1
|
Różańska-Wróbel J, Migalska M, Urbanowicz A, Grzybek M, Rego ROM, Bajer A, Dwuznik-Szarek D, Alsarraf M, Behnke-Borowczyk J, Behnke JM, Radwan J. Interplay between vertebrate adaptive immunity and bacterial infectivity genes: Bank vole MHC versus Borrelia afzelii OspC. Mol Ecol 2024; 33:e17534. [PMID: 39314079 DOI: 10.1111/mec.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Coevolution of parasites with their hosts may lead to balancing selection on genes involved in determining the specificity of host-parasite interactions, but examples of such specific interactions in wild vertebrates are scarce. Here, we investigated whether the polymorphic outer surface protein C (OspC), used by the Lyme disease agent, Borrelia afzelii, to manipulate vertebrate host innate immunity, interacts with polymorphic major histocompatibility genes (MHC), while concurrently eliciting a strong antibody response, in one of its main hosts in Europe, the bank vole. We found signals of balancing selection acting on OspC, resulting in little differentiation in OspC variant frequencies between years. Neither MHC alleles nor their inferred functional groupings (supertypes) significantly predicted the specificity of infection with strains carrying different OspC variants. However, we found that MHC alleles, but not supertypes, significantly predicted the level of IgG antibodies against two common OspC variants among seropositive individuals. Our results thus indicate that MHC alleles differ in their ability to induce antibody responses against specific OspC variants, which may contribute to selection of OspC polymorphism by the vole immune system.
Collapse
Affiliation(s)
- Joanna Różańska-Wróbel
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Gdynia, Poland
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Dwuznik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Phytopathology, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
2
|
Jost J, Hirzmann J, Ďureje Ľ, Maaz D, Martin P, Stach T, Heitlinger E, Jarquín-Díaz VH. Dentition patterns and molecular diversity of Mastophorus muris (Gmelin, 1790) (Nematoda: Spiruroidea) support a host-associated subdivision. Parasitol Res 2024; 123:237. [PMID: 38856825 PMCID: PMC11164724 DOI: 10.1007/s00436-024-08259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mastophorus muris (Gmelin, 1790) is a globally distributed parasitic nematode of broad range mammals. The taxonomy within the genus Mastophorus and the cryptic diversity among the genus are controversial among taxonomists. This study provides a detailed morphological description of M. muris from Mus musculus combined with a molecular phylogenetic approach. Moreover, descriptions and molecular data of M. muris from non-Mus rodents and wildcats complement our findings and together provide new insights into their taxonomy. The analysis of M. muris was based on light microscopy and scanning electron microscopy. The morphological description focused on the dentition pattern of the two trilobed pseudolabia. Additionally, we described the position of the vulva, arrangement of caudal pairs of papillae, spicules and measured specimens from both sexes and the eggs. For the molecular phylogenetic approach, we amplified the small subunit ribosomal RNA gene and the internal transcribed spacer, and the cytochrome c oxidase subunit 1. Mastophorus morphotypes based on dentition patterns and phylogenetic clustering indicate a subdivision of the genus in agreement with their host. We recognize two groups without a change to formal taxonomy: One group including those specimens infecting Mus musculus, and the second group including organisms infecting non-Mus rodents. Our genetic and morphological data shed light into the cryptic diversity within the genus Mastopohorus. We identified two host-associated groups of M. muris. The described morphotypes and genotypes of M. muris allow a consistent distinction between host-associated parasites.
Collapse
Affiliation(s)
- Jenny Jost
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institut for Zoo and Wildlife Research (IZW) Im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Jörg Hirzmann
- Institute of Parasitology, Justus-Liebig-University Gießen, Schubertstr. 81, 35392, Gießen, Germany
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Denny Maaz
- Institute for Parasitology and Tropical Veterinary Medicine, Freie University Berlin (FU), Robert-Von-Ostertag-Straße 7, 14163, Berlin, Germany
| | - Peer Martin
- Comparative Electron Microscopy, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Thomas Stach
- Comparative Electron Microscopy, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institut for Zoo and Wildlife Research (IZW) Im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany.
