1
|
Tahir Aleem M, Munir F, Shakoor A, Ud Din Sindhu Z, Gao F. Advancement in the development of DNA vaccines against Trypanosoma brucei and future perspective. Int Immunopharmacol 2024; 140:112847. [PMID: 39088922 DOI: 10.1016/j.intimp.2024.112847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Trypanosomes are the extracellular protozoan parasites that cause human African trypanosomiasis disease in humans and nagana disease in animals. Tsetse flies act as a vector for the transmission of the disease in African countries. Animals infected with these parasites become useless or workless, and if not treated, disease can be fatal. There are many side effects associated with old treatments and some of them result in death in 5% of cases. There is a major surface glycoprotein in the parasite known as variant surface glycoprotein. The immune system of the host develops antibodies against this antigen but due to antigenic variation, parasites evade the immune response. Currently, no vaccine is available that provides complete protection. In murine models, only partial protection was observed using certain antigens. In order to develop vaccines against trypanosomes, molecular biology and immunology tools have been used. Immunization is the sole method for the control of disease because the eradication of the vector from endemic areas is an impossible task. Genetic vaccines can carry multiple genes encoding different antigens of the same parasite or different parasites. DNA immunization induces the activation of both cellular immune response and humoral immune response along with the generation of memory. This review highlights the importance of DNA vaccines and advances in the development of DNA vaccines against T. brucei.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 9, 38040, Pakistan
| | - Zia Ud Din Sindhu
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
2
|
Kato K, Heimburg-Molinaro J. Editorial: Insights into glyco-parasitology. Front Mol Biosci 2024; 11:1422955. [PMID: 38800093 PMCID: PMC11117074 DOI: 10.3389/fmolb.2024.1422955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Kentaro Kato
- Department of Eco-epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jamie Heimburg-Molinaro
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Danazumi AU, Iliyasu Gital S, Idris S, BS Dibba L, Balogun EO, Górna MW. Immunoinformatic design of a putative multi-epitope vaccine candidate against Trypanosoma brucei gambiense. Comput Struct Biotechnol J 2022; 20:5574-5585. [PMID: 36284708 PMCID: PMC9576565 DOI: 10.1016/j.csbj.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is caused by flagellated parasites of the genus Trypanosoma. HAT imposes a significant socio-economic burden on many countries in sub-Saharan Africa and its control is hampered by several drawbacks ranging from the ineffectiveness of drugs, complex dosing regimens, drug resistance, and lack of a vaccine. Despite more than a century of research and investigations, the development of a vaccine to tackle HAT is still challenging due to the complex biology of the pathogens. Advancements in computational modeling coupled with the availability of an unprecedented amount of omics data from different organisms have allowed the design of new generation vaccines that offer better antigenicity and safety profile. One of such new generation approaches is a multi-epitope vaccine (MEV) designed from a collection of antigenic peptides. A MEV can stimulate both cellular and humoral immune responses as well as avoiding possible allergenic reactions. Herein, we take advantage of this approach to design a MEV from conserved hypothetical plasma membrane proteins of Trypanosoma brucei gambiense, the trypanosome subspecies that is responsible for the west and central African forms of HAT. The designed MEV is 402 amino acids long (41.5 kDa). It is predicted to be antigenic, non-toxic, to assume a stable 3D conformation, and to interact with a key immune receptor. In addition, immune simulation foresaw adequate immune stimulation by the putative antigen and a lasting memory. Therefore, the designed chimeric vaccine represents a potential candidate that could be used to target HAT.
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland,Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland,Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands,Corresponding authors at: Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland (A.U. Danazumi, M. W. Górna).
