1
|
Wang C, Jiang Y, He K, Wāng Y. Eco-friendly synthesis of silver nanoparticles against mosquitoes: Pesticidal impact and indispensable biosafety assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176006. [PMID: 39241875 DOI: 10.1016/j.scitotenv.2024.176006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The emergence of nanotechnology has opened new avenues for enhancing pest control strategies through the development of nanopesticides. Green-fabricated nanoparticles, while promising due to their eco-friendly synthesis methods, may still pose risks to biodiversity and ecosystem stability. The potential toxic effects of nanomaterials on ecosystems and human health raise important questions about their real-world application. Understanding the dose-response relationships of nanopesticides, both in terms of pest control efficacy and non-target organism safety, is crucial for ensuring their sustainable use in agricultural settings. This review delves into the complexities of silver nanopesticides, exploring their interactions with arthropod species, modes of action, and underlying mechanisms of toxicity. It discusses critical issues concerning the emergence of silver nanopesticides, spanning their mosquitocidal efficacy to environmental impact and safety considerations. While nano‑silver has shown promise in targeting insect pests, there is a lack of systematic research comparing its effects on different arthropod subclasses. Moreover, factors influencing nanotoxicity, such as nanoparticle size, charge, and surface chemistry, require further investigation to optimize the design of eco-safe nanoparticles for pest control. By elucidating the mechanisms by which nanoparticles interact with pests and non-target organisms, we can enhance the specificity and effectiveness of nanopesticides while minimizing unintended ecological consequences.
Collapse
Affiliation(s)
- Chunzhi Wang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Jiang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Keyu He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yán Wāng
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
Blore K, Baldwin R, Batich CD, Koehler P, Pereira R, Jack CJ, Qualls WA, Xue RD. Efficacy of metal nanoparticles as a control tool against adult mosquito vectors: A review. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.969299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Presently, there is a need to develop effective and novel modes of control for mosquitoes, which remain a key driver of infectious disease transmission throughout the world. Control methods for these vectors have historically relied on a limited number of active ingredients (AIs) that have not experienced significant change in usage since the mid-20th century. The resulting development of widespread insecticide resistance has consequently increased the risk for future vector-borne disease outbreaks. Recently, metal nanoparticles have been explored for potential use in mosquito control due to their demonstrated toxicity against mosquitoes at all life stages. However, the majority of studies to date have focused on the larvicidal efficacy of metal nanoparticles with few studies examining their adulticidal potential. In this review, we analyze the current literature on green synthesized metal nanoparticles and their effect on adult mosquitoes.
Collapse
|
3
|
Araújo PS, Caixeta MB, Canedo A, Nunes EDS, Monteiro C, Rocha TL. Toxicity of plant-based silver nanoparticles to vectors and intermediate hosts: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155299. [PMID: 35439509 DOI: 10.1016/j.scitotenv.2022.155299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Green nanoparticles (GNPs), mainly green silver nanoparticles (Ag NPs), have been recommended as sustainable and eco-friendly technologies to control vectors and intermediate hosts. The aim of the current study is to carry out a historical and systematic literature review about the use of green plant-based Ag NPs (GP-Ag NPs) to control medically important mosquito, tick and gastropods. Data about the number of studies published per year, geographical distribution of studies (mailing address of the corresponding author), synthesis type (plant species, plant structure and extract types), physicochemical properties of GP-Ag NPs, experimental designs, developmental stages and the toxic effects on mosquitoes, ticks and gastropods were summarized and discussed. Revised data showed that GP-Ag NPs synthesis and toxicity in mosquitoes, ticks and snails depend on plant species, plant part, extract types, exposure condition and on the analyzed species. GP-Ag NPs induced mortality, tissue damage, biochemical and behavioral changes in mosquitoes and reduced their fecundity, oviposition, egg hatching and longevity. Ticks exposed to GP-Ag NPs presented increased mortality and reduced oviposition, while on snails, studies demonstrated mortality, oxidative stress, and DNA damage. Immune responses were also observed in snails after their exposure to GP-Ag NPs. GP-Ag NPs reduced the reproduction and population of several vectors and intermediate hosts. This finding confirms their potential to be used in gastropod control programs. Future studies about current gaps in knowledge are recommended.
