1
|
Deerhake ME, Shinohara ML. Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends Immunol 2021; 42:891-903. [PMID: 34489167 DOI: 10.1016/j.it.2021.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Dectin-1 is a C-type lectin receptor (CLR) expressed on the surface of various mammalian myeloid cells. Dectin-1 recognizes β-glucans and elicits antifungal proinflammatory immune responses. Recent studies have begun to examine the biology of Dectin-1 in previously less explored settings, such as homeostasis, sterile inflammation, and in the central nervous system. Indeed, in certain contexts, Dectin-1 is now known to promote tolerance, and anti-inflammatory and neuroprotective responses. In this review, we provide an overview of the current understanding of the roles of Dectin-1 in immunology beyond the context of fungal infections, mainly focusing on in vivo neuroimmunology studies, which could reveal new therapeutic approaches to modify innate immune responses in neurologic disorders.
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
2
|
Marchetti P, Antonov A, Anemona L, Vangapandou C, Montanaro M, Botticelli A, Mauriello A, Melino G, Catani MV. New immunological potential markers for triple negative breast cancer: IL18R1, CD53, TRIM, Jaw1, LTB, PTPRCAP. Discov Oncol 2021; 12:6. [PMID: 35201443 PMCID: PMC8777524 DOI: 10.1007/s12672-021-00401-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women worldwide, and settings of specific prognostic factors and efficacious therapies are made difficult by phenotypic heterogeneity of BC subtypes. Therefore, there is a current urgent need to define novel predictive genetic predictors that may be useful for stratifying patients with distinct prognostic outcomes. Here, we looked for novel molecular signatures for triple negative breast cancers (TNBCs). By a bioinformatic approach, we identified a panel of genes, whose expression was positively correlated with disease-free survival in TNBC patients, namely IL18R1, CD53, TRIM, Jaw1, LTB, and PTPRCAP, showing specific immune expression profiles linked to survival prediction; most of these genes are indeed expressed in immune cells and are required for productive lymphocyte activation. According to our hypothesis, these genes were not, or poorly, expressed in different TNBC cell lines, derived from either primary breast tumours or metastatic pleural effusions. This conclusion was further supported in vivo, as immuno-histochemical analysis on biopsies of TNBC invasive ductal carcinomas highlighted differential expression of these six genes in cancer cells, as well as in intra- and peri-tumoral infiltrating lymphocytes. Our data open to the possibility that inter-tumour heterogeneity of immune markers might have predictive value; further investigations are recommended in order to establish the real power of cancer-related immune profiles as prognostic factors.
Collapse
Affiliation(s)
- Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alexey Antonov
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR UK
| | - Lucia Anemona
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chaitania Vangapandou
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Andrea Botticelli
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - M. Valeria Catani
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Cheng JH, Xu X, Li YB, Zhao XD, Aosai F, Shi SY, Jin CH, Piao JS, Ma J, Piao HN, Jin XJ, Piao LX. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Int Immunopharmacol 2020; 82:106302. [PMID: 32086097 DOI: 10.1016/j.intimp.2020.106302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii (T. gondii) is a known neurotropic protozoan that remains in the central nervous system and induces neuropsychiatric diseases in intermediate hosts. Arctigenin (AG) is one of the major bioactive lignans of the fruit Arctium lappa L. and has a broad spectrum of pharmacological activities such as neuroprotective, anti-inflammatory and anti-T. gondii effects. However, the effect of AG against depressive behaviors observed in T. gondii-infected hosts has not yet been clarified. In the present study, we analyzed the effects of AG against T. gondii-induced depressive behaviors in intermediate hosts using a microglia cell line (BV2 cells) and brain tissues of BALB/c mice during the acute phase of infection with the RH strain of T. gondii. AG attenuated microglial activation and neuroinflammation via the Toll-like receptor/nuclear factor-kappa B (NF-κB) and tumor necrosis factor receptor 1/NF-κB signaling pathways, followed by up-regulating the dopamine and 5-hydroxytryptamine levels and inhibiting the depression-like behaviors of hosts. AG also significantly decreased the T. gondii burden in mouse brain tissues. In conclusion, we elucidated the effects and underlying molecular mechanisms of AG against depressive behaviors induced by T. gondii infection.