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria,Department of Medical Laboratory Science, Kazaure School of Health Technology, Jigawa, Nigeria
| | - Lamin BS Dibba
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria,Department of Physical and Natural Sciences, School of Arts and Sciences, University of the Gambia, Brikama Campus. P.O Box 3530, Serrekunda, the Gambia
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland,Corresponding authors at: Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland (A.U. Danazumi, M. W. Górna).
| |
Collapse
|
4
|
Romero-Ramirez A, Casas-Sánchez A, Autheman D, Duffy CW, Brandt C, Clare S, Harcourt K, André MR, de Almeida Castilho Neto KJG, Teixeira MMG, Machado RZ, Coombes J, Flynn RJ, Wright GJ, Jackson AP. Vivaxin genes encode highly immunogenic, non-variant antigens on the Trypanosoma vivax cell-surface. PLoS Negl Trop Dis 2022; 16:e0010791. [PMID: 36129968 PMCID: PMC9529106 DOI: 10.1371/journal.pntd.0010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/03/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma vivax is a unicellular hemoparasite, and a principal cause of animal African trypanosomiasis (AAT), a vector-borne and potentially fatal livestock disease across sub-Saharan Africa. Previously, we identified diverse T. vivax-specific genes that were predicted to encode cell surface proteins. Here, we examine the immune responses of naturally and experimentally infected hosts to these unique parasite antigens, to identify immunogens that could become vaccine candidates. Immunoprofiling of host serum shows that one particular family (Fam34) elicits a consistent IgG antibody response. This gene family, which we now call Vivaxin, encodes at least 124 transmembrane glycoproteins that display quite distinct expression profiles and patterns of genetic variation. We focused on one gene (viv-β8) that encodes one particularly immunogenic vivaxin protein and which is highly expressed during infections but displays minimal polymorphism across the parasite population. Vaccination of mice with VIVβ8 adjuvanted with Quil-A elicits a strong, balanced immune response and delays parasite proliferation in some animals but, ultimately, it does not prevent disease. Although VIVβ8 is localized across the cell body and flagellar membrane, live immunostaining indicates that VIVβ8 is largely inaccessible to antibody in vivo. However, our phylogenetic analysis shows that vivaxin includes other antigens shown recently to induce immunity against T. vivax. Thus, the introduction of vivaxin represents an important advance in our understanding of the T. vivax cell surface. Besides being a source of proven and promising vaccine antigens, the gene family is clearly an important component of the parasite glycocalyx, with potential to influence host-parasite interactions. Animal African trypanosomiasis (AAT) is an important livestock disease throughout sub-Saharan Africa and beyond. AAT is caused by Trypanosoma vivax, among other species, a unicellular parasite that is spread by biting tsetse flies and multiplies in the bloodstream and other tissues, leading to often fatal neurological conditions if untreated. Although concerted drug treatment and vector eradication programmes have succeeded in controlling Human African trypanosomiasis, AAT continues to adversely affect animal health and impede efficient food production and economic development in many less-developed countries. In this study, we attempted to identify parasite surface proteins that stimulated the strongest immune responses in naturally infected animals, as the basis for a vaccine. We describe the discovery of a new, species-specific protein family in T. vivax, which we call vivaxin. We show that one vivaxin protein (VIVβ8) is surface expressed and retards parasite proliferation when used to immunize mice, but does not prevent infection. Nevertheless, we also reveal that vivaxin includes another protein previously shown to induce protective immunity (IFX/VIVβ1). Besides its great potential for novel approaches to AAT control, the vivaxin family is revealed as a significant component of the T. vivax cell surface and may have important, species-specific roles in host interactions.