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institut for Zoo and Wildlife Research (IZW) Im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| |
Collapse
|
3
|
Palacios-Marquez JJ, Guevara-Fiore P. Parasitism in viviparous vertebrates: an overview. Parasitol Res 2023; 123:53. [PMID: 38100003 DOI: 10.1007/s00436-023-08083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
The reproductive mode of viviparity has independently evolved in various animal taxa. It refers to the condition in which the embryos or young develop inside the female's body during gestation, providing advantages such as protection, nutrition, and improved survival chances. However, parasites and diseases can be an evolutionary force that limit the host's resources, leading to physiological, morphological, and behavioral changes that impose additional costs on both the pregnant female and her offspring. This review integrates the primary literature published between 1980 and 2021 on the parasitism of viviparous hosts. We describe aspects such as reproductive investment in females, offspring sex ratios, lactation investment in mammals, alterations in birth intervals, current reproductive investment, variations between environments, immune system activity in response to immunological challenges, and other factors that can influence the interaction between viviparous females and parasites. Maintaining pregnancy incurs costs in managing the mother's resources and regulating the immune system's responses to the offspring, while simultaneously maintaining an adequate defense against parasites and pathogens. Parasites can significantly influence this reproductive mode: parasitized females adjust their investment in survival and reproduction based on their life history, environmental factors, and the diversity of encountered parasites.
Collapse
Affiliation(s)
- Juan J Palacios-Marquez
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico.
| |
Collapse
|
4
|
Li G, Wang Q, Zhang M, Hu B, Han S, Xiang C, Yuan G, He H. Male-Biased Parasitism of Brandt's Voles ( Lasiopodomys brandtii) in Inner Mongolia, China. Animals (Basel) 2023; 13:ani13081290. [PMID: 37106853 PMCID: PMC10135223 DOI: 10.3390/ani13081290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The abundance and prevalence of parasitic infection often vary in different host sexes, and this phenomenon has been named sex-biased parasitism. Brandt's voles are the dominant rodent species in typical steppe habitat and are widely distributed in Inner Mongolia, China, but the prevalence of parasites in Brandt's voles are poorly reported. In this study, we investigated the prevalence of six intestinal parasites in Brandt's voles in May, June, July, and August 2022 around the Xilingol Grassland in Inner Mongolia, China. The results showed that Syphacia obvelata, Aspiculuris tetraptera, and Trichostrongylidae family were the dominant intestinal parasites in Brandt's voles that we captured in this study, and the infection rates of the three parasites were significantly higher in males than females, which showed obvious male-biased parasitism. Season and human activities such as grazing had no significant effect on the infection rates for different parasites, while the parasite reproduction level was higher when the ambient temperature was around 18 °C. Sexual size dimorphism was ubiquitous in Brandt's voles, and it was mainly manifested by the differences in body weight and length between males and females. Simple linear regression analysis showed a significant positive correlation between bodyweight and parasite infection rates, so the sex-biased parasitism in Brandt's voles could be explained by the body size hypothesis, as a larger body could provide more ecological niches for parasitic infection.
Collapse
Affiliation(s)
- Gaojian Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qinghe Wang
- Nanyang Wild Animals and Plants Protection Station, Nanyang 473000, China
| | - Min Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Xiang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Helminth parasites of the wood mouse Apodemus sylvaticus in Southern England: levels of infection, species richness and interactions between species. J Helminthol 2023; 97:e18. [PMID: 36747489 DOI: 10.1017/s0022149x22000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helminth parasites of the wood mouse, Apodemus sylvaticus (n = 440), were surveyed in five localities, comprising woodland and grassland sites, in Southern England. Seven species of helminths were identified, among which Heligmosomoides polygyrus and Syphacia stroma were dominant (prevalence = 79.1% and 54.1%, respectively). Less common species were the trematode Corrigia vitta (14.8%), cestodes Catenotaenia pusilla (8.4%), Hydatigera taeniaeformis (4.1%) and Microsomacanthus crenata (3.4%) and the nematode Aonchotheca murissylvatici (0.2%). Differences in prevalences between localities were found for H. polygyrus, H. taeniaeformis and M. crenata and in abundances of H. polygyrus, S. stroma and C. vitta. Age-dependent increases in both parameters were identified among species and for helminth species richness. The only species to show significant host sex bias was S. stroma with prevalence values being higher in male mice. A number of different methods for exploiting raw data, and data corrected for significant confounding factors, were used to determine whether there were significant associations (prevalence) between species or quantitative interactions (abundance). The strongest evidence for a positive association was shown in concurrent infections with the trematode C. vitta and the cestode C. pusilla (significant in the whole dataset and evident in each locality, both sexes and both age classes). The abundance of C. pusilla was also higher in mice with C. vitta and vice versa. Overall, however, there was little support for associations or quantitative interactions between species, especially after data had been corrected for significant extrinsic/intrinsic factors, and we conclude that the helminths of wood mice in these communities are largely non-interactive and hence, perhaps better referred to as assemblages.
