1
|
Kassaee SN, Ayoko GA, Richard D, Wang T, Islam N. Inhaled Ivermectin-Loaded Lipid Polymer Hybrid Nanoparticles: Development and Characterization. Pharmaceutics 2024; 16:1061. [PMID: 39204406 PMCID: PMC11359515 DOI: 10.3390/pharmaceutics16081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Ivermectin (IVM), a drug originally used for treating parasitic infections, is being explored for its potential applications in cancer therapy. Despite the promising anti-cancer effects of IVM, its low water solubility limits its bioavailability and, consequently, its biological efficacy as an oral formulation. To overcome this challenge, our research focused on developing IVM-loaded lipid polymer hybrid nanoparticles (LPHNPs) designed for potential pulmonary administration. IVM-loaded LPHNPs were developed using the emulsion solvent evaporation method and characterized in terms of particle size, morphology, entrapment efficiency, and release pattern. Solid phase characterization was investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Using a Twin stage impinger (TSI) attached to a device, aerosolization properties of the developed LPHNPs were studied at a flow rate of 60 L/min, and IVM was determined by a validated HPLC method. IVM-loaded LPHNPs demonstrated spherical-shaped particles between 302 and 350 nm. Developed formulations showed an entrapment efficiency between 68 and 80% and a sustained 50 to 60% IVM release pattern within 96 h. Carr's index (CI), Hausner ratio (HR), and angle of repose (θ) indicated proper flowability of the fabricated LPHNPs. The in vitro aerosolization analysis revealed fine particle fractions (FPFs) ranging from 18.53% to 24.77%. This in vitro study demonstrates the potential of IVM-loaded LPHNPs as a delivery vehicle through the pulmonary route.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Godwin A. Ayoko
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Derek Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Tony Wang
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Taheri A, Bremmell KE, Joyce P, Prestidge CA. Battle of the milky way: Lymphatic targeted drug delivery for pathogen eradication. J Control Release 2023; 363:507-524. [PMID: 37797891 DOI: 10.1016/j.jconrel.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.
Collapse
Affiliation(s)
- Ali Taheri
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Mandalaywala R, Rana A, Ramos AL, Sampson P, Ashkenas J. Physical and pharmacokinetic characterization of Soluvec™, a novel, solvent-free aqueous ivermectin formulation. Ther Deliv 2023; 14:391-399. [PMID: 37535333 DOI: 10.4155/tde-2023-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Purpose: To describe application of the Quicksol™ solvent-free approach to solubilize ivermectin (IVM). Methods: Lyophilized IVM complexed with hydroxypropyl-β-cyclodextrin (HP-β-CD) was resolubilized in aqueous polysorbate-80, generating Soluvec™. Lyophilizate was examined by Fourier-transform infrared spectroscopy and differential scanning calorimetry; Soluvec, by dynamic light scattering. Pharmacokinetics was evaluated in dogs allocated to subcutaneous (SC) or intramuscular (IM) Soluvec or oral IVM. Results: IVM in Soluvec was tightly bound by HPβCD, forming nearly monodisperse 28 nm particles with solubility ∼2500-times that of free IVM. SC and IM Soluvec increased IVM exposure, peak IVM and extended duration of IVM exposure, versus oral dosing. Conclusion: The Quicksol method generated Soluvec, a concentrated aqueous parenteral IVM formulation with pharmacokinetic properties suitable for veterinary or human use.
