1
|
El Bissati K, Krishack PA, Zhou Y, Weber CR, Lykins J, Jankovic D, Edelblum KL, Fraczek L, Grover H, Chentoufi AA, Singh G, Reardon C, Dubey JP, Reed S, Alexander J, Sidney J, Sette A, Shastri N, McLeod R. CD4 + T Cell Responses to Toxoplasma gondii Are a Double-Edged Sword. Vaccines (Basel) 2023; 11:1485. [PMID: 37766162 PMCID: PMC10535856 DOI: 10.3390/vaccines11091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep.
Collapse
Affiliation(s)
- Kamal El Bissati
- Institute of Molecular Engineering, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Paulette A. Krishack
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Christopher R. Weber
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Joseph Lykins
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Karen L. Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Center for Immunity and Inflammation, Laboratory Medicine, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Laura Fraczek
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Harshita Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Aziz A. Chentoufi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Catherine Reardon
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102, USA;
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121, USA;
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| |
Collapse
|
2
|
Hosseininejad Z, Daryani A, Fasihi-Ramandi M, Asgarian-Omran H, Valadan R, Nayeri T, Dodangeh S, Sarvi S. In Silico Vaccine Design and Expression of the Multi-Component Protein Candidate against the Toxoplasma gondii Parasite from MIC13, GRA1, and SAG1 Antigens. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:301-312. [PMID: 37886246 PMCID: PMC10597883 DOI: 10.18502/ijpa.v18i3.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/20/2022] [Indexed: 10/28/2023]
Abstract
Background We aimed to design a B and T cell recombinant protein vaccine of Toxoplasma gondii with in silico approach. MIC13 plays an important role in spreading the parasite in the host body. GRA1 causes the persistence of the parasite in the parasitophorous vacuole. SAG1 plays a role in host-cell adhesion and cell invasion. Methods Amino acid positions 73-272 from MIC13, 71-190 from GRA1, and 101-300 from SAG1 were selected and joined with linker A(EAAAK)A. The structures, antigenicity, allergenicity, physicochemical properties, as well as codon optimization and mRNA structure of this recombinant protein called MGS1, were predicted using bioinformatics servers. The designed structure was synthesized and then cloned in pET28a (+) plasmid and transformed into Escherichia coli BL21. Results The number of amino acids in this antigen was 555, and its antigenicity was estimated to be 0.6340. SDS-PAGE and Western blotting confirmed gene expression and successful production of the protein with a molecular weight of 59.56kDa. This protein will be used in our future studies as an anti-Toxoplasma vaccine candidate in animal models. Conclusion In silico methods are efficient for understanding information about proteins, selecting immunogenic epitopes, and finally producing recombinant proteins, as well as reducing the time and cost of vaccine design.
Collapse
Affiliation(s)
- Zahra Hosseininejad
- Toxoplasmosis Research Center, Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tooran Nayeri
- Toxoplasmosis Research Center, Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Department of Medical Parasitology and Mycology, Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Zhang X, Yuan H, Mahmmod YS, Yang Z, Zhao M, Song Y, Luo S, Zhang XX, Yuan ZG. Insight into the current Toxoplasma gondii DNA vaccine: a review article. Expert Rev Vaccines 2023; 22:66-89. [PMID: 36508550 DOI: 10.1080/14760584.2023.2157818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Toxoplasma gondii (T.gondii) is a widespread protozoan with significant economic losses and public health importance. But so far, the protective effect of reported DNA-based vaccines fluctuates widely, and no study has demonstrated complete protection. AREAS COVERED This review provides an inclusive summary of T. gondii DNA vaccine antigens, adjuvants, and some other parameters. A total of 140 articles from 2000 to 2021 were collected from five databases. By contrasting the outcomes of acute and chronic challenges, we aimed to investigate and identify viable immunological strategies for optimum protection. Furthermore, we evaluated and discussed the impact of several parameters on challenge outcomes in the hopes of developing some recommendations to assist better future horizontal comparisons among research. EXPERT OPINION In the coming five years of research, the exploration of vaccine cocktails combining invasion antigens and metabolic antigens with genetic adjuvants or novel DNA delivery methods may offer us desirable protection against this multiple stage of life parasite. In addition to finding a better immune strategy, developing better in silico prediction methods, solving problems posed by variables in practical applications, and gaining a more profound knowledge of T.gondii-host molecular interaction is also crucial towards a successful vaccine.
Collapse
Affiliation(s)
- Xirui Zhang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yasser S Mahmmod
- Veterinary Sciences Division, Faculty of Health Sciences, Higher Colleges of Technology, 17155, Abu Dhabi, United Arab Emirates
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yining Song
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, PR China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
4
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Valadan R, Asgarian-Omran H, Ajami A, Khalilian A, Hosseininejad Z, Dodangeh S, Javidnia J, Daryani A. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol 2022; 244:108427. [PMID: 36379272 DOI: 10.1016/j.exppara.2022.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Tooran Nayeri
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Valadan
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khalilian
- Department of Biostatistics and Community Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Javad Javidnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Warner RC, Chapman RC, Davis BN, Davis PH. REVIEW OF DNA VACCINE APPROACHES AGAINST THE PARASITE TOXOPLASMA GONDII. J Parasitol 2021; 107:882-903. [PMID: 34852176 DOI: 10.1645/20-157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that affects both humans and livestock. Transmitted to humans through ingestion, it is the second-leading cause of foodborne illness-related death. Currently, there exists no approved vaccine for humans or most livestock against the parasite. DNA vaccines, a type of subunit vaccine which uses segments of the pathogen's DNA to generate immunity, have shown varying degrees of experimental efficacy against infection caused by the parasite. This review compiles DNA vaccine efforts against Toxoplasma gondii, segmenting the analysis by parasite antigen, as well as a review of concomitant adjuvant usage. No single antigenic group was consistently more effective within in vivo trials relative to others.