Collapse
|
6
|
Krupińska M, Antolová D, Tołkacz K, Szczepaniak K, Strachecka A, Goll A, Nowicka J, Baranowicz K, Bajer A, Behnke JM, Grzybek M. Grassland versus forest dwelling rodents as indicators of environmental contamination with the zoonotic nematode Toxocara spp. Sci Rep 2023; 13:483. [PMID: 36627309 PMCID: PMC9832041 DOI: 10.1038/s41598-022-23891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small mammals are suspected of contributing to the dissemination of Toxocara canis and helping with the parasite survival during periods when there is a temporary absence of suitable definitive hosts. While the primary aim of the current study was the assessment of seroprevalence of Toxocara spp. infections in wild rodents in Poland, we also explored the role of intrinsic (sex, age) and extrinsic factors (study site) influencing dynamics of this infection to ascertain whether grassland versus forest rodents play a greater role as indicators of environmental contamination with T. canis. We trapped 577 rodents belonging to four species (Myodes glareolus, Microtus arvalis, Microtus agrestis, Alexandromys oeconomus) in north-eastern Poland. Blood was collected during the parasitological examination, and serum was frozen at - 80 °C until further analyses. A bespoke enzyme-linked immunosorbent assay was used to detect antibodies against Toxocara spp. We found Toxocara spp. antibodies in the sera of all four rodent species with an overall seroprevalence of 2.8% [1.9-4.1%]. There was a significant difference in seroprevalence between vole species, with the grassland species (M. arvalis, M. agrestis and A. oeconomus) showing a 16-fold higher seroprevalence (15.7% [8.7-25.9%]) than the forest-dwelling M. glareolus (0.98% [0.5-1.8%]). We hypothesise that the seroprevalence of Toxocara spp. differs between forest and grassland rodents because of the higher contamination of grasslands by domestic dogs and wild canids. Our results underline the need for wide biomonitoring of both types of ecosystems to assess the role of rodents as indicators of environmental contamination with zoonotic pathogens.
Collapse
Affiliation(s)
- Martyna Krupińska
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | | | - Katarzyna Tołkacz
- University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | | | | | - Aleksander Goll
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Joanna Nowicka
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Karolina Baranowicz
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | | | | | - Maciej Grzybek
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland.
| |
Collapse
|
7
|
Grandón-Ojeda A, Moreno L, Garcés-Tapia C, Figueroa-Sandoval F, Beltrán-Venegas J, Serrano-Reyes J, Bustamante-Garrido B, Lobos-Chávez F, Espinoza-Rojas H, Silva-de la Fuente MC, Henríquez A, Landaeta-Aqueveque C. Patterns of Gastrointestinal Helminth Infections in Rattus rattus, Rattus norvegicus, and Mus musculus in Chile. Front Vet Sci 2022; 9:929208. [PMID: 35847649 PMCID: PMC9277659 DOI: 10.3389/fvets.2022.929208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Collapse
Affiliation(s)
| | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Garcés-Tapia
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Fernanda Figueroa-Sandoval
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Jazmín Beltrán-Venegas
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Josselyn Serrano-Reyes
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Bárbara Bustamante-Garrido
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Felipe Lobos-Chávez
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Hellen Espinoza-Rojas
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | | | - AnaLía Henríquez
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Carlos Landaeta-Aqueveque
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
8
|
Grzybek M, Antolová D, Tołkacz K, Alsarraf M, Behnke-Borowczyk J, Nowicka J, Paleolog J, Biernat B, Behnke JM, Bajer A. Seroprevalence of Toxoplasma gondii among Sylvatic Rodents in Poland. Animals (Basel) 2021; 11:1048. [PMID: 33917803 PMCID: PMC8068096 DOI: 10.3390/ani11041048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is an intracellular Apicomplexan parasite with a broad range of intermediate hosts, including humans and rodents. Rodents are considered to be reservoirs of infection for their predators, including cats, felids, pigs, and wild boars. We conducted a multi-site, long-term study on T. gondii in northeastern Poland. The study aimed to monitor the seroprevalence of T. gondii in the four abundant vole species found in the region (Myodes glareolus, Microtus arvalis, Microtus agrestis, and Alexandromys oeconomus) and to assess the influence of both extrinsic (year of study and study site) and intrinsic (host sex and host age) factors on seroprevalence. A bespoke enzyme-linked immunosorbent assay was used to detect antibodies against T. gondii. We examined 577 rodent individuals and detected T. gondii antibodies in the sera of all four rodent species with an overall seroprevalence of 5.5% [4.2-7.3] (3.6% [2.6-4.9] for M. glareolus and 20% [12-30.9] for M. arvalis, M. agrestis, and A. oeconomus). Seroprevalence in bank voles varied significantly between host age and sex. Seroprevalence increased with host age and was higher in females than males. These results contribute to our understanding of the distribution and abundance of T. gondii in voles in Poland and confirm that T. gondii also circulates in M. glareolus and M. arvalis, M. agrestis and A. oeconomus. Therefore, they may potentially play a role as reservoirs of this parasite in the sylvatic environment.