Collapse
Affiliation(s)
- Richa Mandalaywala
- Mountain Valley MD, 260 Edgeley Blvd - Unit 4, Concord, Ontario, L4K 3Y4, Canada
| | - Azhar Rana
- Mountain Valley MD, 260 Edgeley Blvd - Unit 4, Concord, Ontario, L4K 3Y4, Canada
| | - Aubrey L Ramos
- Mountain Valley MD, 260 Edgeley Blvd - Unit 4, Concord, Ontario, L4K 3Y4, Canada
| | - Peter Sampson
- IntrinsiChem Consulting Inc., Oakville, Ontario, L6M 4A2, Canada
| | - John Ashkenas
- EquiPoise Communication, 491 Brunswick Ave, Toronto, Ontario, M5R 2Z6, Canada
| |
Collapse
|
4
|
Cardoso de Souza Z, Humberto Xavier Júnior F, Oliveira Pinheiro I, de Souza Rebouças J, Oliveira de Abreu B, Roberto Ribeiro Mesquita P, de Medeiros Rodrigues F, Costa Quadros H, Manuel Fernandes Mendes T, Nguewa P, Marques Alegretti S, Paiva Farias L, Rocha Formiga F. Ameliorating the antiparasitic activity of the multifaceted drug ivermectin through a polymer nanocapsule formulation. Int J Pharm 2023; 639:122965. [PMID: 37084836 DOI: 10.1016/j.ijpharm.2023.122965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4,266.5 ± 38.6 μg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4°C and 25°C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.
Collapse
Affiliation(s)
- Zilyane Cardoso de Souza
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Irapuan Oliveira Pinheiro
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Brenda Oliveira de Abreu
- Graduate Program in Health Sciences, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | | | | | - Helenita Costa Quadros
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | | | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), 31009, Pamplona, Spain
| | - Silmara Marques Alegretti
- Departament of Animal Biology, State University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Leonardo Paiva Farias
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | - Fabio Rocha Formiga
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil; Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil.
| |
Collapse
|
5
|
Velho MC, Fontana de Andrade D, Beck RCR. Ivermectin: recent approaches in the design of novel veterinary and human medicines. Pharm Dev Technol 2022; 27:865-880. [PMID: 36062978 DOI: 10.1080/10837450.2022.2121840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Ivermectin (IVM) is a drug widely used in veterinary and human medicine for the management of parasitic diseases. Its repositioning potential has been recently considered for the treatment of different diseases, such as cancer and viral infections. However, IVM faces some limitations to its formulations due to its low water solubility and bioavailability, along with reports of drug resistance. In this sense, novel technological approaches have been explored to optimize its formulations and/or to develop innovative medicines. Therefore, this review discusses the strategies proposed in the last decade to improve the safety and efficacy of IVM and to explore its novel therapeutic applications. Among these technologies, the use of micro/nano-drug delivery systems is the most used approach, followed by long-acting formulations. In general, the development of these novel formulations seems to run side by side in veterinary and human health, showing a shared interface between the two areas. Although the technologies proposed indicate a promising future in the development of innovative dosage forms containing IVM, its safety and therapeutic targets must be further evaluated. Overall, these approaches comprise tailoring drug delivery profiles, decreasing the risks of developing drug resistance, and supporting the application of IVM for reaching different therapeutic targets.
Collapse
Affiliation(s)
- Maiara Callegaro Velho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre
| | - Diego Fontana de Andrade
- Departamento de Produção e Controle de Matéria-Prima, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre
| |
Collapse
|
6
|
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases. FUNDAMENTALS OF BIONANOMATERIALS 2022:273-292. [DOI: 10.1016/b978-0-12-824147-9.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
7
|
Firouzeh N, Eslaminejad T, Shafiei R, Faridi A, Fasihi Harandi M. Lethal in vitro effects of optimized chitosan nanoparticles against protoscoleces of Echinococcus granulosus. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211014219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cystic Echinococcosis (CE) is a parasitic infection caused by the larval stage of Echinococcus granulosus. Exploring safe and effective scolicidal agents for the surgery is an urgent need for the successful treatment of CE. This study aimed to determine scolicidal activity of the synthesized chitosan nanoparticles. Physicochemical properties of synthesized nanoparticles were determined by using DLS, FTIR, and SEM. Different concentrations of chitosan nanoparticles from 125 to 1000 μg/ml were examined at different incubation times (10, 60, 120, and 180 min). Scolicidal and cytotoxic activity of chitosan nanoparticles were confirmed by eosin exclusion and hemolysis activity tests. FTIR spectra, zeta potential (+42 ± 2.08) and PDI (0.388 ± 0.034) value revealed that the chitosan nanoparticles were synthesized. Significant differences among the scolicidal effects of chitosan nanoparticles were observed in comparison to the control treatments and highest scolicidal activity was observed at 1000 μg/ml after 180 min exposure time. Hemolytic activity was not significant at all concentrations of chitosan nanoparticles. Our findings support the hypothesis that Chitosan nanoparticles have the potential to be a safe and efficient scolicidal agent candidate at very low concentrations and in a wide range of exposure time. Further in vivo studies are recommended to evaluate chitosan nanoparticle efficacy before clinical application.
