lumen-dwelling parasites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. The environmentally-resistant cyst form is quiescent but poised for activation following stomach passage. Its versatility and fidelity notwithstanding, the giardial trafficking systems appear to be the product of a general secondary reduction process geared towards minimization of all components and machineries identified to date. Since membrane transport is directly linked to organelle biogenesis and maintenance, less complexity also means loss of organelle structures and functions. A case in point is the Golgi apparatus which is missing as a steady-state organelle system. Only a few basic Golgi functions have been experimentally demonstrated in trophozoites undergoing encystation. Similarly, mitochondrial remnants have reached a terminally minimized state and appear to be functionally restricted to essential iron-sulfur protein maturation processes. Giardia's minimized organization combined with its genetic tractability provides unique opportunities to study basic principles of secretory transport in an uncluttered cellular environment. Not surprisingly, Giardia is gaining increasing attention as a model for the investigation of gene regulation, organelle biogenesis, and export of simple but highly protective cell wall biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites.
Collapse
Affiliation(s)
- Carmen Faso
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | | |
Collapse
|
9
|
Skarin H, Ringqvist E, Hellman U, Svärd SG. Elongation factor 1-alpha is released into the culture medium during growth of Giardia intestinalis trophozoites. Exp Parasitol 2011; 127:804-10. [PMID: 21276445 DOI: 10.1016/j.exppara.2011.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
The molecular pathogenesis of the intestinal parasite Giardia intestinalis is still not fully understood but excretory-secretory products have been suggested to be important during host-parasite interactions. Here we used SDS-PAGE gels and MALDI-TOF analysis to identify proteins released by Giardia trophozoites during in vitro growth. Serum proteins (mainly bovine serum albumin) in the growth medium, bind to the parasite surface and they are continuously released, which interfere with parasite secretome characterization. However, we identified two released Giardia proteins: elongation factor-1 alpha (EF-1α) and a 58 kDa protein, identified as arginine deiminase (ADI). This is the first description of EF-1α as a released/secreted Giardia protein, whereas ADI has been identified in an earlier secretome study. Two genes encoding EF-1α were detected in the Giardia WB genome 35 kbp apart with almost identical coding sequences but with different promoter and 3' regions. Promoter luciferase-fusions showed that both genes are transcribed in trophozoites. The EF-1α protein localizes to the nuclear region in trophozoites but it relocalizes to the cytoplasm during host-cell interaction. Recombinant EF-1α is recognized by serum from giardiasis patients. Our results suggest that released EF-1α protein can be important during Giardia infections.
Collapse
Affiliation(s)
- Hanna Skarin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
10
|
Muñoz-Cruz S, Gómez-García A, Millán-Ibarra J, Giono-Cerezo S, Yépez-Mulia L. Giardia lamblia: interleukin 6 and tumor necrosis factor-alpha release from mast cells induced through an Ig-independent pathway. Exp Parasitol 2010; 126:298-303. [PMID: 20600000 DOI: 10.1016/j.exppara.2010.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/19/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Giardia lamblia is a common cause of both acute and chronic diarrheal disease in humans worldwide. It has been shown that mast cells, IL-6 and TNF-alpha are substantially involved in the early control of G. lamblia infection in mice. However, no studies have yet been reported concerning the interaction between mast cell and Giardia, as well as the mast cells mediators generated in response to Giardia infection. In this study we demonstrated the direct activation of mast cells by G. lamblia live trophozoites or trophozoite-derived antigens followed by an increase in tryptase expression and a significant release of the preformed mediator histamine. In addition, parasite derived antigens increased TNF-alpha and de novo synthesized cytokine IL-6, at the mRNA and protein level. These results strongly suggest that mast cells might be an important source not only of IL-6 but also of TNF-alpha during Giardia infection, playing an important role in the outcome of the infection.
Collapse
Affiliation(s)
- Samira Muñoz-Cruz
- Unidad de Investigación Médica de Enfermedades Infecciosas y Parasitarias, IMSS, Mexico
| | | | | | | | | |
Collapse
|
11
|
Protease activity in extracellular products secreted in vitro by trophozoites of Giardia duodenalis. Parasitol Res 2008; 104:185-90. [DOI: 10.1007/s00436-008-1185-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|