Collapse
Affiliation(s)
- Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland; (J.N.); (B.B.)
| | - Daniela Antolová
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia;
| | - Katarzyna Tołkacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa, 02-096 Warsaw, Poland; (M.A.); (A.B.)
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa, 02-096 Warsaw, Poland; (M.A.); (A.B.)
| | - Jolanta Behnke-Borowczyk
- Department of Forest Phytopathology, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Joanna Nowicka
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland; (J.N.); (B.B.)
| | - Jerzy Paleolog
- Department of Zoology and Animal Ecology, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Beata Biernat
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland; (J.N.); (B.B.)
| | - Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa, 02-096 Warsaw, Poland; (M.A.); (A.B.)
| |
Collapse
|
9
|
Behnke JM, Rogan MT, Craig PS, Jackson JA, Hide G. Long-term trends in helminth infections of wood mice ( Apodemus sylvaticus) from the vicinity of Malham Tarn in North Yorkshire, England. Parasitology 2021; 148:451-463. [PMID: 33256865 PMCID: PMC11010161 DOI: 10.1017/s0031182020002243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Helminth infections in wood mice (n = 483), trapped over a period of 26 years in the woods surrounding Malham Tarn in North Yorkshire, were analysed. Although 10 species of helminths were identified, the overall mean species richness was 1.01 species/mouse indicating that the helminth community was relatively depauperate in this wood mouse population. The dominant species was Heligmosomoides polygyrus, the prevalence (64.6%) and abundance (10.4 worms/mouse) of which declined significantly over the study period. Because of the dominance of this species, analyses of higher taxa (combined helminths and combined nematodes) also revealed significantly declining values for prevalence, although not abundance. Helminth species richness (HSR) and Brillouin's index of diversity (BID) did not show covariance with year, neither did those remaining species whose overall prevalence exceeded 5% (Syphacia stroma, Aonchotheca murissylvatici and Plagiorchis muris). Significant age effects were detected for the prevalence and abundance of all higher taxa, H. polygyrus and P. muris, and for HSR and BID, reflecting the accumulation of helminths with increasing host age. Only two cases of sex bias were found; male bias in abundance of P. muris and combined Digenea. We discuss the significance of these results and hypothesize about the underlying causes.
Collapse
Affiliation(s)
- Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - Michael T. Rogan
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, SalfordM5 4WT, UK
| | - Philip S. Craig
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, SalfordM5 4WT, UK
| | - Joseph A. Jackson
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, SalfordM5 4WT, UK
| | - Geoff Hide
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, SalfordM5 4WT, UK
| |
Collapse
|
10
|
Habig B, Chowdhury S, Monfort SL, Brown JL, Swedell L, Foerster S. Predictors of helminth parasite infection in female chacma baboons ( Papio ursinus). Int J Parasitol Parasites Wildl 2021; 14:308-320. [PMID: 33898232 PMCID: PMC8056146 DOI: 10.1016/j.ijppaw.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Helminth parasite infection can impose major consequences on host fitness. Several factors, including individual characteristics of hosts, environmental conditions, and patterns of coinfection, are thought to drive variation in parasite risk. Here, we report on four key drivers of parasite infection-phase of reproduction, steroid hormone profiles, rainfall, and patterns of coinfection-in a population of wild female chacma baboons (Papio ursinus) in South Africa. We collected data on reproductive state and hormone profiles over a 3-year span, and quantified helminth parasite burdens in 2955 fecal samples from 24 female baboons. On a host level, we found that baboons are sensitive to parasite infection during the costliest phases of the reproductive cycle: pregnant females harbored higher intensities of Protospirura eggs than cycling and lactating females; lactating and cycling females had a higher probability of Oesophagostomum infection than pregnant females; and cycling females exhibited lower Trichuris egg counts than pregnant and lactating females. Steroid hormones were associated with both immunoenhancing and immunosuppressive properties: females with high glucocorticoid concentrations exhibited high intensities of Trichuris eggs but were at low risk of Oesophagostomum infection; females with high estrogen and progestagen concentrations exhibited high helminth parasite richness; and females with high progestagen concentrations were at high risk of Oesophagostomum infection but exhibited low Protospirura egg counts. We observed an interaction between host reproductive state and progestagen concentrations in infection intensity of Protospirura: pregnant females exhibited higher intensities and non-pregnant females exhibited lower intensities of Protospirura eggs with increasing progestagen concentrations. At a population level, rainfall patterns were dominant drivers of parasite risk. Lastly, helminth parasites exhibited positive covariance, suggesting that infection probability increases if a host already harbors one or more parasite taxa. Together, our results provide a holistic perspective of factors that shape variation in parasite risk in a wild population of animals.