Collapse
Affiliation(s)
- Nima Firouzeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ashkan Faridi
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Elmehy DA, Hasby Saad MA, El Maghraby GM, Arafa MF, Soliman NA, Elkaliny HH, Elgendy DI. Niosomal versus nano-crystalline ivermectin against different stages of Trichinella spiralis infection in mice. Parasitol Res 2021; 120:2641-2658. [PMID: 33945012 DOI: 10.1007/s00436-021-07172-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
Ivermectin (IVM) is one of the competitive treatments used for trichinellosis. However, several studies linked its efficacy with early diagnosis and administration to tackle the intestinal phase with limited activity being recorded against encysted larvae. The aim of this study was to employ niosomes for enhancing effectiveness of oral IVM against different stages of Trichinella spiralis (T. spiralis) infection with reference to nano-crystalline IVM. Mice were randomized into four groups: group Ι, 15 uninfected controls; group ΙΙ, 30 infected untreated controls; group ΙΙΙ, 30 infected nano-crystalline IVM treated, and group ΙV, 30 infected niosomal IVM treated. All groups were equally subdivided into 3 subgroups; (a) treated on the 1st day post infection (dpi), (b) treated on the 10th dpi, and (c) treated on the 30th dpi. Assessment was done by counting adult worms and larvae plus histopathological examination of jejunum and diaphragm. Biochemical assessment of oxidant/antioxidant status, angiogenic, and inflammatory biomarkers in intestinal and muscle tissues was also performed. Both niosomes and nano-crystals resulted in significant reduction in adult and larval counts compared to the infected untreated control with superior activity of niosomal IVM. The superiority of niosomes was expressed further by reduction of inflammation in both jejunal and muscle homogenates. Biochemical parameters showed highly significant differences in all treated mice compared to infected untreated control at different stages with highly significant effect of niosomal IVM. In conclusion, niosomal IVM efficacy exceeded the nano-crystalline IVM in treatment of different phases of trichinellosis.
Collapse
Affiliation(s)
- Dalia A Elmehy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Marwa A Hasby Saad
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mona F Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba H Elkaliny
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
dos Santos Ramos MA, dos Santos KC, da Silva PB, de Toledo LG, Marena GD, Rodero CF, de Camargo BAF, Fortunato GC, Bauab TM, Chorilli M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020; 589:119780. [PMID: 32860856 PMCID: PMC7449125 DOI: 10.1016/j.ijpharm.2020.119780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences. The studies demonstrated that the drug delivery systems described can contribute to the therapeutic scenario of these diseases, being classified as safe, active platforms and with therapeutic versatility.