Collapse
Affiliation(s)
- Rosalie C Warner
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Ryan C Chapman
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Brianna N Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| |
Collapse
|
6
|
Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M, Majidiani H. Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin Exp Vaccine Res 2021; 10:59-77. [PMID: 33628756 PMCID: PMC7892946 DOI: 10.7774/cevr.2021.10.1.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Toxoplasmosis, transmitted by Toxoplasma gondii, is a worldwide parasitic disease that affects approximately one-third of the world's inhabitants. Today, there are no appropriate drugs to deter tissue cysts from developing in infected hosts. So, developing an effective vaccine would be valuable to avoid from toxoplasmosis. Considering the role of microneme antigens such as microneme protein 4 (MIC4) in T. gondii pathogenesis, it can be used as potential candidates for vaccine against T. gondii. Materials and Methods In this study several bioinformatics methods were used to assess the different aspects of MIC4 protein such as secondary and tertiary structure, physicochemical characteristics, the transmembrane domains, subcellular localization, B-cell, helper-T lymphocyte, cytotoxic-T lymphocyte epitopes, and other notable characteristic of this protein design a suitable vaccine against T. gondii. Results The studies revealed that MIC4 protein includes 59 potential post-translational modification sites without any transmembrane domains. Moreover, several probable epitopes of B- and T-cells were detected for MIC4. The secondary structure comprised 55.69% random coil, 5.86% beta-turn, 19.31% extended strand, and 19.14% alpha helix. According to the Ramachandran plot results, 87.42% of the amino acid residues were located in the favored, 9.44% in allowed, and 3.14% in outlier regions. The protein allergenicity and antigenicity revealed that it was non-allergenic and antigenic. Conclusion This study gives vital basic on MIC4 protein for further research and also established an effective vaccine with different techniques against acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Majidiani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Protective immunity induced by a DNA vaccine cocktail expressing TgSAG1, TgROP2, and the genetic adjuvant HBsAg against Toxoplasma gondii infection. Microb Pathog 2020; 147:104441. [PMID: 32781100 DOI: 10.1016/j.micpath.2020.104441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an intracellular obligate parasitic protozoon that can infect all warm-blooded animals, causing zoonotic toxoplasmosis. So far, there is no commercial toxoplasmosis vaccine for human use. In the present study, we constructed a DNA vaccine cocktail which includes the surface protein (SAG1) and the rhoptry protein ROP2 denoted as pEGFP-N1-SAG1-ROP2. In order to improve the efficacy, HBsAg was used as a genetic adjuvant to construct pEGFP-N1-HBsAg-SAG1-ROP2. Two eukaryotic plasmids were transiently transfected into HEK293T cells and the expression was examined using fluorescence microscopy and western blotting. We then immunized Kunming mice intramuscularly with the DNA vaccine. After three immunizations, the immune response was evaluated by measuring antibody levels, cytokine production, percentages of CD4+ and CD8+ T lymphocytes, and the survival times of the T. gondii RH strain challenged mice. The results showed that the two DNA vaccines stimulated Th1 responses, and had a higher antibody titer, IL-2, IL-12, and IFN-γ levels, and percentage of CD4+ and CD8+ T lymphocytes than the control group. In addition, mice immunized with the pEGFP-N1-HBsAg-SAG1-ROP2 vaccine showed increased survival times compared with pEGFP-N1-SAG1-ROP2.
Collapse
|
8
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
9
|
Xue J, Jiang W, Li J, Xiong W, Tian Z, Zhang Q, Li S, Liu C, Huang K, Wang Q. Toxoplasma gondii RPL40 is a circulating antigen with immune protection effect. Folia Parasitol (Praha) 2019; 66. [PMID: 31592775 DOI: 10.14411/fp.2019.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Screening and identification of protective antigens are essential for the prevention of infections with Toxoplasma gondii (Nicolle et Manceaux, 1908). In our previous study, T. gondii ribosomal-ubiquitin protein L40 (TgRPL40) was identified as a circulating antigen. However, the function and protective value of TgRPL40 was unknown. In the current study, recombinant TgRPL40 was expressed in Escherichia coli BL21 and antibody was prepared. Western blotting analysis indicated that TgRPL40 was present in circulating antigens and excretory/secretary antigens (ESA). Immunofluorescence and immunoelectron microscopy analysis revealed that TgRPL40 protein is widely distributed in the tachyzoites. Immunisation with recombinant TgRPL40 prolonged the survival of mice infected with tachyzoites. Quantitative real-time polymerase chain reaction analysis showed that immunisation with recombinant TgRPL40 reduced the parasite burden in blood, liver, spleen and brain of mice infected with tachyzoites. These observations indicate that TgRPL40 is a circulating antigen and is an effector of immune protection against acute T. gondii infection.