Collapse
Affiliation(s)
- Bobby Habig
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd. Flushing, NY, 11367, USA
| | - Shahrina Chowdhury
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
- Anthropology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York NY, 10016, USA
- New York Consortium in Evolutionary Primatology, Anthropology Program, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Steven L. Monfort
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Janine L. Brown
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Larissa Swedell
- Anthropology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York NY, 10016, USA
- New York Consortium in Evolutionary Primatology, Anthropology Program, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Anthropology, Queens College, City University of New York, 65-30 Kissena Blvd. Flushing, NY, 11367, USA
- Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Steffen Foerster
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Lynsdale CL, Mon NO, Franco Dos Santos DJ, Aung HH, Nyein UK, Htut W, Childs D, Lummaa V. Demographic and reproductive associations with nematode infection in a long-lived mammal. Sci Rep 2020; 10:9214. [PMID: 32513991 PMCID: PMC7280280 DOI: 10.1038/s41598-020-66075-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Infection by macroparasites, such as nematodes, varies within vertebrate host systems; elevated infection is commonly observed in juveniles and males, and, for females, with different reproductive states. However, while such patterns are widely recognized in short-lived model systems, how they apply to long-lived hosts is comparatively understudied. Here, we investigated how infection varies with host age, sex, and female reproduction in a semi-captive population of individually marked Asian elephants Elephas maximus. We carried out 1,977 faecal egg counts (FECs) across five years to estimate nematode loads for 324 hosts. Infection patterns followed an established age-infection curve, whereby calves (5 years) exhibited the highest FECs and adults (45 years) the lowest. However, males and females had similar FECs across their long lifespan, despite distinct differences in life-history strategy and clear sexual dimorphism. Additionally, although mothers invest two years in pregnancy and a further three to five years into lactation, nematode load did not vary with four different measures of female reproduction. Our results provide a much-needed insight into the host-parasite dynamics of a long-lived host; determining host-specific associations with infection in such systems is important for broadening our knowledge of parasite ecology and provides practical applications for wildlife medicine and management.
Collapse
Affiliation(s)
| | - Nay Oo Mon
- Department of Animal Science, University of Veterinary Science, Yezin, Myanmar
| | | | - Htoo Htoo Aung
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, Yangon, Myanmar
| | - U Kyaw Nyein
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, Yangon, Myanmar
| | - Win Htut
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, Yangon, Myanmar
| | - Dylan Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Rodents as Hosts of Pathogens and Related Zoonotic Disease Risk. Pathogens 2020; 9:pathogens9030202. [PMID: 32164206 PMCID: PMC7157691 DOI: 10.3390/pathogens9030202] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/25/2022] Open
Abstract
Rodents are known to be reservoir hosts for at least 60 zoonotic diseases and are known to play an important role in their transmission and spread in different ways. We sampled different rodent communities within and around human settlements in Northern Senegal, an area subjected to major environmental transformations associated with global changes. Herein, we conducted an epidemiological study on their bacterial communities. One hundred and seventy-one (171) invasive and native rodents were captured, 50 from outdoor trapping sites and 121 rodents from indoor habitats, consisting of five species. The DNA of thirteen pathogens was successfully screened on the rodents' spleens. We found: 2.3% of spleens positive to Piroplasmida and amplified one which gave a potentially new species Candidatus "Theileria senegalensis"; 9.35% of Bartonella spp. and amplified 10, giving three genotypes; 3.5% of filariasis species; 18.12% of Anaplasmataceae species and amplified only 5, giving a new potential species Candidatus "Ehrlichia senegalensis"; 2.33% of Hepatozoon spp.; 3.5% of Kinetoplastidae spp.; and 15.2% of Borrelia spp. and amplified 8 belonging all to Borrelia crocidurae. Some of the species of pathogens carried by the rodents of our studied area may be unknown because most of those we have identified are new species. In one bacterial taxon, Anaplasma, a positive correlation between host body mass and infection was found. Overall, male and invasive rodents appeared less infected than female and native ones, respectively.