Collapse
Affiliation(s)
- Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil,Corresponding authors
| | - Karen Cristina dos Santos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetic and Morphology, Brasília University (UNB), Institute of Biological Sciences, Zip Code: 70735100, Brazil
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Camila Fernanda Rodero
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil.
| |
Collapse
|
10
|
Formiga FR, Leblanc R, de Souza Rebouças J, Farias LP, de Oliveira RN, Pena L. Ivermectin: an award-winning drug with expected antiviral activity against COVID-19. J Control Release 2020; 329:758-761. [PMID: 33038449 PMCID: PMC7539925 DOI: 10.1016/j.jconrel.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Ivermectin is an FDA-approved broad-spectrum antiparasitic agent with demonstrated antiviral activity against a number of DNA and RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite this promise, the antiviral activity of ivermectin has not been consistently proven in vivo. While ivermectin's activity against SARS-CoV-2 is currently under investigation in patients, insufficient emphasis has been placed on formulation challenges. Here, we discuss challenges surrounding the use of ivermectin in the context of coronavirus disease-19 (COVID-19) and how novel formulations employing micro- and nanotechnologies may address these concerns.
Collapse
Affiliation(s)
- Fabio Rocha Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil.
| | - Roger Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | | - Leonardo Paiva Farias
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | - Ronaldo Nascimento de Oliveira
- Bioactive Compounds Synthesis Laboratory, Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), 52171-900 Recife, PE, Brazil
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
| |
Collapse
|
11
|
Shrivastava S, Gupta A, Kaur CD. The Epitome of Novel Techniques and Targeting Approaches in Drug Delivery for Treating Lymphatic Filariasis. Curr Drug Targets 2020; 21:1250-1263. [PMID: 32603280 DOI: 10.2174/1389450121666200630111250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphatic filariasis is a pervasive and life-threatening disease for human beings. Currently, 893 million people in 49 countries worldwide affected by lymphatic filariasis as per WHO statistics. The concealed aspects of lymphatic diseases such as delayed disease detection, inappropriate disease imaging, the geographical outbreak of infection, and lack of preventive chemotherapy have brought this epidemic to the edge of Neglected Tropical Diseases. Many medications and natural bioactive substances have seen to promote filaricidal activity against the target parasitic species. However, the majority of failures have occurred in pharmaceutical and pharmacokinetic issues. OBJECTIVE The purpose of the study is to focus on the challenges and therapeutic issues in the treatment of filariasis. The review brings novel techniques and therapeutic approaches for combating lymphatic filariasis. It also offers significant developments and opportunities for such therapeutic interventions. CONCLUSION Through this review, an attempt has made to critically evaluate the avenues of innovative pharmaceuticals and molecular targeting approaches to bring an integrated solution to combat lymphatic filariasis.
Collapse
Affiliation(s)
- Saurabh Shrivastava
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| | - Anshita Gupta
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| | - Chanchal Deep Kaur
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| |
Collapse
|
12
|
Chitosan-based particulate systems for drug and vaccine delivery in the treatment and prevention of neglected tropical diseases. Drug Deliv Transl Res 2020; 10:1644-1674. [PMID: 32588282 DOI: 10.1007/s13346-020-00806-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neglected tropical diseases (NTDs) are a diverse group of infections which are difficult to prevent or control, affecting impoverished communities that are unique to tropical or subtropical regions. In spite of the low number of drugs that are currently used for the treatment of these diseases, progress on new drug discovery and development for NTDs is still very limited. Therefore, strategies on the development of new delivery systems for current drugs have been the main focus of formulators to provide improved efficacy and safety. In recent years, particulate delivery systems at micro- and nanosize, including polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, metallic nanoparticles, and nanoemulsions, have been widely investigated in the treatment and control of NTDs. Among these polymers used for the preparation of such systems is chitosan, which is a marine biopolymer obtained from the shells of crustaceans. Chitosan has been investigated as a delivery system due to the versatility of its physicochemical properties as well as bioadhesive and penetration-enhancing properties. Furthermore, chitosan can be also used to improve treatment due to its bioactive properties such as antimicrobial, tissue regeneration, etc. In this review, after giving a brief introduction to neglected diseases and particulate systems developed for the treatment and control of NTDs, the chitosan-based systems will be described in more detail and the recent studies on these systems will be reviewed. Graphical abstract.