Collapse
Affiliation(s)
- Junxin Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China.,Shanghai Customs, Shanghai, P. R. China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Jian Li
- Shanghai Customs, Shanghai, P. R. China
| | - Wei Xiong
- Shanghai Customs, Shanghai, P. R. China
| | | | | | | | | | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| |
Collapse
|
10
|
Sobati H, Dalimi A, Kazemi B, Ghaffarifar F. Evaluation of Anti-Toxoplasma gondii Immune Responses in BALB/c Mice Induced by DNA Vaccines Encoding Surface Antigen 1 (SAG1) and 3 (SAG3). MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s0891416819010099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Huang SY, Chen K, Wang JL, Yang B, Zhu XQ. Evaluation of protective immunity induced by recombinant calcium-dependent protein kinase 1 (TgCDPK1) protein against acute toxoplasmosis in mice. Microb Pathog 2019; 133:103560. [PMID: 31145981 DOI: 10.1016/j.micpath.2019.103560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii is an intracellular zoonotic parasite that causes toxoplasmosis, which can cause economic losses and serious public health problems worldwide. A member of the T. gondii calcium-dependent protein kinases family, TgCDPK1 was recently identified as an essential regulator of exocytosis in T. gondii, and participated in direct parasite motility, host-cell invasion and egress. In the present study, the protective immunity of recombinant TgCDPK1 protein (rTgCDPK1) was evaluated against acute toxoplasmosis in mice. rTgCDPK1 were expressed and purified, BABL/c mice were intraperitoneally immunized with rTgCDPK1 and challenged with the highly virulent RH strain of T. gondii. The specific immune responses were analyzed by measuring the cytokine and serum antibody, and lymphocyte proliferation assays, flow cytometry of lymphocytes and the survival curve were employed to evaluate the protective efficacy. From the results we found that special humoral and cellular responses could be elicited in vaccine mice, and higher level of IgG antibody, and the significant increased levels of Th1-type cytokines IFN-γ, IL-12 (p70), IL10 and CD3+CD4+CD8- and CD3+CD8+CD4- T cells could also be detected comparing to control mice (P < 0.05). All vaccinated mice prolonged survival time (14.90 ± 2.89 days) challenge with 1000 tachyzoites of RH, while the control mice died within 8 days. These results indicated that TgCDPK1 protein was a potential vaccine candidate against acute toxoplasmosis.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cloning, Molecular
- Cytokines/metabolism
- Female
- Genes, Protozoan/genetics
- Immunity, Cellular
- Immunity, Humoral
- Immunization
- Immunoglobulin G/blood
- Lymphocytes/immunology
- Mice
- Protein Kinases/genetics
- Protein Kinases/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/immunology
- Survival Analysis
- Toxoplasma/genetics
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Si-Yang Huang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, 225009, PR China.
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Bin Yang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, 225009, PR China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, 225009, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| |
Collapse
|
12
|
A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis 2019; 38:617-629. [DOI: 10.1007/s10096-018-03442-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
13
|
AHADY MT, HOGHOOGHI-RAD N, MADANI R, ESMAEILI RASTAGHI AR. Identification of Antigenic and Immunogenic Proteins of Toxoplasma gondii in Human and Sheep by Immunoproteomics. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:39-48. [PMID: 29963084 PMCID: PMC6019589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Toxoplasmosis is a parasitic disease caused by the intracellular protozoan parasite, Toxoplasma gondii, which can infect humans and warm-blooded animals. This infection can lead to still birth and abortion among some susceptible hosts especially sheep and human in pregnancy. Development of a vaccine against T. gondii infection is very important-especially for use in immunocompromised patients, pregnant women, and sheep. Different antigens of T. gondii can be potential candidates for immunization. The aims of this study were to identify the immunodominant and antigenic proteins of T. gondii in sheep and man. METHODS Tachyzoites' proteins were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and subjected to western blot analysis probed with T. gondii positive sera of sheep and human (Biotechnology Department of Pasteur Institute of Tehran, Iran, from April 2016 to March 2017). Finally, the immunoreactive proteins were identified by mass spectrometry (MALDI-TOF/MS and MS/MS) technique. RESULTS Five immunoreactive and antigenic proteins were recognized by Toxoplasma positive sera of human and sheep. These identified proteins were Enolase 2, rhoptry protein 4 (ROP4), dense granular protein 14 (GRA14), rhoptry protein 15 (ROP15) and rhoptry protein 9 (ROP9). CONCLUSION The identified immunodominant proteins have potential to be used as diagnostic antigens and as diagnostic markers of Toxoplasma infection in sheep and human.