Collapse
Affiliation(s)
- Alessandra Romero-Ramirez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aitor Casas-Sánchez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Delphine Autheman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Craig W. Duffy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Marcos Rogério André
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Kayo José Garcia de Almeida Castilho Neto
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosangela Zacharias Machado
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Janine Coombes
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, United Kingdom
| | - Robin J. Flynn
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Waterford Institute of Technology, Waterford, Ireland
| | - Gavin J. Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew P. Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Magez S, Pinto Torres JE, Obishakin E, Radwanska M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front Immunol 2020; 11:382. [PMID: 32218784 PMCID: PMC7078162 DOI: 10.3389/fimmu.2020.00382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites that affect humans, livestock, and game animals around the world. Through co-evolution with the mammalian immune system, trypanosomes have developed defense mechanisms that allow them to thrive in blood, lymphoid vessels, and tissue environments such as the brain, the fat tissue, and testes. Trypanosomes have developed ways to circumvent antibody-mediated killing and block the activation of the lytic arm of the complement pathway. Hence, this makes the innate immune control of the infection a crucial part of the host-parasite interaction, determining infection susceptibility, and parasitemia control. Indeed, trypanosomes use a combination of several independent mechanisms to avoid clearance by the humoral immune system. First, perpetuated antigenic variation of the surface coat allows to escape antibody-mediated elimination. Secondly, when antibodies bind to the coat, they are efficiently transported toward the endocytosis pathway, where they are removed from the coat proteins. Finally, trypanosomes engage in the active destruction of the mammalian humoral immune response. This provides them with a rescue solution in case antigenic variation does not confer total immunological invisibility. Both antigenic variation and B cell destruction pose significant hurdles for the development of anti-trypanosome vaccine strategies. However, developing total immune escape capacity and unlimited growth capabilities within a mammalian host is not beneficial for any parasite, as it will result in the accelerated death of the host itself. Hence, trypanosomes have acquired a system of quorum sensing that results in density-dependent population growth arrest in order to prevent overpopulating the host. The same system could possibly sense the infection-associated host tissue damage resulting from inflammatory innate immune responses, in which case the quorum sensing serves to prevent excessive immunopathology and as such also promotes host survival. In order to put these concepts together, this review summarizes current knowledge on the interaction between trypanosomes and the mammalian innate immune system, the mechanisms involved in population growth regulation, antigenic variation and the immuno-destructive effect of trypanosomes on the humoral immune system. Vaccine trials and a discussion on the role of innate immune modulation in these trials are discussed at the end.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Emmanuel Obishakin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Moreno CJG, Temporão A, Torres T, Sousa Silva M. Trypanosoma brucei Interaction with Host: Mechanism of VSG Release as Target for Drug Discovery for African Trypanosomiasis. Int J Mol Sci 2019; 20:ijms20061484. [PMID: 30934540 PMCID: PMC6471236 DOI: 10.3390/ijms20061484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.
Collapse
Affiliation(s)
- Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
| | - Adriana Temporão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal.
| | - Taffarel Torres
- Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural de Semi-árido, Mossoró 59625-900, Brazil.
| | - Marcelo Sousa Silva
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
7
|
Teixeira AF, Pereira JG, Pestana-Ascensão S, Silva MS. Trans-sialidase Protein as a Potential Serological Marker for African Trypanosomiasis. Protein J 2019; 38:50-57. [PMID: 30604107 DOI: 10.1007/s10930-018-09808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trypanosoma brucei is the etiological agent of African trypanosomiasis responsible for human and animal infections. T. brucei is transmitted by infected tsetse flies. There is no vaccine for the disease and drugs available for treatment are inefficient and high toxicity. In this context, it is a priority to find antigenic targets suitable for the development of new diagnostic tools, drugs and vaccines. In this work, we report that mice infected with T. b. brucei produce antibodies against trans-sialidase recombinant protein (TS). In addition, we also demonstrate that bloodstream T. b. brucei express messenger RNA related to the TS gene. Collectively, our data strongly suggest that bloodstream forms of T. b. brucei also express the TS gene, that to date was described only in the procyclic forms of the T. b. brucei. In conclusion, these results highlight the importance of TS protein as a possible antigen target during infection caused by T. b. brucei.