Collapse
|
13
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
14
|
Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles. Exp Parasitol 2019; 204:107717. [DOI: 10.1016/j.exppara.2019.107717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
15
|
Ashour DS. Ivermectin: From theory to clinical application. Int J Antimicrob Agents 2019; 54:134-142. [PMID: 31071469 DOI: 10.1016/j.ijantimicag.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Approximately 250 million people have been using ivermectin (IVM) annually to combat many parasitic diseases including filariasis, onchocerciasis, strongyloidiasis, scabies and pediculosis. Many clinical studies have proven its efficacy against these diseases and have reported the optimum dose and duration of treatment. Moreover, its antiparasitic range has increased to cover more parasitic infections, but it still requires further exploration, e.g. for trichinosis and myiasis. Furthermore, IVM showed high efficacy in killing vectors of disease-causing parasites such as mosquitoes, sandflies and tsetse flies. The World Health Organization (WHO) has managed many control programmes involving the use of IVM to achieve elimination of onchocerciasis and lymphatic filariasis and to reduce malaria transmission. However, IVM is not exempt from the possibility of resistance and, certainly, its intensive use has led to the emergence of resistance in some parasites. Recent research is investigating the possibility of novel drug delivery systems for IVM that increase its potential to treat a new range of diseases and to overcome the possibility of drug resistance. This review highlights the most common human uses of IVM, with special reference to the new and promising properties of IVM.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
16
|
Li P, Rios Coronado PE, Longstaff XRR, Tarashansky AJ, Wang B. Nanomedicine Approaches Against Parasitic Worm Infections. Adv Healthc Mater 2018; 7:e1701494. [PMID: 29602254 DOI: 10.1002/adhm.201701494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Indexed: 01/10/2023]
Abstract
Nanomedicine approaches have the potential to transform the battle against parasitic worm (helminth) infections, a major global health scourge from which billions are currently suffering. It is anticipated that the intersection of two currently disparate fields, nanomedicine and helminth biology, will constitute a new frontier in science and technology. This progress report surveys current innovations in these research fields and discusses research opportunities. In particular, the focus is on: (1) major challenges that helminth infections impose on mankind; (2) key aspects of helminth biology that inform future research directions; (3) efforts to construct nanodelivery platforms to target drugs and genes to helminths hidden in their hosts; (4) attempts in applying nanotechnology to enable vaccination against helminth infections; (5) outlooks in utilizing nanoparticles to enhance immunomodulatory activities of worm-derived factors to cure allergy and autoimmune diseases. In each section, achievements are summarized, limitations are explored, and future directions are assessed.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| | | | | | | | - Bo Wang
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
17
|
Teimouri A, Azami SJ, Keshavarz H, Esmaeili F, Alimi R, Mavi SA, Shojaee S. Anti- Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain. Int J Nanomedicine 2018; 13:1341-1351. [PMID: 29563791 PMCID: PMC5849388 DOI: 10.2147/ijn.s158736] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Natural polysaccharides such as chitosan (CS) are widely used as antimicrobial agents. In recent years, and considering that CS has a strong antimicrobial potential, interest has been focused on antimicrobial activity of chitosan nanoparticles (CS NPs). The main factors affecting the antibacterial activity of chitosan include molecular weight (MW) and concentration. In this regard, the aim of this study was to produce various MWs and concentrations of CS NPs, through the ionic gelation method, and investigate their potential anti-parasitic activity against tachyzoites of Toxoplasma gondii RH strain. MATERIALS AND METHODS The MWs and degree of deacetylation of the CS were characterized using viscometric and acid-base titration methods, respectively. The efficacy of various MWs and concentrations of NPs was assessed by performing in vitro experiments for tachyzoites of T. gondii RH strain, such as MTT assay, scanning electron microscopy, bioassay in mice and PCR. In vivo experiment was carried out in BALB/c mice which were inoculated with tachyzoites of T. gondii RH strain and treated with various MWs of CS NPs. RESULTS The results of in vitro and in vivo experiments revealed that anti-Toxoplasma activity strengthened as the CS NPs concentration increased and the MW decreased. In vitro experiment showed 