Collapse
Affiliation(s)
- Mohammad Taghi AHADY
- Dept. of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasser HOGHOOGHI-RAD
- Dept. of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Correspondence
| | - Rasool MADANI
- Dept. of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
14
|
Muflikhah ND, Artama WT. AN EVALUATION STUDY OF ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) USING RECOMBINANT PROTEIN GRA1 FOR DETECTION OF IgG ANTIBODIES AGAINTS TOXOPLASMA GONDII INFECTIONS. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2017. [DOI: 10.20473/ijtid.v6i5.5903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis is an infectious disease caused by Toxoplasma gondii, an intracellular protozoan parasite that live inside the cells of the reticulo endothelial and parenchymal cells of human and animals (mammals and birds). Some cases of toxoplasmosis usually have no symptoms, but in any cases caused severe symptoms, such as hydrocephalus, microcephalus, intracranial calcification, retinal damage, brain abscess, mental retardation, lymphadenopathy, and others. Its severe symptoms usually showed a long time after first exposure, except symptoms showed by congenital transmission caused by infected mother. Early diagnosis is important to prevent the illness but methods for toxoplasmosis screening are still too expensive for developing country. Enzyme-linked immunosorbent assay (ELISA) allow the testing of a large number samples within short time frame and based on antibody or antigen detection. This study aimed to know the sensitivity and specificity of recombinat protein GRA1 as antigen using ELISA methods. We tested the sensitivity and spesificity of GRA1 protein as antigen in ELISA methods to diagnose toxoplasmosis and compared with ELISA Kit Commercial. Reliable laboratory testing is important to detect Toxoplasma gondii infection, and focused to improving the low cost and easy-to-use diagnostic instrument. Seventy sera collected and tested using both indirect ELISA, commercial ELISA kit and GRA1 protein coated as antigen. Fourty eight and fifty one samples showed positive IgG antibody result of ELISA-GRA1 and ELISA kit. Negative sample tested by ELISA-GRA1 was 22 samples and 19 sample tested by ELISA Kit. The sensitivity and specificity of GRA1-based on ELISA were 100% and 86.36%, positive prediction value (ppv) was 94.11%. These data indicate that the recombinant protein GRA1 is a highly immunogenic protein in human toxoplasmosis and become a promising marker for the screening of toxoplasmosis.
Collapse
|
15
|
Ashour DS, Saad AE, Dawood LM, Zamzam Y. Immunological interaction between Giardia cyst extract and experimental toxoplasmosis. Parasite Immunol 2017; 40. [PMID: 29130475 DOI: 10.1111/pim.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is mostly associated with other intestinal parasitic infections especially Giardia due to shared mode of peroral infection. Toxoplasma and Giardia induce a strong T-helper 1- immune response. Our aim was to induce a protective immune response that results in significant impact on intestinal and extra-intestinal phases of Toxoplasma infection. This study was conducted in experimental animals and assessment of Giardia cyst extract effect on Toxoplasma infection was investigated by histopathological examination of small intestine and brain, Toxoplasma cyst count and iNOS staining of the brain, measurement of IFN-γ and TGF-β in intestinal tissues. Results showed that the brain Toxoplasma cyst number was decreased in mice infected with Toxoplasma then received Giardia cyst extract as compared to mice infected with Toxoplasma only. This effect was produced because Giardia cyst extract augmented the immune response to Toxoplasma infection as evidenced by severe inflammatory reaction in the intestinal and brain tissues, increased levels of IFN-γ and TGF-β in intestinal tissues and strong iNOS staining of the brain. In conclusion, Giardia cyst extract generated a protective response against T. gondii infection. Therefore, Giardia antigen will be a suitable candidate for further researches as an immunomodulatory agent against Toxoplasma infection.
Collapse
Affiliation(s)
- D S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - L M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Y Zamzam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Zhou J, Wang L. SAG4 DNA and Peptide Vaccination Provides Partial Protection against T. gondii Infection in BALB/c Mice. Front Microbiol 2017; 8:1733. [PMID: 28936207 PMCID: PMC5594090 DOI: 10.3389/fmicb.2017.01733] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023] Open
Abstract
Toxoplasma gondii can lead to congenital infections in human. Surface antigen protein 4 (SAG4) of T. gondii is a potential stimulator for humoral and cellular immune responses. In the present study, a DNA vaccine encoding SAG4 from T. gondii was constructed and used to immunize BALB/c mice with peptide to evaluate the protective efficacy of the vaccine. The productions of IgG antibodies and cytokines (gamma interferon) from the vaccine (pSAG4/peptide) group were significantly higher than pSAG4 or peptide groups. After a lethal challenge by 1 × 104 tachyzoites from the I strain (RH), the survival time of mice immunized by pSAG4/peptide was longer than that of pSAG4 or peptide immunized mice or control mice. Moreover, after challenging by 20 cysts of the II strain (PRU) of T. gondii, the number of brain cysts from pSAG4/peptide vaccinated mice was only 31% of the number in PBS injected mice. The findings suggested the SAG4 DNA vaccine with peptide led significant immune responses and improved the protection against T. gondii challenges.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Lin Wang
- Department of Electroneurophysiology, Jinan Children's HospitalJinan, China
| |
Collapse
|
17
|
Ching XT, Fong MY, Lau YL. Evaluation of the Protective Effect of Deoxyribonucleic Acid Vaccines Encoding Granule Antigen 2 and 5 Against Acute Toxoplasmosis in BALB/c Mice. Am J Trop Med Hyg 2017; 96:1441-1447. [PMID: 28719288 DOI: 10.4269/ajtmh.16-0548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AbstractToxoplasma gondii infects a broad range of warm-blooded hosts, including humans. Important clinical manifestations include encephalitis in immunocompromised patients as well as miscarriage and fetal damage during early pregnancy. Toxoplasma gondii dense granule antigen 2 and 5 (GRA2 and GRA5) are essential for parasitophorous vacuole development of the parasite. To evaluate the potential of GRA2 and GRA5 as recombinant DNA vaccine candidates, these antigens were cloned into eukaryotic expression vector (pcDNA 3.1C) and evaluated in vaccination experiments. Recombinant DNA vaccines constructed with genes encoding GRAs were validated in Chinese hamster ovary cells before evaluation using lethal challenge of the virulent T. gondii RH strain in BALB/c mice. The DNA vaccines of pcGRA2 and pcGRA5 elicited cellular-mediated immune response with significantly higher levels of interferon-gamma, interleukin-2 (IL-2), IL-4, and IL-10 (P < 0.05) compared with controls. A mixed T-helper cell 1 (Th1)/Th2 response was associated with slightly prolonged survival. These findings provide evidence that DNA vaccination with GRA2 and GRA5 is associated with Th1-like cell-mediated immune responses. It will be worthwhile to construct recombinant multiantigen combining full-length GRA2 or/and GRA5 with various antigenic proteins such as the surface antigens and rhoptry antigens to improve vaccination efficacy.