Collapse
Affiliation(s)
- Jia-Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Ying-Biao Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Su-Yun Shi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Shu Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China.
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China. https://orcid.org/0000-0002-8315-5918
| |
Collapse
|
4
|
Physiological and Pathological Functions of CARD9 Signaling in the Innate Immune System. Curr Top Microbiol Immunol 2020; 429:177-203. [PMID: 32415389 DOI: 10.1007/82_2020_211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain protein 9 (CARD9) forms essential signaling complexes in the innate immune system that integrate cues from C-type lectin receptors and specific intracellular pattern recognition receptors. These CARD9-mediated signals are pivotal for host defense against fungi, and they mediate immunity against certain bacteria, viruses and parasites. Furthermore, CARD9-regulated pathways are involved in sterile inflammatory responses critical for immune homeostasis and can control pro- and antitumor immunity in cancer microenvironments. Consequently, multiple genetic alterations of human CARD9 are connected to primary immunodeficiencies or prevalent inflammatory disorders in patients. This review will summarize our current understanding of CARD9 signaling in the innate immune system, its physiological and pathological functions and their implications for human immune-mediated diseases.
Collapse
|
5
|
de Winde CM, Matthews AL, van Deventer S, van der Schaaf A, Tomlinson ND, Jansen E, Eble JA, Nieswandt B, McGettrick HM, Figdor CG, Tomlinson MG, Acton SE, van Spriel AB. C-type lectin-like receptor 2 (CLEC-2)-dependent dendritic cell migration is controlled by tetraspanin CD37. J Cell Sci 2018; 131:jcs214551. [PMID: 30185523 DOI: 10.1242/jcs.214551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
Cell migration is central to evoking a potent immune response. Dendritic cell (DC) migration to lymph nodes is dependent on the interaction of C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b), expressed by DCs, with podoplanin, expressed by lymph node stromal cells, although the underlying molecular mechanisms remain elusive. Here, we show that CLEC-2-dependent DC migration is controlled by tetraspanin CD37, a membrane-organizing protein. We identified a specific interaction between CLEC-2 and CD37, and myeloid cells lacking CD37 (Cd37-/-) expressed reduced surface CLEC-2. CLEC-2-expressing Cd37-/- DCs showed impaired adhesion, migration velocity and displacement on lymph node stromal cells. Moreover, Cd37-/- DCs failed to form actin protrusions in a 3D collagen matrix upon podoplanin-induced CLEC-2 stimulation, phenocopying CLEC-2-deficient DCs. Microcontact printing experiments revealed that CD37 is required for CLEC-2 recruitment in the membrane to its ligand podoplanin. Finally, Cd37-/- DCs failed to inhibit actomyosin contractility in lymph node stromal cells, thus phenocopying CLEC-2-deficient DCs. This study demonstrates that tetraspanin CD37 controls CLEC-2 membrane organization and provides new molecular insights into the mechanisms underlying CLEC-2-dependent DC migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Sjoerd van Deventer
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Neil D Tomlinson
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erik Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, D-48149 Münster, Germany
| | - Bernhard Nieswandt
- University Clinic of Würzburg and Rudolf Virchow Center for Experimental Biomedicine, 97070 Würzburg, Germany
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl G Figdor
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Sophie E Acton
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Annemiek B van Spriel
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Schaper F, van Spriel AB. Antitumor Immunity Is Controlled by Tetraspanin Proteins. Front Immunol 2018; 9:1185. [PMID: 29896201 PMCID: PMC5986925 DOI: 10.3389/fimmu.2018.01185] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Antitumor immunity is shaped by the different types of immune cells that are present in the tumor microenvironment (TME). In particular, environmental signals (for instance, soluble factors or cell–cell contact) transmitted through the plasma membrane determine whether immune cells are activated or inhibited. Tetraspanin proteins are emerging as central building blocks of the plasma membrane by their capacity to cluster immune receptors, enzymes, and signaling molecules into the tetraspanin web. Whereas some tetraspanins (CD81, CD151, CD9) are widely and broadly expressed, others (CD53, CD37, Tssc6) have an expression pattern restricted to hematopoietic cells. Studies using genetic mouse models have identified important immunological functions of these tetraspanins on different leukocyte subsets, and as such, may be involved in the immune response against tumors. While multiple studies have been performed with regards to deciphering the function of tetraspanins on cancer cells, the effect of tetraspanins on immune cells in the antitumor response remains understudied. In this review, we will focus on tetraspanins expressed by immune cells and discuss their potential role in antitumor immunity. New insights in tetraspanin function in the TME and possible prognostic and therapeutic roles of tetraspanins will be discussed.