Collapse
|
13
|
Grzybek M, Cybulska A, Tołkacz K, Alsarraf M, Behnke-Borowczyk J, Szczepaniak K, Strachecka A, Paleolog J, Moskwa B, Behnke JM, Bajer A. Seroprevalence of Trichinella spp. infection in bank voles ( Myodes glareolus) - A long term study. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:144-148. [PMID: 31193257 PMCID: PMC6524169 DOI: 10.1016/j.ijppaw.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/15/2019] [Accepted: 03/09/2019] [Indexed: 11/03/2022]
Abstract
Rodents play an important role as reservoir hosts of zoonotic diseases. As a component of our long-term programme of monitoring parasitic infections in bank vole populations in three ecologically similar sites in NE Poland, we screened blood samples for signs of a serological response to the presence of Trichinella spp. The overall seroprevalence of Trichinella spp. was 1.52%, but prevalence was largely concentrated in one of our three study sites and confined to the oldest individuals in the study. Seroprevalence of Trichinella spp. did not differ between the sexes. Although a local prevalence of 1.52% may seem low, when this is extrapolated to the national population of bank voles in peak years, perhaps numbering hundreds of millions of animals, the number of infected bank voles on a country wide scale is likely to be huge. Our results suggest that bank voles may be reservoirs of Trichinella spp. However, on the basis of our results we consider their importance as epidemiologically significant hosts for Trichinella spp. to be moderate and their role in this context to require further investigation.
Collapse
Affiliation(s)
- Maciej Grzybek
- Department of Tropical Parasitology, Medical University of Gdansk, Poland
| | - Aleksandra Cybulska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | - Klaudiusz Szczepaniak
- Department of Parasitology and Invasive Diseases, University of Life Sciences in Lublin, Poland
| | - Aneta Strachecka
- Laboratory of Environmental Biology and Apidologie, University of Life Sciences in Lublin, Lublin, Poland
| | - Jerzy Paleolog
- Department of Zoology, Ecology and Wildlife Management, University of Life Science in Lublin, Lublin, Poland
| | - Bożena Moskwa
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anna Bajer
- Department of Parasitology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Grzybek M, Alsarraf M, Tołkacz K, Behnke-Borowczyk J, Biernat B, Stańczak J, Strachecka A, Guz L, Szczepaniak K, Paleolog J, Behnke JM, Bajer A. Seroprevalence of TBEV in bank voles from Poland-a long-term approach. Emerg Microbes Infect 2018; 7:145. [PMID: 30108201 PMCID: PMC6092418 DOI: 10.1038/s41426-018-0149-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
Rodents are known to play a significant role as reservoir hosts for TBEV. During three sequential expeditions at 4-year intervals to three ecologically similar study sites in NE Poland, we trapped bank voles (Myodes glareolus) and then tested their blood for the presence of specific antiviral antibodies to TBEV. The strongest effects on seroprevalence were the extrinsic factors, site of capture of voles and year of sampling. Seroprevalence increased markedly with increasing host age, and our analysis revealed significant interactions among these three factors. Seroprevalence did not differ between the sexes. Therefore, based on the seroprevalence results, the dynamics of TBEV infection differ significantly in time, between local sub-populations of bank voles and with increasing host age. To fully understand the circulation of the virus among these reservoir hosts and in the environment, long-term monitoring is required and should employ a multi-site approach, such as the one adopted in the current study.