Collapse
Affiliation(s)
- Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Eloiza da Silva Nunes
- Laboratory of Materials and Electroanalytics, Goiano Federal Institute of Education, Science, and Technology, Rio Verde, Goiás, Brazil
| | - Caio Monteiro
- Biology, Ecology and Tick Control Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Front Pharmacol 2022; 13:891535. [PMID: 35712721 PMCID: PMC9195866 DOI: 10.3389/fphar.2022.891535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
Azadirachta indica (A. Juss), also known as the neem tree, has been used for millennia as a traditional remedy for a multitude of human ailments. Also recognized around the world as a broad-spectrum pesticide and fertilizer, neem has applications in agriculture and beyond. Currently, the extensive antimicrobial activities of A. indica are being explored through research in the fields of dentistry, food safety, bacteriology, mycology, virology, and parasitology. Herein, some of the most recent studies that demonstrate the potential of neem as a previously untapped source of novel therapeutics are summarized as they relate to the aforementioned research topics. Additionally, the capacity of neem extracts and compounds to act against drug-resistant and biofilm-forming organisms, both of which represent large groups of pathogens for which there are limited treatment options, are highlighted. Updated information on the phytochemistry and safety of neem-derived products are discussed as well. Although there is a growing body of exciting evidence that supports the use of A. indica as an antimicrobial, additional studies are clearly needed to determine the specific mechanisms of action, clinical efficacy, and in vivo safety of neem as a treatment for human pathogens of interest. Moreover, the various ongoing studies and the diverse properties of neem discussed herein may serve as a guide for the discovery of new antimicrobials that may exist in other herbal panaceas across the globe.
Collapse
Affiliation(s)
- Marina R Wylie
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Meenambigai K, Kokila R, Chandhirasekar K, Thendralmanikandan A, Kaliannan D, Ibrahim KS, Kumar S, Liu W, Balasubramanian B, Nareshkumar A. Green Synthesis of Selenium Nanoparticles Mediated by Nilgirianthus ciliates Leaf Extracts for Antimicrobial Activity on Foodborne Pathogenic Microbes and Pesticidal Activity Against Aedes aegypti with Molecular Docking. Biol Trace Elem Res 2022; 200:2948-2962. [PMID: 34431069 DOI: 10.1007/s12011-021-02868-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
The present study deals with the synthesis of selenium nanoparticles (SeNPs) using Nilgirianthus ciliatus leaf extracts, characterized by UV-Vis spectrophotometer, XRD, FTIR, FE-SEM, HR-TEM, DLS, and zeta potential analysis. The antimicrobial activity against Staphylococcus aureus (MTCC96), Escherichia coli (MTCC443), and Salmonella typhi (MTCC98) showed the remarkable inhibitory effect at 25 µl/mL concentration level. Furthermore, the characterized SeNPs showed a great insecticidal activity against Aedes aegypti in the early larval stages with the median Lethal Concentration (LC50) of 0.92 mg/L. Histopathological observations of the SeNPs treated midgut and caeca regions of Ae. aegypti 4th instar larvae showed damaged epithelial layer and fragmented peritrophic membrane. In order to provide a mechanistic approach for further studies, molecular docking studies using Auto Dock Vina were performed with compounds of N. ciliatus within the active site of AeSCP2. Overall, the N. ciliates leaf-mediated biogenic SeNPs was promisingly evidenced to have potential larvicidal and food pathogenic bactericidal activity in an eco-friendly approach.