Collapse
Affiliation(s)
- Xiao Teng Ching
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Lu G, Zhou J, Zhou A, Han Y, Guo J, Song P, Zhou H, Cong H, Hou M, Wang L, He S. SAG5B and SAG5C combined vaccine protects mice against Toxoplasma gondii infection. Parasitol Int 2017; 66:596-602. [PMID: 28602862 DOI: 10.1016/j.parint.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Infections with the protozoan parasite Toxoplasma gondii, which are common around the world, can lead to congenital infections in humans. T. gondii surface antigen protein 5B (SAG5B) and SAG5C are potential stimulators of humoral and cellular immune responses. In this study, a multi-antigenic DNA vaccine constructed to express T. gondii SAG5B and SAG5C proteins simultaneously was used to immunize BALB/c mice to evaluate the protective efficacy of the vaccine. IgG antibody and gamma interferon (IFN-γ) cytokine production in the pSAG5B/SAG5C DNA vaccine group were significantly higher (0.853±0.103 and 915.2±106.9, respectively) than in the single DNA vaccine groups (pSAG5B, 0.667±0.109 and 598.3±74.9, respectively; pSAG5C, 0.696±0.092 and 623.7±95.5, respectively). After a lethal challenge with 1×104 RH strain tachyzoites, the survival time of the mice (17days) immunized with pSAG5B/SAG5C was longer than that of the single-gene-immunized mice (12days) or the control mice (6days). Moreover, after intragastric infection with 20 T. gondii PRU (low virulence) strain cysts, the number of brain cysts in the pSAG5B/SAG5C-vaccinated mice was only 25% of the number for the PBS-injected mice. Our findings indicate that, in comparison with the other mouse groups, the multi-antigenic DNA vaccine (pSAG5B/SAG5C) significantly induced immune responses and improved the protection against challenge with T. gondii in the host animals.
Collapse
Affiliation(s)
- Gang Lu
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China.
| | - Jian Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, 250021, Jinan, Shandong Province, People's Republic of China.
| | - Yali Han
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China.
| | - Jingjing Guo
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China.
| | - Pengxia Song
- Medical School, Quzhou College of Technology, Quzhou, 324000, People's Republic of China.
| | - Huaiyu Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China.
| | - Hua Cong
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, 250012, Jinan, People's Republic of China.
| | - Lin Wang
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China; Department of Ji Nan Children's Hospital, 250022, Jinan, Shandong Province, People's Republic of China.
| | - Shenyi He
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People's Republic of China.
| |
Collapse
|
19
|
Enhancing immune responses to a DNA vaccine encoding Toxoplasma gondii GRA14 by calcium phosphate nanoparticles as an adjuvant. Immunol Lett 2017; 185:40-47. [DOI: 10.1016/j.imlet.2017.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
|
20
|
Ahmadpour E, Sarvi S, Hashemi Soteh MB, Sharif M, Rahimi MT, Valadan R, Tehrani M, Khalilian A, Montazeri M, Daryani A. Evaluation of the immune response in BALB/c mice induced by a novel DNA vaccine expressing GRA14 againstToxoplasma gondii. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12419] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- E. Ahmadpour
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - S. Sarvi
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. B. Hashemi Soteh
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Sharif
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. T. Rahimi
- School of Medicine; Shahroud University of Medical Sciences; Shahroud Iran
| | - R. Valadan
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Tehrani
- Molecular and Cell Biology Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - A. Khalilian
- Biostatistics Department; Mazandaran University of Medical Sciences; Sari Iran
| | - M. Montazeri
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| | - A. Daryani
- Toxoplasmosis Research Center; Mazandaran University of Medical Sciences; Sari Iran
| |
Collapse
|
21
|
Wang L, Lu G, Zhou A, Han Y, Guo J, Zhou H, Cong H, He S. Evaluation of immune responses induced by rhoptry protein 5 and rhoptry protein 7 DNA vaccines against Toxoplasma gondii. Parasite Immunol 2016; 38:209-17. [PMID: 26802673 DOI: 10.1111/pim.12306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/19/2016] [Indexed: 01/01/2023]
Abstract
Infection with the protozoan parasite Toxoplasma gondii is widespread, and the organism can cause congenital infections in humans. The horizontal transmission of Toxoplasma is even more common than congenital. An effective vaccine strategy brings the prospect of improving Toxoplasma disease control. Rhoptry protein 5 (ROP5) and ROP7 are potential stimulators of humoral and cellular immune responses. In this study, we constructed a multi-antigenic DNA vaccine expressing ROP5 and ROP7 of T. gondii and compared the protective efficacy to single-gene vaccines and control groups. BALB/c mice were immunized intramuscularly three times. The levels of IgG antibodies and cytokines in mice immunized with the multi-antigenic DNA vaccine (pROP5/ROP7) were significantly higher than those in the control mice. Mice vaccinated with pROP5/ROP7 showed a longer survival time (16 days) than single-gene-immunized mice (11 and 12 days, respectively) or control mice (8 days) after a challenge with 1 × 10(4) tachyzoites of RH strain of T. gondii. Furthermore, after intragastric infection with 20 cysts of PRU strain of T. gondii, the number of brain cysts in mice immunized with pROP5/ROP7 was only 25% of the number in control mice. Our results showed that a DNA vaccine encoding ROP5 and ROP7 significantly enhanced protection against T. gondii challenge.