Collapse
Affiliation(s)
- Ana Filipa Teixeira
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Gomes Pereira
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Sónia Pestana-Ascensão
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Marcelo Sousa Silva
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal. .,Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil. .,Programa de Pós-graduação em Bioquímica, Centro de Biociências, Federal University of Rio Grande do Norte, Natal, Brazil. .,Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
8
|
Abstract
Plasmids are currently an indispensable molecular tool in life science research and a central asset for the modern biotechnology industry, supporting its mission to produce pharmaceutical proteins, antibodies, vaccines, industrial enzymes, and molecular diagnostics, to name a few key products. Furthermore, plasmids have gradually stepped up in the past 20 years as useful biopharmaceuticals in the context of gene therapy and DNA vaccination interventions. This review provides a concise coverage of the scientific progress that has been made since the emergence of what are called today plasmid biopharmaceuticals. The most relevant topics are discussed to provide researchers with an updated overview of the field. A brief outline of the initial breakthroughs and innovations is followed by a discussion of the motivation behind the medical uses of plasmids in the context of therapeutic and prophylactic interventions. The molecular characteristics and rationale underlying the design of plasmid vectors as gene transfer agents are described and a description of the most important methods used to deliver plasmid biopharmaceuticals in vivo (gene gun, electroporation, cationic lipids and polymers, and micro- and nanoparticles) is provided. The major safety issues (integration and autoimmunity) surrounding the use of plasmid biopharmaceuticals is discussed next. Aspects related to the large-scale manufacturing are also covered, and reference is made to the plasmid products that have received marketing authorization as of today.
Collapse
|
9
|
Tewari AK, Kurup SP, Baidya S, Barta JR, Sharma B. Protective antibody and cytokine responses in mice following immunization with recombinant beta-tubulin and subsequent Trypanosoma evansi challenge. Parasit Vectors 2015; 8:580. [PMID: 26566996 PMCID: PMC4644280 DOI: 10.1186/s13071-015-1189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Background Trypanosomosis or Surra, caused by the flagellated hemoprotozoan parasite Trypanosoma evansi, is a disease of economic importance through its wide prevalence in domestic livestock in tropical countries. In the absence of a protective vaccine, management of the disease relies on a few available chemotherapeutic agents. Although humoral immunity is the mainstay of resistance to T. evansi, the ability of the parasite to vary its immunodominant surface proteins to subvert the immune system has forced vaccine efforts to target a variety of invariant epitopes. Beta tubulin, an integral component of the trypanosome cytoskeleton, was therefore targeted using the recombinant form of the protein for immunization. Methods The 1329 bp coding sequence of beta tubulin gene was PCR amplified and cloned in pQE-TriSystem expression vector. Recombinant beta tubulin was heterologously expressed in Escherichia coli as a 46 KDa fusion protein and used for immunization of mice. The Ig response was studied by ELISA, whereas the cytokine response was measured using a cytometric bead-based assay quantified by flow cytometry. Result Immunization with recombinant beta (β)-tubulin protein induced a beta-tubulin specific humoral immune response of predominantly IgG2a isotype. Lethal challenge with T. evansi blood-form trypomastigotes post-immunization elicited a robust anamnestic response. An abundance of IFN-γ further confirmed the Th-1 bias of the protective response. We also observed extended survival and better control of the challenge infection in the immunized mice. Conclusions A robust anamnestic response following challenge including a Th-1 serum cytokine profile coupled with increased survival is indicative of protective immunity in the immunized mice. These observations suggest that β-tubulin of T. evansi is a viable antigenic target for development of a vaccine against this important livestock pathogen.
Collapse
Affiliation(s)
- Anup Kumar Tewari
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India.
| | - Samarchith P Kurup
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India. .,Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Surajit Baidya
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India. .,Department of Parasitology, West Bengal University of Animal and Fishery Sciences, 37 & 68, Kshudiram Bose Sarani, Belgachia, Kolkata, West Bengal, 700037, India.
| | - John R Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Bhaskar Sharma
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India.