Collapse
Affiliation(s)
- Krishnan Meenambigai
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India
| | - Ranganathan Kokila
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India
| | | | | | - Durairaj Kaliannan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636 011, India
| | - Kalibulla Syed Ibrahim
- PG and Research Department of Botany, PSG College of Arts & Science, Coimbatore, 641 014, Tamil Nadu, India
| | - Shobana Kumar
- Department of Zoology, Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, India
| | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Arjunan Nareshkumar
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| |
Collapse
|
6
|
Hasaballah AI, El-Naggar HA, Abdelbary S, Bashar MAE, Selim TA. Eco-friendly Synthesis of Zinc Oxide Nanoparticles by Marine Sponge, Spongia officinalis: Antimicrobial and Insecticidal Activities Against the Mosquito Vectors, Culex pipiens and Anopheles pharoensis. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00926-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Misirli GM, Sridharan K, Abrantes SMP. A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:440-461. [PMID: 34104622 PMCID: PMC8144915 DOI: 10.3762/bjnano.12.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/30/2021] [Indexed: 05/07/2023]
Abstract
Recent studies with silver nanoparticles (AgNPs) and the history of silver metal as a broad-spectrum bactericidal and virucidal agent, places silver as one of the future biocidal candidates in the field of nanomedicine to eliminate bacteria and viruses, especially multidrug resistant ones. In this review, we have described the various morphologies of AgNPs and correlated the enhanced bactericidal activity with their prominent {111} facets. In addition to prioritizing the characterization we have also discussed the importance of quantifying AgNPs and silver ion content (Ag+) and their different mechanisms at the chemical, biological, pharmacological, and toxicological levels. The mechanism of action of AgNPs against various bacteria and viruses including the SARS-CoV-2 was analyzed in order to understand its effectiveness as an antimicrobial agent with therapeutic efficacy and low toxicity. Further, there is the need to characterize AgNPs and quantify the content of free Ag+ for the implementation of new systematic studies of this promising agent in nanomedicine and in clinical practice.
Collapse
Affiliation(s)
- Gabriel M Misirli
- Physical Chemistry Laboratory, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Kishore Sridharan
- Department of Nanoscience and Technology, School of Chemical and Physical Sciences, University of Calicut, P.O. Thenhipalam 673635, Kerala, India
| | - Shirley M P Abrantes
- National Institute for Quality Control in Health, Oswaldo Cruz Foundation (INCQS, FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, Pugazhendhi A. Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review. Curr Pharm Des 2020; 25:2650-2660. [PMID: 31298154 DOI: 10.2174/1381612825666190708185506] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
Abstract
Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.
Collapse
Affiliation(s)
| | - Indira Karuppusamy
- Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Science, Mekelle University, Ethiopia
| | - Harshiny Muthukumar
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai - 600 036, India
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi - 630 003, India
| | - Vijayan Sri Ramkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Sultana N, Raul PK, Goswami D, Das D, Islam S, Tyagi V, Das B, Gogoi HK, Chattopadhyay P, Raju PS. Bio-nanoparticle assembly: a potent on-site biolarvicidal agent against mosquito vectors. RSC Adv 2020; 10:9356-9368. [PMID: 35497225 PMCID: PMC9050063 DOI: 10.1039/c9ra09972g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Vector-borne diseases such as malaria, dengue, yellow fever, encephalitis and filariasis are considered serious human health concerns in the field of medical entomology. Controlling the population of mosquito vectors is one of the best strategies for combating such vector-borne diseases. However, the use of synthetic insecticides for longer periods of time increases mosquito resistance to the insecticides. Recently, the search for new environmentally friendly and efficient insecticides has attracted major attention globally. With the evolution of material sciences, researchers have reported the effective control of such diseases using various sustainable resources. The present investigation demonstrates a potent on-site biolarvicidal agent against different mosquito vectors such as Aedes albopictus, Anopheles stephensi and Culex quinquefasciatus. Methods: Stable and photo-induced colloidal silver nanoparticles were generated via the surface functionalization of the root extract of Cyprus rotundas. Characterizations of the nanoparticles were performed using assorted techniques, such as UV-visible spectroscopy, FTIR spectroscopy, DLS and HRTEM. The bioefficacy of the synthesized nanoparticles was investigated against different species of mosquito larvae through the evaluation of their life history trait studies, fecundity and hatchability rate of the treated larvae. Histopathological and polymerase chain reaction-random amplified polymorphic DNA (RAPD) analyses of the treated larvae were also examined to establish the cellular damage. Results: The synthesized nanoparticles showed remarkable larvicidal activity against mosquito larvae in a very low concentration range (0.001–1.00) mg L−1. The histopathological study confirmed that the present nanoparticles could easily enter the cuticle membrane of mosquito larvae and subsequently obliterate their complete intestinal system. Furthermore, RAPD analysis of the treated larvae could assess the damage of the DNA banding pattern. Conclusion: The present work demonstrates a potent biolarvicidal agent using sustainable bioresources of the aqueous Cyprus rotundas root extract. The results showed that the synthesized nanoparticles were stable under different physiological conditions such as temperature and photo-induced oxidation. The effectiveness of these materials against mosquito larvae was quantified at very low dose concentrations. The present biolarvicidal agent can be considered as an environmentally benign material to control the mosquito vectors with an immense potential for on-site field applications. The present work demonstrates a potent and stable biolarvicidal agent using sustainable bioresources. The synthesized nanomaterials can control the mosquito vectors at a very low concentration range (0.01–1.00 mg L−1) for on-site field applications.![]()
Collapse
Affiliation(s)
- Nazima Sultana
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Prasanta K Raul
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Diganta Goswami
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Dipankar Das
- Sri Sankardeva Nethralaya Beltola Guwahati-781028 Assam India
| | - Saidul Islam
- College of Veterinary Science, Assam Agricultural University Khanapara Guwahati - 781022 India
| | - Varun Tyagi
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Bodhaditya Das
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Hemanta K Gogoi
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Pronobesh Chattopadhyay
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| | - Pakalapati S Raju
- Defence Research Laboratory, DRDO Post bag no. 2 Tezpur-784001 Assam India +91-3712-258534 +91-3712-258836
| |
Collapse
|
10
|
A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules 2019; 24:molecules24234354. [PMID: 31795265 PMCID: PMC6930476 DOI: 10.3390/molecules24234354] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.
