1
|
Conejeros I, López-Osorio S, Zhou E, Velásquez ZD, Del Río MC, Burgos RA, Alarcón P, Chaparro-Gutiérrez JJ, Hermosilla C, Taubert A. Glycolysis, monocarboxylate transport, and purinergic signaling are key events in Eimeria bovis-induced NETosis. Front Immunol 2022; 13:842482. [PMID: 36032127 PMCID: PMC9403323 DOI: 10.3389/fimmu.2022.842482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
The protozoan parasite Eimeria bovis is the causative agent of bovine coccidiosis, an enteric disease of global importance that significantly affects cattle productivity. Previous studies showed that bovine NETosis—an important early host innate effector mechanism of polymorphonuclear neutrophil (PMN)—is elicited by E. bovis stages. So far, the metabolic requirements of E. bovis-triggered NET formation are unknown. We here studied early glycolytic and mitochondrial responses of PMN as well as the role of pH, distinct metabolic pathways, P2 receptor-mediated purinergic signaling, and monocarboxylate transporters 1 and 2 (MCT1, MCT2) in E. bovis sporozoite-induced NET formation. Seahorse-based experiments revealed a rapid induction of both neutrophil oxygen consumption rate (OCR) and early glycolytic responses, thereby reflecting immediate PMN activation and metabolic changes upon confrontation with sporozoites. The impact of these metabolic changes on NET formation was studied via chemical inhibition experiments targeting glycolysis and energy generation by the use of 2-fluor-2-deoxy-D-glucose (FDG), 6-diazo-5-oxo-L-norleucin (DON), sodium dichloroacetate (DCA), oxythiamine (OT), sodium oxamate (OXA), and oligomycin A (OmA) to block glycolysis, glutaminolysis, pyruvate dehydrogenase kinase, pyruvate dehydrogenase, lactate dehydrogenase, and mitochondrial ATP-synthase, respectively. Overall, sporozoite-induced NET formation was significantly diminished via PMN pretreatments with OmA and OXA, thereby indicating a key role of ATP- and lactate-mediated metabolic pathways. Consequently, we additionally studied the effects of extracellular pH, MCT1, MCT2, and purinergic receptor inhibitors (AR-C141900, AR-C155858, theobromine, and NF449, respectively). Pretreatment with the latter inhibitors led to blockage of sporozoite-triggered DNA release from exposed bovine PMN. This report provides first evidence on the pivotal role of carbohydrate-related metabolic pathways and purinergic receptors being involved in E. bovis sporozoite-induced NETosis.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
- *Correspondence: Iván Conejeros,
| | - Sara López-Osorio
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Ershun Zhou
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
- College of Life Sciences and Engineering, University of Foshan, Foshan, China
| | - Zahady D. Velásquez
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
| | - María Cristina Del Río
- Department of Animal Pathology, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | | | - Carlos Hermosilla
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Pérez-Fonseca A, Gutiérrez L, Sumano H, Salem AZ, Ortega-Cerrilla ME, Villa-Mancera A, Alcala-Canto Y. Effect of dehydrated grapefruit peels on intestinal integrity and Eimeria invasion of caprine epithelial cells in vitro and anticoccidial activity in vivo. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Thiosemicarbazone Copper Chelator BLT-1 Blocks Apicomplexan Parasite Replication by Selective Inhibition of Scavenger Receptor B Type 1 (SR-BI). Microorganisms 2021; 9:microorganisms9112372. [PMID: 34835496 PMCID: PMC8622581 DOI: 10.3390/microorganisms9112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Coccidian parasites are obligate intracellular pathogens that affect humans and animals. Apicomplexans are defective in de novo synthesis of cholesterol, which is required for membrane biosynthesis and offspring formation. In consequence, cholesterol has to be scavenged from host cells. It is mainly taken up from extracellular sources via LDL particles; however, little is known on the role of HDL and its receptor SR-BI in this process. Here, we studied effects of the SR-BI-specific blocker BLT-1 on the development of different fast (Toxoplasma gondii, Neospora caninum, Besnoitia besnoiti) and slow (Eimeria bovis and Eimeria arloingi) replicating coccidian species. Overall, development of all these parasites was significantly inhibited by BLT-1 treatment indicating a common SR-BI-related key mechanism in the replication process. However, SR-BI gene transcription was not affected by T. gondii, N. caninum and B. besnoiti infections. Interestingly, BLT-1 treatment of infective stages reduced invasive capacities of all fast replicating parasites paralleled by a sustained increase in cytoplasmic Ca++ levels. Moreover, BLT1-mediated blockage of SR-BI led to enhanced host cell lipid droplet abundance and neutral lipid content, thereby confirming the importance of this receptor in general lipid metabolism. Finally, the current data suggest a conserved role of SR-BI for successful coccidian infections.