Collapse
Affiliation(s)
- L Wang
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Ji Nan Children's Hospital, 250022, Jinan, Shandong Province, Peoples Republic of China
| | - G Lu
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - A Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, Jinan, Shandong, China
| | - Y Han
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - J Guo
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - H Zhou
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - H Cong
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| | - S He
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
22
|
Toxoplasma gondii: Protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice. Exp Parasitol 2016; 166:131-6. [DOI: 10.1016/j.exppara.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
|
23
|
Chen J, Li ZY, Petersen E, Huang SY, Zhou DH, Zhu XQ. DNA vaccination with genes encoding Toxoplasma gondii antigens ROP5 and GRA15 induces protective immunity against toxoplasmosis in Kunming mice. Expert Rev Vaccines 2015; 14:617-24. [PMID: 25749394 DOI: 10.1586/14760584.2015.1011133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the protective efficacy of a DNA vaccine encoding Toxoplasma gondii rhoptry protein 5 (ROP5) and GRA15 antigens. METHODS We constructed eukaryotic plasmids expressing pVAX-ROP5 and pVAX-GRA15, and measured the immune responses to these DNA vaccines. RESULTS Kunming mice immunized with pVAX-ROP5 or pVAX-GRA15 showed significantly increased serum IgG2a titers; Th1 responses association with the production of IFN-γ, IL-2, IL12 p40 and IL-12 p70; cell-mediated cytotoxic activity with increased frequencies of IFN-γ secreting CD8(+) T cells (CD8(+) IFN-γ+ T cells), as well as prolonged survival time (19.4 ± 4.9 days for ROP5; 17.8 ± 3.8 days for GRA15) and brain cyst reduction (57.4% for ROP5; 65.9% for GRA15) compared to control mice. Co-administration with pVAX-ROP5 and pVAX-GRA15 boosted the cellular and humoral immune responses, and significantly increased cyst reduction (79%) and prolonged the survival of immunized mice (22.7 ± 7.2 days). CONCLUSION Co-immunization of pVAX-ROP5 and pVAX-GRA15 increase the protective efficacy.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Abdizadeh R, Maraghi S, Ghadiri AA, Tavalla M, Shojaee S. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells. Jundishapur J Microbiol 2015; 8:e22570. [PMID: 25861441 PMCID: PMC4386078 DOI: 10.5812/jjm.22570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Cell and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Sharif Maraghi
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Institute of Health Research, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Ata A. Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Corresponding author: Ata A. Ghadiri, Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran. Tel: +98-6133330144, Fax: +98-6133330145, E-mail:
| | - Mehdi Tavalla
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences Tehran, IR Iran
| |
Collapse
|
25
|
Pollo-Oliveira L, Post H, Acencio ML, Lemke N, van den Toorn H, Tragante V, Heck AJR, Altelaar AFM, Yatsuda AP. Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics. Parasit Vectors 2013; 6:335. [PMID: 24267406 PMCID: PMC4182915 DOI: 10.1186/1756-3305-6-335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apicomplexan parasite Neospora caninum causes neosporosis, a disease that leads to abortion or stillbirth in cattle, generating an economic impact on the dairy and beef cattle trade. As an obligatory intracellular parasite, N. caninum needs to invade the host cell in an active manner to survive. The increase in parasite cytosolic Ca2+ upon contact with the host cell mediates critical events, including the exocytosis of phylum-specific secretory organelles and the activation of the parasite invasion motor. Because invasion is considered a requirement for pathogen survival and replication within the host, the identification of secreted proteins (secretome) involved in invasion may be useful to reveal interesting targets for therapeutic intervention. METHODS To chart the currently missing N. caninum secretome, we employed mass spectrometry-based proteomics to identify proteins present in the N. caninum tachyzoite using two different approaches. The first approach was identifying the proteins present in the tachyzoite-secreted fraction (ESA). The second approach was determining the relative quantification through peptide stable isotope labelling of the tachyzoites submitted to an ethanol secretion stimulus (discharged tachyzoite), expecting to identify the secreted proteins among the down-regulated group. RESULTS As a result, 615 proteins were identified at ESA and 2,011 proteins quantified at the discharged tachyzoite. We have analysed the connection between the secreted and the down-regulated proteins and searched for putative regulators of the secretion process among the up-regulated proteins. An interaction network was built by computational prediction involving the up- and down-regulated proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD000424. CONCLUSIONS The comparison between the protein abundances in ESA and their measure in the discharged tachyzoite allowed for a more precise identification of the most likely secreted proteins. Information from the network interaction and up-regulated proteins was important to recognise key proteins potentially involved in the metabolic regulation of secretion. Our results may be helpful to guide the selection of targets to be investigated against Neospora caninum and other Apicomplexan organisms.