Collapse
Affiliation(s)
- Maciej Grzybek
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland.
| | | | | | | | - Beata Biernat
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Stańczak
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aneta Strachecka
- Department of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Leszek Guz
- Department of Biology and Fish Disease, University of Life Sciences in Lublin, Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Parasitology and Invasive Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Jerzy Paleolog
- Department of Zoology, Animal Ecology & Wildlife Management, University of Life Sciences in Lublin, Lublin, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anna Bajer
- Department of Parasitology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Lynggaard C, Woolsey ID, Al-Sabi MNS, Bertram N, Jensen PM. Parasites in Myodes glareolus and their association with diet assessed by stable isotope analysis. Int J Parasitol Parasites Wildl 2018; 7:180-186. [PMID: 29988840 PMCID: PMC6032500 DOI: 10.1016/j.ijppaw.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
Abstract
Vertebrates are hosts to numerous parasites, belonging to many different taxa. These parasites differ in transmission, being through either direct contact, a faecal-oral route, ingestion of particular food items, vertical or sexual transmission, or by a vector. Assessing the impact of diet on parasitism can be difficult because analysis of faecal and stomach content are uncertain and labourious; and as with molecular methods, do not provide diet information over a longer period of time. We here explored whether the analysis of stable isotopes in hair provides insight into the impact of diet and the presence of parasites in the rodent Myodes glareolus. Twenty-one animals were examined for parasites and their hair analysed for stable isotopes (C and N). A positive correlation between δ15N and one species of intestinal parasite was observed in females. Furthermore, several ectoparasites were negatively correlated with δ15N, indicating that infections are further associated with foraging habits (size and layout of the home range, length and timing of foraging, interaction with other rodents, etc.) that set the rodents in direct contact with infected hosts. Although a limited number of animals were included, it seemed that the isotope values allowed for identification of the association between diet and parasite occurrence in this rodent. We therefore propose that this method is useful in providing further insight into host biology, feeding preferences and potential exposure to parasites species, contributing to the understanding of the complex relationship between hosts and parasites.
Collapse
Affiliation(s)
- Christina Lynggaard
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ian David Woolsey
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mohammad Nafi Solaiman Al-Sabi
- Section of Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | - Nicolas Bertram
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Per Moestrup Jensen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of spiny mice (Acomys dimidiatus) in St. Katherine's Protectorate, Sinai, Egypt. Parasitology 2018; 146:50-73. [DOI: 10.1017/s0031182018000987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractThe importance of parasites as a selective force in host evolution is a topic of current interest. However, short-term ecological studies of host–parasite systems, on which such studies are usually based, provide only snap-shots of what may be dynamic systems. We report here on four surveys, carried out over a period of 12 years, of helminths of spiny mice (Acomys dimidiatus), the numerically dominant rodents inhabiting dry montane wadis in the Sinai Peninsula. With host age (age-dependent effects on prevalence and abundance were prominent) and sex (female bias in abundance in helminth diversity and in several taxa including Cestoda) taken into consideration, we focus on the relative importance of temporal and spatial effects on helminth infracommunities. We show that site of capture is the major determinant of prevalence and abundance of species (and higher taxa) contributing to helminth community structure, the only exceptions beingStreptopharausspp. andDentostomella kuntzi.We provide evidence that most (notably the Spiruroidea,Protospirura muricola,Mastophorus murisandGongylonema aegypti, but with exceptions among the Oxyuroidae, e.g.Syphacia minuta), show elements of temporal-site stability, with a rank order of measures among sites remaining similar over successive surveys. Hence, there are some elements of predictability in these systems.
