1
|
Vythilingam I, Jeyaprakasam NK. Deforestation and non-human primate malarias will be a threat to malaria elimination in the future: Insights from Southeast Asia. Acta Trop 2024; 257:107280. [PMID: 38908421 DOI: 10.1016/j.actatropica.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Malaria continues to be a global public health problem although it has been eliminated from many countries. Sri Lanka and China are two countries that recently achieved malaria elimination status, and many countries in Southeast Asia are currently in the pipeline for achieving the same goal by 2030. However, Plasmodium knowlesi, a non-human primate malaria parasite continues to pose a threat to public health in this region, infecting many humans in all countries in Southeast Asia except for Timor-Leste. Besides, other non-human primate malaria parasite such as Plasmodium cynomolgi and Plasmodium inui are infecting humans in the region. The non-human primates, the long-tailed and pig-tailed macaques which harbour these parasites are now increasingly prevalent in farms and forest fringes close by to the villages. Additionally, the Anopheles mosquitoes belonging to the Lecuosphyrus Group are also present in these areas which makes them ideal for transmitting the non-human primate malaria parasites. With changing landscape and deforestation, non-human primate malaria parasites will affect more humans in the coming years with the elimination of human malaria. Perhaps due to loss of immunity, more humans will be infected as currently being demonstrated in Malaysia. Thus, control measures need to be instituted rapidly to achieve the malaria elimination status by 2030. However, the zoonotic origin of the parasite and the changes of the vectors behaviour to early biting seems to be the stumbling block to the malaria elimination efforts in this region. In this review, we discuss the challenges faced in malaria elimination due to deforestation and the serious threat posed by non-human primate malaria parasites.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Nantha Kumar Jeyaprakasam
- Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Fornace KM, Zorello Laporta G, Vythilingham I, Chua TH, Ahmed K, Jeyaprakasam NK, de Castro Duarte AMR, Amir A, Phang WK, Drakeley C, Sallum MAM, Lau YL. Simian malaria: a narrative review on emergence, epidemiology and threat to global malaria elimination. THE LANCET. INFECTIOUS DISEASES 2023; 23:e520-e532. [PMID: 37454671 DOI: 10.1016/s1473-3099(23)00298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
Simian malaria from wild non-human primate populations is increasingly recognised as a public health threat and is now the main cause of human malaria in Malaysia and some regions of Brazil. In 2022, Malaysia became the first country not to achieve malaria elimination due to zoonotic simian malaria. We review the global distribution and drivers of simian malaria and identify priorities for diagnosis, treatment, surveillance, and control. Environmental change is driving closer interactions between humans and wildlife, with malaria parasites from non-human primates spilling over into human populations and human malaria parasites spilling back into wild non-human primate populations. These complex transmission cycles require new molecular and epidemiological approaches to track parasite spread. Current methods of malaria control are ineffective, with wildlife reservoirs and primarily outdoor-biting mosquito vectors urgently requiring the development of novel control strategies. Without these, simian malaria has the potential to undermine malaria elimination globally.
Collapse
Affiliation(s)
- Kimberly M Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Gabriel Zorello Laporta
- Graduate Research and Innovation Program, Centro Universitario FMABC, Santo André, São Paulo, Brazil
| | | | | | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia; Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nantha K Jeyaprakasam
- Biomedical Science Programme, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ana Maria Ribeiro de Castro Duarte
- Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, Universidade de São Paulo, São Paulo, Brazil; Instituto Pasteur, Secretaria de Estado da Saude de São Paulo, São Paulo, Brazil
| | - Amirah Amir
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Yee Ling Lau
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Karunamoorthi K, Sabesan S. Relative efficacy of repellent-treated wristbands against three major mosquito (Diptera: Culicidae) vectors of disease, under laboratory conditions. Int Health 2013; 1:173-7. [PMID: 24036563 DOI: 10.1016/j.inhe.2009.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A laboratory study was carried out to evaluate the relative efficacy of N-N-diethyl-m-toluamide (DEET)- and N,N-diethyl phenylacetamide (DEPA)-treated wristbands against three major vector mosquitoes viz., Anopheles stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti (L.), at two different concentrations viz., 1.5 and 2.0 mg/cm(2). Overall, both DEET and DEPA have shown various degrees of repellency impact against all three vector mosquitoes. DEET offered the highest 317.0 min mean complete protection against An. stephensi and DEPA provided 275.6 min complete protection to Cx. quinquefasciatus at 2.0 mg/cm(2). However, DEPA-treated wristbands did not show any significant differences in terms of reduction of human landing rate and mean complete protection time against An. stephensi and Ae. aegypti between 1.5 and 2.0 mg/cm(2). DEET demonstrated relatively higher repellency impact to vector mosquitoes than DEPA. However, χ(2) analysis revealed that there was no statistically significant difference found in repellent efficiency between DEET and DEPA (P = 0.924). The present study result suggests that repellent-treated wristbands could serve as a means of potential personal protection expedient to avoid insect's annoyance and reduce vector-borne disease transmission. They are extremely valuable whenever and wherever other kinds of personal protection measures are unfeasible.
Collapse
Affiliation(s)
- Kaliyaperumal Karunamoorthi
- Unit of Vector Biology & Control, Department of Environmental Health Science, College of Medical Sciences and Public Health, Jimma University, P.O. Box No. 378, Jimma, Ethiopia
| | | |
Collapse
|
6
|
Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae). Parasitol Res 2010; 106:1217-23. [PMID: 20195634 DOI: 10.1007/s00436-010-1797-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
A laboratory study was carried out to evaluate the repellent efficacy of a methanol-leaf extract of Ethiopian traditionally used insect repellent plant viz., Lomi sar [vernacular name (local native language, Amharic); Cymbopogon citratus (DC) Stapf. (Poaceae)] against Anopheles arabiensis at four different concentrations viz., 1.0, 1.5, 2.0, and 2.5 mg/cm(2). The percentage protection in relation to the dose method was performed. C. citratus extract has shown various degrees of repellency impact against A. arabiensis. It provided the maximum total percentage protection of 78.83% at 2.5 mg/cm(2) and followed 68.06% at 2.0 mg/cm(2) for 12 h. All four tested concentrations of C. citratus extract offered significant protection and Student's t test results shows statistically significant (p value = 0.001) [1.0 mg/cm(2) (t = 22.89; df = 4); 1.5 mg/cm(2) (t = 24.03; df = 4); 2.0 mg/cm(2) (t = 36.92; df = 4); 2.5 mg/cm(2) (t = 22.31; df = 4)] difference between treated and control groups. The result suggests that it could serve as a potent insect repellent against vectors of disease. Globally, C. citratus is renowned for its therapeutic values. Above and beyond, due to its user- as well as environmental-friendly nature, it should be promoted among the marginalized populations in order to reduce man-vector contact. In addition, this appropriate strategy affords the opportunity to minimize chemical repellent usage and the risks associated with adverse side effects. At the end of the day, traditionally used plant-based insect repellents could be viable safer alternative sources for chemical insect repellents.
Collapse
|