Collapse
Affiliation(s)
- Letícia Pollo-Oliveira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto e Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Universidade de São Paulo, Av do Café , s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - Marcio Luis Acencio
- Botucatu Institute of Biosciences, UNESP - Univ Estadual Paulista, Distrito de Rubião Jr, s/n, Botucatu, São Paulo 18918-970, Brazil
| | - Ney Lemke
- Botucatu Institute of Biosciences, UNESP - Univ Estadual Paulista, Distrito de Rubião Jr, s/n, Botucatu, São Paulo 18918-970, Brazil
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - Vinicius Tragante
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert JR Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - AF Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto e Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Universidade de São Paulo, Av do Café , s/n, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
26
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
27
|
Qu D, Han J, Du A. Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re. Exp Parasitol 2013; 135:234-9. [DOI: 10.1016/j.exppara.2013.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/16/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023]
|
28
|
Immunization with excreted–secreted antigens reduces tissue cyst formation in pigs. Parasitol Res 2013; 112:3835-42. [DOI: 10.1007/s00436-013-3571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
|
29
|
Zheng B, Lu S, Tong Q, Kong Q, Lou D. The virulence-related rhoptry protein 5 (ROP5) of Toxoplasma Gondii is a novel vaccine candidate against toxoplasmosis in mice. Vaccine 2013; 31:4578-84. [PMID: 23928460 DOI: 10.1016/j.vaccine.2013.07.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/29/2013] [Accepted: 07/25/2013] [Indexed: 12/22/2022]
Abstract
Infections with the intracellular protozoan parasite Toxoplasma gondii pose a serious public health problem and are of great economic importance worldwide. The parasite rhoptry protein 5 (ROP5) has been implicated as a major virulence factor that reduces the accumulation of immunity-related GTPases (IRG) in parasitophorous vacuole membrane (PVM), which maintains PVM integrity and evades IFNγ-mediated killing by intracellular parasites. To study the immunoprotective value of ROP5, BALB/c mice were immunized with a recombinant form of the protein administered alone or in combination with another promising vaccine antigen, rSAG1. All mice vaccinated with the recombinant antigens developed a high level of specific antibody responses against soluble tachyzoite antigens (STAg), a statistically significant increase of the splenocyte proliferation response, and significant levels of IFN-γ and IL-2 production. In contrast to rSAG1, which only stimulated the release of IFN-γ and IL-2, rROP5 induced the specific production of IL-10, the Th2-type cytokine, in addition to IFN-γ and IL-2. These results demonstrated that rROP5 could induce significant cellular and humoral (Th1/Th2) immune responses. Moreover, mice immunized with rROP5 displayed a prolonged survival time against a lethal challenge with the T. gondii RH strain. Additionally, vaccination with the mixture of rROP5+rSAG1 resulted in higher levels of T. gondii-specific IgG antibodies and lymphocyte proliferative responses and conferred more efficient protection against T. gondii challenge compared to immunization with rROP5 or rSAG1 alone. Our studies show that recombinant ROP5 antigen may be a promising vaccine candidate against toxoplasmosis. To our knowledge, this is the first report to evaluate the immunoprotective value of ROP5.
Collapse
Affiliation(s)
- Bin Zheng
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, PR China
| | | | | | | | | |
Collapse
|
30
|
Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitol Res 2013; 112:2871-7. [PMID: 23749087 DOI: 10.1007/s00436-013-3458-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/08/2013] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii is one of the most prevalent intracellular parasites and is threatening the health of both humans and animals, therefore causing incalculable economic losses worldwide. Vaccination is thought to be an efficient way of controlling toxoplasmosis. T. gondii microneme protein 11 (MIC11) is a soluble microneme protein which is presumably considered facilitating the early stage of cell invasion. To evaluate the protective efficacy of T. gondii MIC11, in the present study, a new DNA vaccine-encoding the α-chain of T. gondii MIC11 was constructed using the pcDNA3.1 vector. Expression of MIC11 from this vector was confirmed by indirect immunofluorescence assay following transfection into baby hamster kidney (BHK) cells. Intramuscular immunization of BALB/c mice with pcDNA/MIC11 was carried out to evaluate the immune responses by serum antibodies titers, lymphoproliferation assay, and cytokines assay. The protective efficacy was evaluated by survival rate in mice after challenging with highly virulent strain of T. gondii. The results demonstrated that this vaccination elicited significant humoral responses and T. gondii lysate antigen (TLA)-stimulated lymphoproliferation (p < 0.05). Compared to controls, the pcDNA/MIC11 immunized mice had high production of IFN-γ, IL-12, and IL-2 (p < 0.05), but not IL-4 (p > 0.05), indicating that a predominant Th1 type response was developed. The vaccination also increased the survival rate of immunized mice when they were challenged with a lethal dose of tachyzoites of T. gondii RH strain. These data suggest that T. gondii MIC11 is a reasonable vaccine candidate deserving further studies, and pcDNA/MIC11 is a potential strategy for the control of toxoplasmosis.