Collapse
|
11
|
Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E. Nanobiotechnology as an emerging approach to combat malaria: A systematic review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:221-233. [DOI: 10.1016/j.nano.2019.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
|
12
|
Ma J, Ugya YA, Isiyaku A, Hua X, Imam TS. Evaluation of Pistia stratiotes fractions as effective larvicide against Anopheles mosquitoes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:945-950. [PMID: 30855191 DOI: 10.1080/21691401.2019.1582538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mosquito are well-known vectors that cause diseases particularly malaria and filariasis which are detrimental to human health. These vectors occur mainly in tropical countries where more than 2 billion people live in endemic regions with about one million deaths been claimed yearly from malaria and filariasis. The study is aimed at evaluating the larvicidal activity of Pistia stratiotes fractions on Anopheles mosquitoes (Diptera: Culicidae). The ethyl acetate extract of P. stratiotes was obtained through percolation process and was chromatographed to yield nine fractions. The larvicidal activity of each of the nine fractions was tested in triplicates by exposing the larvae to 500, 250, 125, 62.5 and 31.3 µg/ml, respectively. Phytochemical screening of the nine fractions revealed the presence of alkaloids, flavonoids, glycosides and phlobatannins in varying quantities. The result obtained shows that fraction E has the highest lethal effect on the Anopheles larvae at LC50 =14.81 µg/ml and was weakly effective at 602.03 µg/ml on brine shrimp larvae. The gas chromatography mass spectrometry analysis of fraction E revealed the presence of 35 pre-cursor compounds. Hence, ethyl acetate fractions of P. stratiotes could be an effective larvicide against Anopheles mosquito larvae as it has been found to be harmless to other aquatic organisms. Further work should be done on other aquatic weeds that have larvicidal potential to isolate the bioactive compounds.
Collapse
Affiliation(s)
- Jincai Ma
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Yunusa Adamu Ugya
- a College of New Energy and Environment , Jilin University , Changchun , China.,b Department of Environmental Management , Kaduna State University , Kaduna , Nigeria
| | - Asma'u Isiyaku
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| | - Xiuyi Hua
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Tijjani Sabiu Imam
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| |
Collapse
|
13
|
Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A. Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10184-10206. [PMID: 28755145 DOI: 10.1007/s11356-017-9752-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/27/2023]
Abstract
The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 16106, Prague 6, Czech Republic
| | - Kadarkarai Murugan
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, 43400, Serdang, Malaysia
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| |
Collapse
|
14
|
Benelli G, Kadaikunnan S, Alharbi NS, Govindarajan M. Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10228-10242. [PMID: 28161865 DOI: 10.1007/s11356-017-8482-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Mosquito-borne diseases lead to serious public health concerns in tropical and sub-tropical countries worldwide, due to development of mosquito resistance to synthetic pesticides, non-target effects of pesticides, and socioeconomic reasons. Currently, green nanotechnology is a promising research field, showing a wide range of potential applications in vector control programs. The employ of natural products as reducing agents to fabricate insecticidal nanocomposites is gaining research attention worldwide, due to low costs and high effectiveness. Interestingly, biophysical features of green-synthesized nanoparticles strongly differ when different botanicals are employed for nanosynthesis. In this study, a cheap Acacia caesia leaf