| |
Collapse
|
10
|
Bessat M. Knockdown of APC/C-associated genes and its effect on viability and cell cycle of protozoan parasite of Trypanosoma brucei. Parasitol Res 2014; 113:1555-62. [PMID: 24532012 DOI: 10.1007/s00436-014-3800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
In the eukaryotic pathogen of Trypanosoma brucei, the anaphase promoting complex or cyclosome (APC/C) is composed of ten subunit proteins which are conserved in kinetoplastid protozoan parasites. During the course of APC/C characterization by PTP tagging and mass spectrometry, some other proteins were found to be associated in substoichiometric ratio to APC/C. These proteins could not be assigned as APC/C core components as they are below the threshold imposed by mass spectrometry identification and therefore they are termed non-core APC/C-associated proteins. Here in this study, functional roles of these proteins were investigated through reverse genetics approach. mRNAs of protein-encoding genes were individually knocked down by RNA interference and the resulting phenotypes were assayed through functional assays such as growth curve, cell cycle progression by flow cytometry, and DNA profiles by DAPI staining and microscopy examination. Based on the presented data, these proteins are playing essential functions in the cell biology of T. brucei; and more specifically, in regulating its cell cycle progression. Thus, the non-core APC/C-associated proteins appear to play important roles in complementing APC/C specialized function in the cell cycle of T. brucei.
Collapse
Affiliation(s)
- Mohamed Bessat
- Department of Parasitology, Faculty of Veterinary Medicine, Alexandria University, P.O. Box 22758, Edfina-Rasheed Line, Behaira, Egypt,
| |
Collapse
|
11
|
La Greca F, Magez S. Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? HUMAN VACCINES 2012; 7:1225-33. [PMID: 22205439 PMCID: PMC3323498 DOI: 10.4161/hv.7.11.18203] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To date, human African trypanosomiasis (HAT) still threatens millions of people throughout sub-Sahara Africa, and new approaches to disease prevention and treatment remain a priority. It is commonly accepted that HAT is fatal unless treatment is provided. However, despite the well-described general symptoms of disease progression during distinct stages of the infection, leading to encephalitic complications, coma and death, a substantial body of evidence has been reported suggesting that natural acquired immunity could occur. Hence, if under favorable conditions natural infections can lead to correct immune activation and immune protection against HAT, the development of an effective anti-HAT vaccine should remain a central goal in the fight against this disease.<br />
In this review, we will (1) discuss the vaccine candidates that have been proposed over the past years, (2) highlight the main obstacles that an efficient anti-trypanosomiasis vaccine needs to overcome and (3) critically reflect on the validity of the widely used murine model for HAT.
Collapse
Affiliation(s)
- Florencia La Greca
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
12
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
13
|
Lima AH, Souza PRM, Alencar N, Lameira J, Govender T, Kruger HG, Maguire GEM, Alves CN. Molecular modeling of T. rangeli, T. brucei gambiense, and T. evansi sialidases in complex with the DANA inhibitor. Chem Biol Drug Des 2012; 80:114-20. [PMID: 22416952 DOI: 10.1111/j.1747-0285.2012.01380.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Trypanosomal (trans-) sialidases are enzymes that catalyze the transfer of sialic acid residues between host and parasite glycoconjugates. Herein, we have used homology modeling to construct the 3D structures of sialidases from Trypanosoma brucei and Trypanosoma evansi. Hybrid quantum mechanical/molecular mechanical molecular dynamics simulations were used to determine the interaction energy between the 2-deoxy-2,3-didehydro-N-acetylneuraminic acid inhibitor and the three sialidases studied here. Our results suggest that the two constructed enzymes share the same basic fold motive of the Trypanosoma rangeli crystallographic structure. In addition, quantum mechanical/molecular mechanical molecular dynamics simulations show that the 2-deoxy-2,3-didehydro-N-acetylneuraminic acid inhibitor forms a stronger complex with Trypanosoma rangeli than with Trypanosoma brucei and Trypanosoma evansi sialidases. Finally, the interaction energy by residues shows that the arginine triad plays a decisive role to complex 2-deoxy-2,3-didehydro-N-acetylneuraminic acid with the enzyme through hydrogen bonding.