Collapse
|
31
|
Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice. Parasitol Res 2013; 112:2593-9. [PMID: 23591483 DOI: 10.1007/s00436-013-3425-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/04/2013] [Indexed: 01/01/2023]
Abstract
The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.
Collapse
|
32
|
Ram H, Rao JR, Tewari AK, Banerjee PS, Sharma AK. Molecular cloning, sequencing, and biological characterization of GRA4 gene of Toxoplasma gondii. Parasitol Res 2013; 112:2487-94. [PMID: 23572047 DOI: 10.1007/s00436-013-3414-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/26/2013] [Indexed: 12/21/2022]
Abstract
In the present study, GRA4 (dense granule antigen) gene of Toxoplasma gondii was cloned, sequenced, and biologically characterized. The nucleotide sequence data obtained were analyzed and submitted in GenBank database (accession no. EU660037). Analysis of nucleotide sequence of GRA4 gene revealed 99.2 % homology with the published sequence (accession no. M76432). The gene segment (open reading frame) of 1,054 bp was further amplified and re-cloned in expression vector pET-32a. The recombinant protein obtained following the expression in prokaryotic system had a molecular mass of approx. 50 kDa and showed good immunoreactivity with T. gondii sera collected from infected goats. The immunization study of the recombinant protein performed in laboratory mice and live challenge with T. gondii revealed a high level of IgG response against the tachyzoite lysate antigen (TLA) by an indirect ELISA. Protection against T. gondii challenge infection was not evident in immunized mice except for the prolongation of survival period by 2 days. Humoral immune response profile revealed initially a high level of IgG antibody, but at 1 week post-challenge, a sudden drop in the level of the antibody was appreciable. Cytokine profiling by enzyme-linked immunosorbent spot method revealed relatively high level of IFN-γ production by the rodent spleen cells followed by IL-10 and IL-4. Increase in IFN-γ production by spleen cells of immunized mice following TLA stimulation suggested direct correlation to the up-regulated Th1 cells. However, the present immunization trial failed to show any positive relationship with the protection of mice following T. gondii challenge infection.
Collapse
Affiliation(s)
- Hira Ram
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| | | | | | | | | |
Collapse
|
33
|
Cong H, Zhang M, Xin Q, Wang Z, Li Y, Zhao Q, Zhou H, He S. Compound DNA vaccine encoding SAG1/ SAG3 with A2/B subunit of cholera toxin as a genetic adjuvant protects BALB/c mice against Toxoplasma gondii. Parasit Vectors 2013; 6:63. [PMID: 23497561 PMCID: PMC3622580 DOI: 10.1186/1756-3305-6-63] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/11/2013] [Indexed: 01/23/2023] Open
Abstract
Background Intracellular parasites, such as T. gondii, present a plurality of antigens because of the complexity of its life cycle. Compound DNA vaccines bring a new approach and hope for the treatment of toxoplasmosis. In this study, a DNA vaccine encoding two major surface antigens SAG1, SAG3 from T. gondii, with A2/B subunit of cholera toxin as a genetic adjuvant was constructed. Methods BALB/c mice were immunized intramuscularly with PBS, pcDNA3.1, pSAG1, pSAG1/SAG3 and pSAG1/SAG3-CTXA2/B three times separately. Immunized mice were tested for IgG antibody and IFN-γ and IL-4 production by ELISA. The proliferation of T cells was measured by DNA synthesis assay and the lymphocyte subsets of spleen cells by flow cytometry. All the immunized mice were challenged with 103 highly virulent RH tachyzoites of Toxoplasma gondii intraperitoneally and the survival times were recorded. Results An enhanced production of IgG antibodies, antigen-specific lymphocyte proliferation and IFN-γ production from splenic cells were induced in mice immunized with pSAG1/SAG3 compared to mice immunized with pSAG1 (P<0.05). Introduction of CTXA2/B further enhanced the Th1 cell-mediated immunity with higher levels of IFN-γ, lymphocyte proliferation activity and percentage of CD8+ T-cells. When challenged with lethal doses of T. gondii (1×103), all control mice (PBS and empty plasmid group) died within 6 days. Mice immunized with pSAG1 died within 8 days. While 20% and 40% survival rate were achieved from mice immunized with pSAG1/SAG3 and pSAG1/SAG3-CTXA2/B. Conclusions This study indicates the compound DNA vaccine encoding T. gondii antigens SAG1, SAG3 with CTXA2/B gene was a promising DNA vaccine candidate against toxoplasmosis, which could effectively enhance the humoral and cellular immune response and prolong survival time in vaccinated mice.
Collapse
Affiliation(s)
- Hua Cong
- Department of human parasitology, Shandong University School of Medicine, No44 wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | | | | | | | | | | | | | | |
Collapse
|