Collapse
Affiliation(s)
- Fleur Schaper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as Organizers of Antigen-Presenting Cell Function. Front Immunol 2018; 9:1074. [PMID: 29875769 PMCID: PMC5974036 DOI: 10.3389/fimmu.2018.01074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
8
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
9
|
He JJ, Ma J, Elsheikha HM, Song HQ, Huang SY, Zhu XQ. Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection. Parasit Vectors 2016; 9:427. [PMID: 27488578 PMCID: PMC4973073 DOI: 10.1186/s13071-016-1716-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background Toxoplasma gondii is a worldwide spread pathogen which can infect all tissues of its host. The transcriptomic responses of infected brain and spleen have been reported. However, our knowledge of the global transcriptomic change in infected liver is limited. Additionally, T. gondii infection represents a highly dynamic process involving complex biological responses of the host at many levels. Herein, we describe such processes at a global level by discovering gene expression changes in mouse livers after acute infection with T. gondii ToxoDB#9 strain. Results Global transcriptomic analysis identified 2,758 differentially expressed transcripts in infected liver, of which 1,356 were significantly downregulated and 1,402 upregulated. GO and KEGG database analyses showed that host immune responses were upregulated, while the metabolic-related processes/pathways were downregulated, especially xenobiotic metabolism, fatty acid metabolism, energy metabolism, and bile biosynthesis and secretion. The metabolism of more than 800 chemical compounds including anti-Toxoplasma prescribed medicines were predicted to be modulated during acute T. gondii infection due to the downregulation of enzymes involved in xenobiotic metabolism. Conclusions To the best of our knowledge, this is the first global transcriptomic analysis of mouse liver infected by T. gondii. The present data indicate that during the early stage of liver infection, T. gondii can induce changes in liver xenobiotic metabolism, upregulating inflammatory response and downregulating hepatocellular PPAR signaling pathway, altering host bile biosynthesis and secretion pathway; these changes could enhance host intestinal dysbacteriosis and thus contribute to the pathological changes of both liver and intestine of infected mice. These findings describe the biological changes in infected liver, providing a potential mechanistic pathway that links hepatic and intestinal pathologies to T. gondii infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1716-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
10
|
He JJ, Ma J, Song HQ, Zhou DH, Wang JL, Huang SY, Zhu XQ. Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection. Parasitol Res 2015; 115:703-12. [PMID: 26508008 DOI: 10.1007/s00436-015-4792-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022]
Abstract
Toxoplasma gondii is a global pathogen that infects a wide range of animals and humans. During T. gondii infection, the spleen plays an important role in coordinating the adaptive and innate immune responses. However, there is little information regarding the changes in global gene expression within the spleen following T. gondii infection. To address this gap in knowledge, we examined the transcriptome of the mouse spleen following T. gondii infection. We observed differential expression of 2310 transcripts under these conditions. Analysis of KEGG and GO enrichment indicated that T. gondii alters multiple immune signaling cascades. Most of differentially expressed GO terms and pathways were downregulated, while immune-related GO terms and pathways were upregulated with response to T. gondii infection in mouse spleen. Most cytokines were upregulated in infected spleens, and all differentially expressed chemokines were upregulated which enhanced the immune cells chemotaxis to promote recruitment of immune cells, such as neutrophils, eosinophils, monocytes, dendritic cells, macrophages, NK cells, basophils, B cells, and T cells. Although IFN-γ-induced IDO (Ido1) was upregulated in the present study, it may not contribute a lot to the control of T. gondii because most differentially expressed genes involved in tryptophan metabolism pathway were downregulated. Innate immunity pathways, including cytosolic nucleic acid sensing pathway and C-type lectins-Syk-Card9 signaling pathways, were upregulated. We believe our study is the first comprehensive attempt to define the host transcriptional response to T. gondii infection in the mouse spleen.
Collapse
Affiliation(s)
- Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|