extract was employed to fabricate silver nanoparticles (Ag NPs) with ovicidal, larvicidal, and adulticidal toxicity against three mosquito vectors, Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Ag NPs were analyzed by various biophysical methods, including spectroscopy (UV-visible spectrophotometry, XRD, FTIR, EDX) and microscopy (SEM, TEM, AFM) techniques. High acute larvicidal potential was observed against larvae of An. subpictus (LC50 = 10.33 μg/ml), Ae. albopictus (LC50 = 11.32 μg/ml), and Cx. tritaeniorhynchus (LC50 = 12.35 μg/ml). Ag NPs completely inhibited egg hatchability on three vectors at 60, 75, and 90 μg/ml, respectively. In adulticidal assays, LD50 values were 18.66, 20.94, and 22.63 μg/ml. If compared to mosquito larvae, Ag NPs were safer to three non-target aquatic biocontrol agents, with LC50 ranging from 684 to 2245 μg/ml. Overall, our study highlights the potential of A. caesia as an abundant and cheap bioresource to fabricate biogenic Ag NPs effective against mosquito young instars and adults, with moderate impact on non-target aquatic biocontrol agents.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India.
| |
Collapse
|
15
|
Soni N, Dhiman RC. Phytochemical, Anti-oxidant, Larvicidal, and Antimicrobial Activities of Castor ( Ricinus communis ) Synthesized Silver Nanoparticles. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Elemike EE, Onwudiwe DC, Ekennia AC, Sonde CU, Ehiri RC. Green Synthesis of Ag/Ag₂O Nanoparticles Using Aqueous Leaf Extract of Eupatorium odoratum and Its Antimicrobial and Mosquito Larvicidal Activities. Molecules 2017; 22:molecules22050674. [PMID: 28452944 PMCID: PMC6154600 DOI: 10.3390/molecules22050674] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
The health challenges associated with pathogens and ectoparasites highlight the need for effective control approaches. Metal nanoparticles have been proposed as highly effective tools towards combatting different microbial organisms and parasites. The present work reports the antimicrobial and larvicidal potential of biosynthesized Ag/Ag₂O nanoparticles using aqueous leaf extract of Eupatorium odoratum (EO). The constituents of the leaf extract act as both reducing and stabilizing agents. The UV-VIS spectra of the nanoparticles showed surface plasmon resonance. The particle size and shape of the nanoparticles was analysed by transmission electron microscopy (TEM). The larvicidal study was carried out using third and fourth instar Culex quinquefasciatus larvae. The mosquito larvae were exposed to varying concentrations of plant extract (EO) and the synthesized nanoparticles, and their percentage of mortality was accounted for at different time intervals of 12 h and 24 h periods of exposure. The nanoparticles were more lethal against third and fourth instars of Culex quinquefasciatus larvae at the 24 h period of exposure with lower lethal concentration values (LC50 = 95.9 ppm; LC90 = 337.5 ppm) and (LC50 = 166.4 ppm; LC90 = 438.7 ppm) compared to the plant extract (LC50 = 396.8 ppm; LC90 = 716.8 ppm and LC50 = 448.3 ppm; LC90 = 803.9 ppm, respectively). The antimicrobial properties of the nanoparticles were established against different clinically-isolated microbial strains and compared to that of the plant extract (EO) and standard antimicrobial drugs. The nanoparticles were generally more active than the plant extract against the selected microbial organisms. The Gram-negative bacterial strains Escheerichua coli and Salmonella typhi were more susceptible towards the nanoparticles compared to the Gram-positive strains and the fungal organism.
Collapse
Affiliation(s)
- Elias E Elemike
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2357, South Africa.
- Department of Chemistry, School of Mathematical and Physical Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa.
- Department of Chemistry, College of Sciences, Federal University of Petroleum Resources Effurun, Delta State, Nigeria.
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2357, South Africa.