Collapse
|
4
|
Velásquez ZD, López-Osorio S, Waiger D, Manosalva C, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. Eimeria bovis infections induce G 1 cell cycle arrest and a senescence-like phenotype in endothelial host cells. Parasitology 2021; 148:341-353. [PMID: 33100232 PMCID: PMC7890351 DOI: 10.1017/s0031182020002097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023]
Abstract
Apicomplexan parasites are well-known to modulate their host cells at diverse functional levels. As such, apicomplexan-induced alteration of host cellular cell cycle was described and appeared dependent on both, parasite species and host cell type. As a striking evidence of species-specific reactions, we here show that Eimeria bovis drives primary bovine umbilical vein endothelial cells (BUVECs) into a senescence-like phenotype during merogony I. In line with senescence characteristics, E. bovis induces a phenotypic change in host cell nuclei being characterized by nucleolar fusion and heterochromatin-enriched peripheries. By fibrillarin staining we confirm nucleoli sizes to be increased and their number per nucleus to be reduced in E. bovis-infected BUVECs. Additionally, nuclei of E. bovis-infected BUVECs showed enhanced signals for HH3K9me2 as heterochromatin marker thereby indicating an infection-induced change in heterochromatin transition. Furthermore, E. bovis-infected BUVECs show an enhanced β-galactosidase activity, which is a well-known marker of senescence. Referring to cell cycle progression, protein abundance profiles in E. bovis-infected endothelial cells revealed an up-regulation of cyclin E1 thereby indicating a cell cycle arrest at G1/S transition, signifying a senescence key feature. Similarly, abundance of G2 phase-specific cyclin B1 was found to be downregulated at the late phase of macromeront formation. Overall, these data indicate that the slow proliferative intracellular parasite E. bovis drives its host endothelial cells in a senescence-like status. So far, it remains to be elucidated whether this phenomenon indeed reflects an intentionally induced mechanism to profit from host cell-derived energy and metabolites present in a non-dividing cellular status.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Research Group CIVAB, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Daniel Waiger
- Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Hebrew University of Jerusalem Israel, Rehovot, Israel
| | - Carolina Manosalva
- Faculty of Veterinary Sciences, Institute of Pharmacology, Universidad Austral de Chile, Valdivia, Chile
| | - Learta Pervizaj-Oruqaj
- Cardio Pulmonary Institute (CPI), Giessen, Germany
- Universities Giessen & Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Cardio Pulmonary Institute (CPI), Giessen, Germany
- Universities Giessen & Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
López-Osorio S, Silva LMR, Chaparro-Gutierréz JJ, Velásquez ZD, Taubert A, Hermosilla C. Optimized excystation protocol for ruminant Eimeria bovis- and Eimeria arloingi-sporulated oocysts and first 3D holotomographic microscopy analysis of differing sporozoite egress. Parasitol Int 2020; 76:102068. [PMID: 32006675 DOI: 10.1016/j.parint.2020.102068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 11/30/2022]
Abstract
Successful excystation of sporulated Eimeria spp. oocysts is an important step to acquire large numbers of viable sporozoites for molecular, biochemical, immunological and in vitro experiments for detailed studies on complex host cell-parasite interactions. An improved method for excystation of sporulated oocysts and collection of infective E. bovis- and E. arloingi-sporozoites is here described. Eimeria spp. oocysts were treated for at least 20 h with sterile 0.02 M L-cysteine HCl/0.2 M NaHCO3 solution at 37 °C in 100% CO2 atmosphere. The last oocyst treatment was performed with a 0.4% trypsin 8% sterile bovine bile excystation solution, which disrupted oocyst walls with consequent activation of sporozoites within oocyst circumplasm, thereby releasing up to 90% of sporozoites in approximately 2 h of incubation (37 °C) with a 1:3 (oocysts:sporozoites) ratio. Free-released sporozoites were filtered in order to remove rests of oocysts, sporocysts and non-sporulated oocysts. Furthermore, live cell imaging 3D holotomographic microscopy (Nanolive®) analysis allowed visualization of differing sporozoite egress strategies. Sporozoites of both species were up to 99% viable, highly motile, capable of active host cell invasion and further development into trophozoite- as well as macroment-development in primary bovine umbilical vein endothelial cells (BUVEC). Sporozoites obtained by this new excystation protocol were cleaner at the time point of exposure of BUVEC monolayers and thus benefiting from the non-activation status of these highly immunocompetent cells through debris. Alongside, this protocol improved former described methods by being is less expensive, faster, accessible for all labs with minimum equipment, and without requirement of neither expensive buffer solutions nor sophisticated instruments such as ultracentrifuges.