Collapse
Affiliation(s)
- Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kurup SP, Tewari AK. Induction of protective immune response in mice by a DNA vaccine encoding Trypanosoma evansi beta tubulin gene. Vet Parasitol 2012; 187:9-16. [PMID: 22317783 DOI: 10.1016/j.vetpar.2012.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022]
Abstract
Surra, caused by Trypanosoma evansi, is an economically important veterinary disease of the tropics. Lack of effective drugs or vaccines have made surra a severe economic burden particularly in Asia and sub-Saharan Africa. In this study, a naked DNA construct encoding full length T. evansi beta (β) tubulin gene was used to immunize mice, to elicit a T. evansi β tubulin protein specific humoral immune response, delineated by ELISA. The serum cytokine profile post immunization, as determined by flow cytometry bead based assay, showed a predominant T helper cell Type 1 (Th1) response with significant increase in levels of IFNγ and TNFα. Lethal challenge with T. evansi blood-form trypomastigotes post immunization generated a β tubulin specific recall response and a stronger Th1 type serum cytokine profile which correlated with an extended survival and better control of parasitemia in the immunized mice.
Collapse
Affiliation(s)
- Samarchith P Kurup
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | | |
Collapse
|
15
|
Ling AS, Trotter JR, Hendriks EF. A zinc finger protein, TbZC3H20, stabilizes two developmentally regulated mRNAs in trypanosomes. J Biol Chem 2011; 286:20152-62. [PMID: 21467035 PMCID: PMC3121479 DOI: 10.1074/jbc.m110.139261] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 04/01/2011] [Indexed: 12/21/2022] Open
Abstract
CCCH zinc finger proteins (ZC3Hs) are a novel class of RNA-binding protein involved in post-transcriptional mechanisms controlling gene expression. We show TbZC3H20 from Trypanosoma brucei, the causative agent of sleeping sickness and other diseases, stabilizes two developmentally regulated transcripts encoding a mitochondrial carrier protein (MCP12) and trans-sialidase (TS-like E). TbZC3H20 is shown to be an RNA-binding protein that is enriched in insect procyclic form T. brucei and is the first ZC3H discovered controlling gene expression through modulating mRNA abundance in trypanosomes. Previous studies have demonstrated that RNA recognition motif-containing and PUF family RNA-binding proteins can control gene expression by stabilizing specific target mRNA levels. This work is the first to describe a ZC3H stabilizing rather than destabilizing target mRNAs as a regulatory mechanism and the first report of a ZC3H regulating a gene encoding a mitochondrial protein. This suggests a broader role for ZC3Hs in post-transcriptional regulation of gene expression than previously thought.
Collapse
Affiliation(s)
- Alexandra S. Ling
- From the Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - James R. Trotter
- From the Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Edward F. Hendriks
- From the Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Lança ASC, de Sousa KP, Atouguia J, Prazeres DMF, Monteiro GA, Silva MS. Trypanosoma brucei: immunisation with plasmid DNA encoding invariant surface glycoprotein gene is able to induce partial protection in experimental African trypanosomiasis. Exp Parasitol 2010; 127:18-24. [PMID: 20599996 DOI: 10.1016/j.exppara.2010.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/31/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Trypanosoma brucei is the etiological agent responsible for African trypanosomiasis, an infectious pathology which represents a serious problem of public health and economic losses in Sub-Saharan Africa. As one of the foremost neglected illnesses, few resources have been available for the development of vaccines or new drugs, in spite of the current therapeutical drugs showing little efficiency and high toxicity. Hence, it is obviously important to widen effective therapeutics and preventive strategies against African trypanosomiasis. In this work, we use the DNA vaccine model to evaluate immunisation effectiveness in mice challenged with Trypanosoma brucei brucei. We demonstrate that Balb/C mice immunised intramuscularly with a single dose of a DNA plasmid encoding a bloodstream-stage specific invariant surface glycoprotein (ISG) are partially protected from a lethal dose of T. b. brucei. Interestingly, the surviving animals show high levels of IgG2a anti-trypanosoma antibodies, suggesting that the Th1 response profile seems important for the induced mechanisms of immune protection.
Collapse
Affiliation(s)
- Andreia Sofia Cruz Lança
- Unidade de Ensino e Investigação de Clínica das Doenças Tropicais, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
18
|
|