Collapse
|
17
|
The helminth community component species of the wood mouse as biological tags of a ten post-fire-year regeneration process in a Mediterranean ecosystem. Parasitol Res 2018; 117:2217-2231. [DOI: 10.1007/s00436-018-5909-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023]
|
18
|
Equine strongyle communities are constrained by horse sex and species dipersal-fecundity trade-off. Parasit Vectors 2018; 11:279. [PMID: 29716644 PMCID: PMC5930759 DOI: 10.1186/s13071-018-2858-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Equine strongyles are a major health issue. Large strongyles can cause death of horses while cyathostomins (small strongyles) have shown increased resistance to anthelmintics worldwide. Description of strongyle communities have accumulated but little is known about the diversity of these communities and underpinning environmental factors. Methods Strongyles were recovered after ivermectin treatment from 48 horses located in six premises in Poland. Correlation between previously published species fecundity and the observed relative abundance and prevalence were estimated. Significance of horse sex was determined at the species level (prevalence, relative abundance) and at the community level (species richness and dissimilarity between communities). Results Strongyle species fell into two groups, contrasted by their prevalence and relative abundance. Six to nine horses were necessary to sample at least 90% of strongyle community diversity, providing a minimal cut-off to implement sampling trial in the field. Strongyle communities entertained a network of mostly positive interactions and species co-occurrence was found more often than expected by chance. In addition, species fecundity and prevalence were negatively correlated (Pearson’s r = -0.71), suggesting functional trade-offs between species dispersal abilities and fecundity. This functional trade-off may underpin species coexistence. Horse sex was also a significant constraint shaping strongyle communities. Indeed, mares generally displayed more similar strongyle communities than stallions (P = 0.003) and Cylicostephanus calicatus was more abundant in stallions suggesting sex-specific interactions (P = 0.006). Conclusions While niche partitioning is likely to explain some of the positive interactions between equine strongyle species, coexistence may also result from a functional trade-off between dispersal ability and fecundity. There is significant evidence that horse sex drives strongylid community structure, which may require differential control strategies between mares and stallions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2858-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Factors affecting prevalence and abundance of A.perfoliata infections in horses from south-eastern Poland. Vet Parasitol 2017; 246:19-24. [PMID: 28969775 DOI: 10.1016/j.vetpar.2017.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022]
Abstract
Equine Anoplocephalosis constitute a significant problem in horses worldwide. The aim of this study was to analyse intrinsic (host age and sex) and extrinsic (management type, pasture type and moisture) factors that influence the prevalence and FEC of A. perfoliata infections. Faecal samples were collected from 994 horses managed in studs or individually between 2012 and 2014. The Sedimentation-flotation method was applied for coproscopic analysis, and faecal egg counts were calculated. The overall prevalence was 25.1% (21.4-29.0) with the highest prevalence (36.1% [28.1-44.8]) found in horses 10-20 years old. The individuals kept in studs showed three times higher A. perfoliata prevalence compared to the ones managed individually. The prevalence significantly differed between pasture types, with individuals kept in studs (37.6% [34.3-40.9]) showing four times higher prevalence than horses kept individually (9.2% [4.8-16.5]). More horses kept on watery (42.0% [36.6-47.6]) and semi-watery (35.9% [31.3-40.7]) pastures were infected than those on dry (6.6% [4.6-9.2]) pastures. The overall A. perfoliata FEC in all examined individual was 2.67 and differed within sex, with mares showing 4.3 - times higher FEC of infection than stallions. Horses bred in studs (3.65±0.289) showed higher FEC than these bred individually (1.28±0.198). There was the effect of pasture type on A. perfoliata FEC, with horses kept on joint pastures (4.06±0.29) showing higher FEC than individuals kept individually (0.88±0.23). Pasture moisture significantly affected A. perfoliata FEC with the highest FECs in horses from watery pastures. Horses bred on dry pastures showed 16 times lower FEC than horses bred on watery pastures. Host age also significantly affected A. perfoliata FEC, with the oldest individuals showing the highest mean FEC. The presented analysis of intrinsic and extrinsic factors may help to overcome A. perfoliata infections in horses in different breeding systems. Understanding the role of management and pasture type risk factors that influence this parasitosis may benefit both breeders and veterinary surgeons.
Collapse
|
20
|
Analysis of intrinsic and extrinsic factors influencing the dynamics of bovine Eimeria spp. from central–eastern Poland. Vet Parasitol 2015; 214:22-8. [DOI: 10.1016/j.vetpar.2015.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 11/20/2022]
|
21
|
Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland. Parasitology 2015; 142:1722-43. [PMID: 26442655 DOI: 10.1017/s0031182015001225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parasites are considered to be an important selective force in host evolution but ecological studies of host-parasite systems are usually short-term providing only snap-shots of what may be dynamic systems. We have conducted four surveys of helminths of bank voles at three ecologically similar woodland sites in NE Poland, spaced over a period of 11 years, to assess the relative importance of temporal and spatial effects on helminth infracommunities. Some measures of infracommunity structure maintained relative stability: the rank order of prevalence and abundance of Heligmosomum mixtum, Heligmosomoides glareoli and Mastophorus muris changed little between the four surveys. Other measures changed markedly: dynamic changes were evident in Syphacia petrusewiczi which declined to local extinction, while the capillariid Aonchotheca annulosa first appeared in 2002 and then increased in prevalence and abundance over the remaining three surveys. Some species are therefore dynamic and both introductions and extinctions can be expected in ecological time. At higher taxonomic levels and for derived measures, year and host-age effects and their interactions with site are important. Our surveys emphasize that the site of capture is the major determinant of the species contributing to helminth community structure, providing some predictability in these systems.
Collapse
|