Collapse
Affiliation(s)
- Sara López-Osorio
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin 050034, Colombia; Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Liliana M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jenny J Chaparro-Gutierréz
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin 050034, Colombia
| | - Zahady D Velásquez
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Trejo-Huitrón G, Bautista-Gómez LG, Martínez-Castañeda JS, Romero-Núñez C, Trejo-Castro L, Espinosa-Ayala E. Morphological characterization and first molecular identification of the eleven Eimeria species that infect sheep from Mexico. Parasitol Res 2019; 119:115-122. [PMID: 31836920 DOI: 10.1007/s00436-019-06477-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/24/2019] [Indexed: 12/07/2022]
Abstract
Within livestock production, enteric diseases play an important role, since they cause severe economic losses due to mortality, growth depression, and reduction in the conversion rate. Coccidiosis caused by Eimeria spp. is a parasitic disease of high morbidity that affects various animal species, including sheep. In sheep, eleven species of Eimeria have been identified mainly through microscopical identification of the oocysts; however, this technique has certain limitations that make it difficult to identify the different Eimeria species. The objective of the present study was to morphologically identify the eleven species of Eimeria that infect sheep in the southeastern region of the State of Mexico, as well as obtain the partial sequence of the ITS-1 rRNA region of each species and analyze it phylogenetically. A total of 412 samples were collected from the 13 municipalities that comprise the region I of the State of Mexico, out of which, 40 had approximately 80% of a single Eimeria species. Among these, the eleven Eimeria species reported in sheep were identified. The phylogenetic analysis showed that the species reported in this study are associated with those reported in rabbits, bovines, and birds. It is suggested that the phylogenetic division of sheep in two clades may be associated with the presence or absence of the residual body. It is proposed that the present methodology can be used effectively for diagnosis and to obtain information about the epidemiology of ovine coccidial infection. The results obtained in this study constitute the first report of the ITS-1 region of the eleven Eimeria species that infect sheep worldwide.
Collapse
Affiliation(s)
- Gerardo Trejo-Huitrón
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Km. 2.5 Carretera Amecameca - Ayapango, Amecameca, Estado de México, Mexico
| | - Linda G Bautista-Gómez
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Km. 2.5 Carretera Amecameca - Ayapango, Amecameca, Estado de México, Mexico.