100% mortality of tachyzoites at 500 and 1,000 ppm concentrations of low molecular weight (LMW) CS NPs after 180 min and at 2,000 ppm after 120 min. Furthermore, a 100% mortality of tachyzoites was observed at 1,000 and 2,000 ppm concentrations of medium molecular weight (MMW) CS NPs and at 2,000 ppm concentration of high molecular weight (HMW) CS NPs after 180 min. Growth inhibition rates of tachyzoites in peritoneal exudates of mice receiving low, medium and high MWs of CS NPs were found to be 86%, 84% and 79% respectively, compared to those of mice in sulfadiazine treatment group (positive control). CONCLUSION Various MWs of CS NPs exhibited great anti-Toxoplasma efficiency against tachyzoites of RH strain, with the greatest efficacy shown by LMW CS NPs in both experiments. It seems that CS NPs can be used as an alternative natural medicine in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Aref Teimouri
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ayazian Mavi
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mathews PD, Fernandes Patta ACM, Gonçalves JV, Gama GDS, Garcia ITS, Mertins O. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure. Biomacromolecules 2018; 19:499-510. [PMID: 29283560 DOI: 10.1021/acs.biomac.7b01630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial with prominent characteristics that is promising for the development of targeted oral drug delivery.
Collapse
Affiliation(s)
- Patrick D Mathews
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Ana C M Fernandes Patta
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Joao V Gonçalves
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Gabriella Dos Santos Gama
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Irene Teresinha Santos Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul , Porto Alegre 91501-970, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| |
Collapse
|
19
|
Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. J Parasit Dis 2017; 42:102-113. [PMID: 29491568 DOI: 10.1007/s12639-017-0973-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Toxoplasmosis is a zoonotic parasitic disease with worldwide distribution. Chitosan is a natural polymer which is commonly used in the production of nanomedicines. It is known to enable higher drug permeation, being biocompatible and has very low toxicity, besides its antimicrobial effects. Our study aimed to assess the effect of spiramycin-loaded chitosan nanoparticles (SLCNs) in treatment of acute and chronic toxoplasmosis in mice. 200 male Swiss albino mice were included in our study, divided to two main groups; Toxoplasma gondii RH strain infected group and ME49 strain infected group, each main group was subdivided into four subgroups; subgroup I: infected control, subgroup II: infected and received chitosan nanoparticles (CS NPs); 20 µg of CS NPs in 100 µl of PBS/mouse/dose, subgroup III: infected and treated with spiramycin (Rovamycin); 100 mg/kg/day, subgroup IV: infected and treated with 100 mg/kg/day spiramycin-loaded chitosan nanoparticles. Effect of treatment was assessed parasitologically and histopathologically. It was noticed that SLCNs significantly decreased the mortality rate of infected mice with both strains compared to high mortality rate of mice in the infected control subgroups. Moreover, there was a significant decrease in the number of organisms of SLCNs treated subgroup as compared to the other subgroups. Histopathological studies showed a marked improvement of the pathological pictures of brain, liver, spleen and eye in the subgroup received SLCNs as opposed to other groups. In conclusion, the present study revealed that loading of spiramycin on chitosan nanoparticles increased its antiparasitic effect on acute and chronic T. gondii infection.
Collapse
|
20
|
Singh Y, Srinivas A, Gangwar M, Meher JG, Misra-Bhattacharya S, Chourasia MK. Subcutaneously Administered Ultrafine PLGA Nanoparticles Containing Doxycycline Hydrochloride Target Lymphatic Filarial Parasites. Mol Pharm 2016; 13:2084-94. [DOI: 10.1021/acs.molpharmaceut.6b00206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics
Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Adepu Srinivas
- Pharmaceutics
Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Mamta Gangwar
- Parasitology
Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Jaya Gopal Meher
- Pharmaceutics
Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | | | - Manish K. Chourasia
- Pharmaceutics
Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| |
Collapse
|
21
|
Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016; 8:E30. [PMID: 30979124 PMCID: PMC6432598 DOI: 10.3390/polym8020030] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/17/2023] Open
Abstract
In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs) by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics). Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.