- Department of Chemistry, School of Mathematical and Physical Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa.
| | - Anthony C Ekennia
- Department of Chemistry, Federal University, Ndufu-Alike Ikwo (FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
| | - Christopher U Sonde
- Department of Chemistry, Federal University, Ndufu-Alike Ikwo (FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
| | - Richard C Ehiri
- Department of Chemistry, Federal University, Ndufu-Alike Ikwo (FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
| |
Collapse
|
17
|
Mebert AM, Tuttolomondo MV, Echazú MIA, Foglia ML, Alvarez GS, Vescina MC, Santo‐Orihuela PL, Desimone MF. Nanoparticles and capillary electrophoresis: A marriage with environmental impact. Electrophoresis 2016; 37:2196-207. [DOI: 10.1002/elps.201600132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Andrea Mathilde Mebert
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Victoria Tuttolomondo
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Inés Alvarez Echazú
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Lucia Foglia
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela Solange Alvarez
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - María Cristina Vescina
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
| | - Pablo Luis Santo‐Orihuela
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- Centro de Investigaciones en Plagas e Insecticidas (CIPEIN)Instituto de Investigaciones Científicas y Técnicas para la Defensa CITEDEF/UNIDEF Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Martín Federico Desimone
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Plant-Synthesized Nanoparticles: An Eco-Friendly Tool Against Mosquito Vectors? NANOPARTICLES IN THE FIGHT AGAINST PARASITES 2016. [DOI: 10.1007/978-3-319-25292-6_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Chandramohan B, Murugan K, Kovendan K, Panneerselvam C, Kumar PM, Madhiyazhagan P, Dinesh D, Suresh U, Subramaniam J, Amaresan D, Nataraj T, Nataraj D, Hwang JS, Alarfaj AA, Nicoletti M, Canale A, Mehlhorn H, Benelli G. Do Nanomosquitocides Impact Predation of Mesocyclops edax Copepods Against Anopheles stephensi Larvae? NANOPARTICLES IN THE FIGHT AGAINST PARASITES 2016. [DOI: 10.1007/978-3-319-25292-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Santhosh SB, Ragavendran C, Natarajan D. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:184-90. [DOI: 10.1016/j.jphotobiol.2015.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/15/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
|
21
|
Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 2015; 115:23-34. [DOI: 10.1007/s00436-015-4800-9] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
|
22
|
Singh G, Prakash S. Virulency of novel nanolarvicide from Trichoderma atroviride against Aedes aegypti (Linn.): a CLSM analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12559-12565. [PMID: 25907629 DOI: 10.1007/s11356-015-4531-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Aedes aegypti is the vector for transmitting dengue, chikungunya, and yellow fever. These diseases' transmission has increased predominantly in urban and semi-urban areas as a major public health concern. In present investigation, Trichoderma atroviride culture filtrates were used for the synthesis of silver nanoparticle. Moreover, T. atroviride is a free-living and rapidly growing fungi common in soil and root ecosystem. This fungi is an exceptionally good model for biocontrol and more significant as a bioagent. T. atroviride was grown in malt extract. T. atroviride culture filtrates were exposed to silver nitrates solution for 24 h at 25 °C for the synthesis of silver nanoparticles (AgNPs). These AgNPs were characterized to find their unique properties with UV-visible spectrophotometer and transmission electron microscope (TEM) analysis. The T. atroviride culture filtrates have formed hexagonal (diamond shape) AgNPs with the range of size of 14.01-21.02 nm. These AgNPs have shown significant efficacies against first, second, third, and fourth instar larvae of A. aegypti. The LC90 and LC99 values for the first instar were 1 and 3 ppm, second instar 2 and 3.18 ppm, third instar 3.12 and 4.12 ppm, and fourth instar 6.30 and 6.59 ppm, respectively, after an exposure of 7 h. The confocal laser scanning microscopy (CLSM) studies were verdict that these AgNPs embedded in the cuticle of larvae and cause instant lethality in 7 h. Present investigations have demonstrated that the AgNPs of T. atroviride culture filtrates synthesized can be used for larvae control of A. aegypti. T. atroviride is synthesized to silver nanoparticles to be a promising new candidate for application in mosquito control. We therefore suggested that the ability of T. atroviride culture filtrates in synthesis can also be explored for synthesizing silver nanoparticles for commercial exploitation.
Collapse
Affiliation(s)
- Gavendra Singh
- Environmental and Advanced Parasitology and Vector Control Biotechnology, Biomedical Laboratories, Department of Zoology, Faculty of Science, Dayalbagh Educational Institute, Agra, 282005, India,
| | | |
Collapse
|