| | - J Simón Martínez-Castañeda
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera de Cuota Toluca-Atlacomulco, Toluca, Estado de México, Mexico
| | - Camilo Romero-Núñez
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Km. 2.5 Carretera Amecameca - Ayapango, Amecameca, Estado de México, Mexico
| | - Lauro Trejo-Castro
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Servicios de Constatación en Salud Animal, Carretera Federal Cuernavaca - Cuautla No. 8534, Col. Progreso Morelos, Jiutepec, Morelos, Mexico
| | - Enrique Espinosa-Ayala
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Km. 2.5 Carretera Amecameca - Ayapango, Amecameca, Estado de México, Mexico
| |
Collapse
|
7
|
Jiménez-Pelayo L, García-Sánchez M, Regidor-Cerrillo J, Horcajo P, Collantes-Fernández E, Gómez-Bautista M, Hambruch N, Pfarrer C, Ortega-Mora LM. Immune response profile of caruncular and trophoblast cell lines infected by high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates of Neospora caninum. Parasit Vectors 2019; 12:218. [PMID: 31068227 PMCID: PMC6505111 DOI: 10.1186/s13071-019-3466-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Bovine neosporosis, one of the main causes of reproductive failure in cattle worldwide, poses a challenge for the immune system of pregnant cows. Changes in the Th-1/Th-2 balance in the placenta during gestation have been associated with abortion. Cotyledon and caruncle cell layers form the maternal-foetal interface in the placenta and are able to recognize and induce immune responses against Neospora caninum among other pathogens. The objective of the present work was to elucidate the immunomodulation produced by high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates of N. caninum in bovine trophoblast (F3) and caruncular cells (BCEC-1) at early and late points after infection. Variations in the mRNA expression levels of toll-like receptor-2 (TLR-2), Th1 and Th2 cytokines (IL-4, IL-10, IL-8, IL-6, IL-12p40, IL-17, IFN-γ, TGF-β1, TNF-α), and endothelial adhesion molecules (ICAM-1 and VCAM-1) were investigated by RT-qPCR, and protein variations in culture supernatants were investigated by ELISA. Results A similar pattern of modulation was found in both cell lines. The most upregulated cytokines in infected cells were pro-inflammatory TNF-α (P < 0.05–0.0001) and IL-8 (P < 0.05–0.001) whereas regulatory IL-6 (P < 0.05–0.001) and TGF-β1 (P < 0.05–0.001) were downregulated in both cell lines. The measurement of secreted IL-6, IL-8 and TNF-α confirmed the mRNA expression level results. Differences between isolates were found in the mRNA expression levels of TLR-2 (P < 0.05) in both cell lines and in the mRNA expression levels (P < 0.05) and protein secretion of TNF-α (P < 0.05), which were higher in the trophoblast cell line (F3) infected with the low-virulence isolate Nc-Spain1H. Conclusions Neospora caninum infection is shown to favor a pro-inflammatory response in placental target cells in vitro. In addition, significant immunomodulation differences were observed between high- and low-virulence isolates, which would partially explain the differences in virulence. Electronic supplementary material The online version of this article (10.1186/s13071-019-3466-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Jiménez-Pelayo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Marta García-Sánchez
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Mercedes Gómez-Bautista
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Nina Hambruch
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Concomitant in vitro development of Eimeria zuernii- and Eimeria bovis-macromeronts in primary host endothelial cells. Parasitol Int 2018; 67:742-750. [DOI: 10.1016/j.parint.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/16/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
|
9
|
Bussière FI, Niepceron A, Sausset A, Esnault E, Silvestre A, Walker RA, Smith NC, Quéré P, Laurent F. Establishment of an in vitro chicken epithelial cell line model to investigate Eimeria tenella gamete development. Parasit Vectors 2018; 11:44. [PMID: 29347990 PMCID: PMC5774133 DOI: 10.1186/s13071-018-2622-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background Eimeria tenella infection leads to acute intestinal disorders responsible for important economic losses in poultry farming worldwide. The life-cycle of E. tenella is monoxenous with the chicken as the exclusive host; infection occurs in caecal epithelial cells. However, in vitro, the complete life-cycle of the parasite has only been propagated successfully in primary chicken kidney cells, which comprise undefined mixed cell populations; no cell line model has been able to consistently support the development of the sexual stages of the parasite. We therefore sought to develop a new model to study E. tenella gametogony in vitro using a recently characterised chicken cell line (CLEC-213) exhibiting an epithelial cell phenotype. Methods CLEC-213 were infected with sporozoites from a precocious strain or with second generation merozoites (merozoites II) from wild type strains. Sexual stages of the parasite were determined both at the gene and protein levels. Results To our knowledge, we show for the first time in CLEC-213, that sporozoites from a precocious strain of E. tenella were able to develop to gametes, as verified by measuring gene expression and by using antibodies to a microgamete-specific protein (EtFOA1: flagellar outer arm protein 1) and a macrogamete-specific protein (EtGAM-56), but oocysts were not observed. However, both gametes and oocysts were observed when cells were infected with merozoites II from wild type strains, demonstrating that completion of the final steps of the parasite cycle is possible in CLEC-213 cells. Conclusion The epithelial cell line CLEC-213 constitutes a useful avian tool for studying Eimeria epithelial cell interactions and the effect of drugs on E. tenella invasion, merogony and gametogony.