Collapse
Affiliation(s)
| | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, P.O Box 114, Jazan 45142, Saudi Arabia.
| | - Se-Kwon Kim
- Marine Bioprocess Research Center and Department of Marine-bio Convergence Science, Pukyong National University, Busan 608-737, Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Korea.
| |
Collapse
|
22
|
Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release 2015; 219:548-559. [PMID: 26315817 DOI: 10.1016/j.jconrel.2015.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
Abstract
Complex biological barriers are major obstacles for preventing and treating disease. Nanocarriers are designed to overcome such obstacles by enhancing drug delivery through physiochemical barriers and improving therapeutic indices. This review critically examines both biological barriers and nanocarrier payloads for a variety of drug delivery applications. A spectrum of nanocarriers is discussed that have been successfully developed for improving tissue penetration for preventing or treating a range of infectious, inflammatory, and degenerative diseases.
Collapse
Affiliation(s)
- Kathleen A Ross
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Timothy M Brenza
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Andrea M Binnebose
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Yashdeep Phanse
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | | | - Howard E Gendelman
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha 68198, USA
| | - Aliasger K Salem
- Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | - Lyric C Bartholomay
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | - Bryan H Bellaire
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Balaji Narasimhan
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA.
| |
Collapse
|
23
|
Shukla R, Gupta J, Shukla P, Dwivedi P, Tripathi P, Bhattacharya SM, Mishra PR. Chitosan coated alginate micro particles for the oral delivery of antifilarial drugs and combinations for intervention in Brugia malayi induced lymphatic filariasis. RSC Adv 2015. [DOI: 10.1039/c5ra06982c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanism of targeting of MPs and absorption through Peyer’s patches, to lymphatics where an adult worm resides.
Collapse
Affiliation(s)
- Rahul Shukla
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - J. Gupta
- Parasitology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - P. Shukla
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - P. Dwivedi
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - P. Tripathi
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | | | - Prabhat R. Mishra
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
24
|
Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60590-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Dong J, Song X, Lian X, Fu Y, Gong T. Subcutaneously injected ivermectin-loaded mixed micelles: formulation, pharmacokinetics and local irritation study. Drug Deliv 2014; 23:2220-2227. [PMID: 25188004 DOI: 10.3109/10717544.2014.956849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical application of ivermectin (IVM) is limited by several unfavorable properties, induced by its insolubility in water. Slight differences in formulation may change the plasma pharmacokinetics and efficacy. In this study, an IVM-loaded Soy phosphatidylcholine-sodium deoxycholate mixed micelles (IVM-SPC-SDC-MMs) were developed to improve its aqueous solubility, aiming to make it more applicable for clinical use. First, IVM-SPC-SDC-MMs were prepared using the co-precipitation method. After formulation optimization, the particle size was 9.46 ± 0.16 nm according to dynamic light scattering. The water solubility of IVM in SPC-SDC-MMs (4.79 ± 0.02 mg/mL) was improved by 1200-fold, comparing with free IVM (0.004 mg/mL). After subcutaneous administration, the pharmacokinetic study showed that IVM-SPC-SDC-MMs and commercially available IVM injection were bioequivalent. Also, the local irritation study confirmed that IVM-SPC-SDC-MMs reduced side reactions of the commercially available IVM injection. These results indicated that IVM-SPC-SDC-MMs represented a promising new drug formulation suitable for subcutaneous delivery of IVM.
Collapse
Affiliation(s)
- Jianxia Dong
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Sichuan , People's Republic of China
| | - Xu Song
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Sichuan , People's Republic of China
| | - Xianghong Lian
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Sichuan , People's Republic of China
| | - Yao Fu
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Sichuan , People's Republic of China
| | - Tao Gong
- a Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy , Sichuan University , Sichuan , People's Republic of China
| |
Collapse
|
26
|
Gaafar MR, Mady RF, Diab RG, Shalaby TI. Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 2014; 143:30-8. [PMID: 24852215 DOI: 10.1016/j.exppara.2014.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/13/2014] [Accepted: 05/12/2014] [Indexed: 01/21/2023]
Abstract
Toxoplasmosis is a worldwide infection caused by obligate intracellular protozoan parasite which is Toxoplasma gondii. Chitosan and silver nanoparticles were synthesized to be evaluated singly or combined for their anti-toxoplasma effects as prophylaxis and as treatment in the experimental animals. Results were assessed through studying the parasite density and the ultrastructural parasite changes, and estimation of serum gamma interferon. Weight of tissue silver was assessed in different organs. Results showed that silver nanoparticles used singly or combined with chitosan have promising anti-toxoplasma potentials. The animals that received these compounds showed statistically significant decrease in the mean number of the parasite count in the liver and the spleen, when compared to the corresponding control group. Light microscopic examination of the peritoneal exudates of animals receiving these compounds showed stoppage of movement and deformity in shape of the tachyzoites, whereas, by scanning electron microscope, the organisms were mutilated. Moreover, gamma interferon was increased in the serum of animals receiving these compounds. All values of silver detected in different tissues were within the safe range. Thus, these nanoparticles proved their effectiveness against the experimental Toxoplasma infection.
Collapse
Affiliation(s)
- M R Gaafar
- Department of Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - R F Mady
- Department of Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - R G Diab
- Department of Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - Th I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
27
|
Ali M, Afzal M, Abdul Nasim S, Ahmad I. Nanocurcumin: a novel antifilarial agent with DNA topoisomerase II inhibitory activity. J Drug Target 2014; 22:395-407. [DOI: 10.3109/1061186x.2013.869823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Ali M, Afzal M, Verma M, Bhattacharya SM, Ahmad FJ, Samim M, Abidin MZ, Dinda AK. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model. Parasitol Res 2013; 113:681-91. [DOI: 10.1007/s00436-013-3696-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022]
|
29
|
Singh I, Swami R, Khan W, Sistla R. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv 2013; 11:211-29. [PMID: 24350774 DOI: 10.1517/17425247.2014.866088] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The lymphatic system has a critical role in the immune system's recognition and response to disease and it is an additional circulatory system throughout the entire body. Extensive multidisciplinary investigations have been carried out in the area of lymphatic delivery, and lymphatic targeting has attracted a lot of attention for providing preferential chemotherapy and improving bioavailability of drugs that undergo hepatic first-pass metabolism. AREAS COVERED This review focuses on progress in the field of lymphatic therapeutics and diagnosis. Moreover, the anatomy and physiology of the lymphatic system, particulate drug carriers and different physicochemical parameters of both modified and unmodified particulate drug carriers and their effect on lymphatic targeting are addressed. EXPERT OPINION Particulate drug carriers have encouraged lymphatic targeting, but there are still challenges in targeting drugs and bioactives to specific sites, maintaining desired action and crossing all the physiological barriers. Lymphatic therapy using drug-encapsulated lipid carriers, especially liposomes and solid lipid nanoparticles, emerges as a new technology to provide better penetration into the lymphatics where residual disease exists. Size is the most important criteria when designing nanocarriers for targeting lymphatic vessels as the transportation of these particles into lymphatic vessels is size dependent. By increasing our understanding of lymphatic transport and uptake, and the role of lymphatics in various diseases, we can design new therapeutics for effective disease control.
Collapse
Affiliation(s)
- Indu Singh
- National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics , Hyderabad 500037 , India +91 40 27193004, +91 40 23073741 ; +91 40 27193753, +91 40 23073751 ; ;
| | | | | | | |
Collapse
|