Collapse
Affiliation(s)
- Françoise I Bussière
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France.
| | - Alisson Niepceron
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Alix Sausset
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Evelyne Esnault
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Anne Silvestre
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Robert A Walker
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Nicholas C Smith
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Pascale Quéré
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Fabrice Laurent
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| |
Collapse
|
10
|
A newly described strain of Eimeria arloingi (strain A) belongs to the phylogenetic group of ruminant-infecting pathogenic species, which replicate in host endothelial cells in vivo. Vet Parasitol 2017; 248:28-32. [PMID: 29173537 DOI: 10.1016/j.vetpar.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 11/21/2022]
Abstract
Coccidiosis caused by Eimeria species is an important disease worldwide, particularly in ruminants and poultry. Eimeria infection can result in significant economic losses due to costs associated with treatment and slower growth rates, or even with mortality of heavily infected individuals. In goat production, a growing industry due to increasing demand for caprine products worldwide, coccidiosis is caused by several Eimeria species with E. arloingi and E. ninakohlyakimovae the most pathogenic. The aims of this study were genetic characterization of a newly isolated European E. arloingi strain (A) and determination of phylogenetic relationships with Eimeria species from other ruminants. Therefore, a DNA sequence of E. arloingi strain (A) containing 2290 consensus nucleotides (the majority of 18S rDNA, complete ITS-1 and 5.8S sequences, and the partial ITS-2) was amplified and phylogenetic relationship determined with the most similar sequences available on GenBank. The phylogenetic tree presented a branch constituted by bovine Eimeria species plus E. arloingi, and another one exclusively populated by ovine Eimeria species. Moreover, E. arloingi, E. bovis and E. zuernii, which all replicate in host intestinal endothelial cells of the lacteals, were found within the same cluster. This study gives new insights into the evolutionary phylogenetic relationships of this newly described caprine Eimeria strain and confirmed its close relationship to other highly pathogenic ruminant Eimeria species characterized by macromeront formation in host endothelial cells of the central lymph capillaries of the small intestine.
Collapse
|
11
|
Molecular epidemiology and point mutations in ITS1 and 18S rDNA genes of Eimeria ninakohlyakimovae and E. christenseni isolated from Indian goats. Vet Parasitol Reg Stud Reports 2017; 9:51-62. [PMID: 31014842 DOI: 10.1016/j.vprsr.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022]
Abstract
Epidemiology and molecular characterization of Eimeria was carried in goats reared under semi-arid region of west Uttar Pradesh, India. A total of 1285 faecal samples from different goat breeds (Jamunapari, Jakhrana and Barbari) were examined for presence of Eimerian oocysts over a period of eight months along with faecal oocysts count. All raw data of faecal oocyst counts (FOC) were transformed by loge (OPG+ 100) before analysis. All fixed effects like breed, age, months of sample collections along with their interaction were considered in analysis. The overall prevalence of Eimeria infection in goats was 73.85%. Breed wise prevalence in Barbari, Jamunapari and Jakhrana breed was 68.62, 79.70 and 72% respectively. Prevalence observed in 2-6M, 6-12M and >12M was as 70.83, 79.88 and 71.74% respectively. Gender wise prevalence as observed in male and female goats was 71.95 and 74.43% respectively. In oocyst per gram (OPG) data analysis the fixed effects like breed, age, months of sample collection and age versus gender interaction had significant effect on log transformed faecal oocysts counts (LFOC). The overall least square means of OPG was 4.673±0.007 (1403OPG). Of the three goat breeds, Jamunapari had highest OPG (2886OPG) compared to Jakhrana (875OPG) and Barbari (523OPG). Mean OPG in 2-6month age goats was significantly higher than the corresponding values in 6-12 and >12months, significant variation was found among monthly OPG means and wet months showed higher faecal oocysts discharge. Nine Eimeria species were identified infecting goats and E. arloingi and E. ninakohlyakimovae were most frequent and predominant species. Molecular characterization for coccidial infection was conducted using two genes i.e. 18S rDNA and ITS-1 genes which amplified 637bp and <500bp (E. ninakohlyakimovae) and >500bp (E. christenseni and E. alijevi) respectively. The ITS1 gene was analysed by sequencing, E. christenseni was found showing nucleotide similarity with E. bovis and E. ellipsoidalis whereas 3' end of the sequence were highly conserved. The ITS1 gene of E. ninakohlyakimovae was found more homologous to E. bovis, E. ellipsoidalis and E. zuernii but for 33rd nucleotide thymidine residue deletion and 5th position G→A mutation. The 18S rDNA sequences of E. ninakohlyakimovae and E. christenseni were studied for evolutionary divergence analysis and maximum divergence was noticed between E. ninakohlyakimovae and E. christenseni (0.0605). The phylogenetic tree showed E. ninakohlyakimovae was placed in same clade with other Eimeria spp. compared, but E. christenseni being placed in a different clade as an out-group.
Collapse
|
12
|
First description of an in vitro culture system for Eimeria ovinoidalis macromeront formation in primary host endothelial cells. Parasitol Int 2016; 65:516-519. [DOI: 10.1016/j.parint.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
|
13
|
Maksimov P, Hermosilla C, Kleinertz S, Hirzmann J, Taubert A. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition. Parasitol Res 2016; 115:1991-2001. [PMID: 26847631 DOI: 10.1007/s00436-016-4941-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.
Collapse
Affiliation(s)
- P Maksimov
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.,Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Riems, Germany
| | - C Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany
| | - S Kleinertz
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.,Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - J Hirzmann
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany
| | - A Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.
| |
Collapse
|
14
|
Hermosilla C, Stamm I, Menge C, Taubert A. Suitable in vitro culture of Eimeria bovis meront II stages in bovine colonic epithelial cells and parasite-induced upregulation of CXCL10 and GM-CSF gene transcription. Parasitol Res 2015; 114:3125-36. [PMID: 25982572 DOI: 10.1007/s00436-015-4531-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
Abstract
We here established a suitable in vitro cell culture system based on bovine colonic epithelial cells (BCEC) for the development of Eimeria bovis merozoites I and the characterization of early parasite-induced innate epithelial host cell reactions as gene transcription of proinflammatory molecules. Both primary and permanent BCEC (BCEC (rim) and BCEC(perm)) were suitable for E. bovis merozoite I invasion and subsequent development of meronts II leading to the release of viable merozoites II. E. bovis merozoite II failed to develop any further neither into gamont nor oocyst stages in BCEC in vitro. E. bovis merozoite I induced innate epithelial host cell reactions at the level of CXC/CCL chemokines (CXCL1, CXCL8, CXCL10, CCL2), IL-6, and GM-CSF gene transcription. Overall, both BCEC types were activated by merozoite I infections since they showed significantly enhanced gene transcript levels of the immunomodulatory molecules CXCL10 and GM-CSF. However, gene transcription profiles of BCEC(prim) and BCEC(perm) revealed different reaction patterns in response to merozoite I infection with regard to quality and kinetics of chemokine/cytokine gene transcription. Although both BCEC types equally showed most prominent responses for CXCL10 and GM-CSF, the induction of CXCL1, CXCL8, CCL2, and IL-6 gene transcripts varied qualitatively and quantitatively. Our results demonstrate that BCEC seem capable to respond to E. bovis merozoite I infection by the upregulation of CXCL10 and GM-CSF gene transcription and therefore probably contribute to host innate effector mechanisms against E. bovis.
Collapse
Affiliation(s)
- Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, Giessen, Germany,
| | | | | | | |
Collapse
|