1
|
Levi-Schaffer F, Gibbs BF, Hallgren J, Pucillo C, Redegeld F, Siebenhaar F, Vitte J, Mezouar S, Michel M, Puzzovio PG, Maurer M. Selected recent advances in understanding the role of human mast cells in health and disease. J Allergy Clin Immunol 2022; 149:1833-1844. [PMID: 35276243 DOI: 10.1016/j.jaci.2022.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Mast cells are highly granular tissue-resident cells and key drivers of inflammation, particularly in allergies as well as in other inflammatory diseases. Most mast cell research was initially conducted in rodents but has increasingly shifted to the human system, with the advancement of research technologies and methodologies. Today we can analyze primary human cells including rare subpopulations, we can produce and maintain mast cells isolated from human tissues, and there are several human mast cell lines. These tools have substantially facilitated our understanding of their role and function in different organs in both health and disease. We can now define more clearly where human mast cells originate from, how they develop, which mediators they store, produce de novo, and release, how they are activated and by which receptors, and which neighbouring cells they interact with and by which mechanisms. Considerable progress has also been made regarding the potential contribution of mast cells to disease, which, in turn, has led to the development of novel approaches for preventing key pathogenic effects of mast cells, heralding the era of mast cell-targeted therapeutics. In this review, we present and discuss a selection of some of the most significant advancements and remaining gaps in our understanding of human mast cells during the last 25 years, with a focus on clinical relevance.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Bernhard F Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, Italy
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank Siebenhaar
- Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP Allergology and Immunology, Berlin, Germany
| | - Joana Vitte
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France; IDESP, INSERM UA 11, Montpellier, France
| | | | - Moïse Michel
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France; Immunology Laboratory, CHU Nîmes, Nîmes, France
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marcus Maurer
- Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
2
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
3
|
Martins PR, Fakhry J, de Oliveira AJ, Moreira TB, Fothergill LJ, de Oliveira EC, Reis DD, Furness JB. The distribution and chemical coding of enteroendocrine cells in Trypanosoma cruzi-infected individuals with chagasic megacolon. Histochem Cell Biol 2021; 155:451-462. [PMID: 33404704 DOI: 10.1007/s00418-020-01947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chagas disease is caused by the parasite, Trypanosoma cruzi that causes chronic cardiac and digestive dysfunction. Megacolon, an irreversible dilation of the left colon, is the main feature of the gastrointestinal form of Chagas disease. Patients have severe constipation, a consequence of enteric neuron degeneration associated with chronic inflammation. Dysmotility, infection, neuronal loss and a chronic exacerbated inflammation, all observed in Chagas disease, can affect enteroendocrine cells (EEC) expression, which in turn, could influence the inflammatory process. In this study, we investigated the distribution and chemical coding of EEC in the dilated and non-dilated portion of T. cruzi-induced megacolon and in non-infected individuals (control colon). Using immunohistochemistry, EECs were identified by applying antibodies to chromogranin A (CgA), glucagon-like peptide 1 (GLP-1), 5-hydroxytryptamine (5-HT), peptide YY (PYY) and somatostatin (SST). Greater numbers of EEC expressing GLP-1 and SST occurred in the dilated portion compared to the non-dilated portion of the same patients with Chagas disease and in control colon, but numbers of 5-HT and PYY EEC were not significantly different. However, it was noticeable that EEC in which 5-HT and PYY were co-expressed were common in control colon, but were rare in the non-dilated and absent in the dilated portion of chagasic megacolon. An increase in the number of CgA immunoreactive EEC in chagasic patients reflected the increases in EEC numbers summarised above. Our data suggests that the denervation and associated chronic inflammation are accompanied by changes in the number and coding of EEC that could contribute to disorders of motility and defence in the chagasic megacolon.
Collapse
Affiliation(s)
- Patrícia Rocha Martins
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Josiane Fakhry
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Thayse Batista Moreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Linda J Fothergill
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | | | | | - John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| |
Collapse
|
4
|
Kannen V, Sakita JY, Carneiro ZA, Bader M, Alenina N, Teixeira RR, de Oliveira EC, Brunaldi MO, Gasparotto B, Sartori DC, Fernandes CR, Silva JS, Andrade MV, Silva WA, Uyemura SA, Garcia SB. Mast Cells and Serotonin Synthesis Modulate Chagas Disease in the Colon: Clinical and Experimental Evidence. Dig Dis Sci 2018; 63:1473-1484. [PMID: 29569002 DOI: 10.1007/s10620-018-5015-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trypanosoma cruzi (T. cruzi) infects millions of Latin Americans each year and can induce chagasic megacolon. Little is known about how serotonin (5-HT) modulates this condition. Aim We investigated whether 5-HT synthesis alters T. cruzi infection in the colon. MATERIALS AND METHODS Forty-eight paraffin-embedded samples from normal colon and chagasic megacolon were histopathologically analyzed (173/2009). Tryptophan hydroxylase 1 (Tph1) knockout (KO) mice and c-KitW-sh mice underwent T. cruzi infection together with their wild-type counterparts. Also, mice underwent different drug treatments (16.1.1064.60.3). RESULTS In both humans and experimental mouse models, the serotonergic system was activated by T. cruzi infection (p < 0.05). While treating Tph1KO mice with 5-HT did not significantly increase parasitemia in the colon (p > 0.05), rescuing its synthesis promoted trypanosomiasis (p < 0.01). T. cruzi-related 5-HT release (p < 0.05) seemed not only to increase inflammatory signaling, but also to enlarge the pericryptal macrophage and mast cell populations (p < 0.01). Knocking out mast cells reduced trypanosomiasis (p < 0.01), although it did not further alter the neuroendocrine cell number and Tph1 expression (p > 0.05). Further experimentation revealed that pharmacologically inhibiting mast cell activity reduced colonic infection (p < 0.01). A similar finding was achieved when 5-HT synthesis was blocked in c-KitW-sh mice (p > 0.05). However, inhibiting mast cell activity in Tph1KO mice increased colonic trypanosomiasis (p < 0.01). CONCLUSION We show that mast cells may modulate the T. cruzi-related increase of 5-HT synthesis in the intestinal colon.
Collapse
Affiliation(s)
- Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil.
- Department of Pathology, University of Sao Paulo, Ribeirão Preto, Brazil.
| | - Juliana Y Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Zumira A Carneiro
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Regina R Teixeira
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | | | | | - Bianca Gasparotto
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Daniela C Sartori
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | | | - João S Silva
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcus V Andrade
- Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Wilson A Silva
- Department of Genetics, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Sérgio B Garcia
- Department of Pathology, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Mast cell-nerve interaction in the colon of Trypanosoma cruzi-infected individuals with chagasic megacolon. Parasitol Res 2018; 117:1147-1158. [PMID: 29470711 DOI: 10.1007/s00436-018-5792-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
Chagas disease is an infection caused by the parasite Trypanosoma cruzi that affects millions of people worldwide and is endemic in Latin America. Megacolon is the most frequent complication of the digestive chronic form and happens due to lesions of the enteric nervous system. The neuronal lesions seem to initiate in the acute phase and persist during the chronic phase, albeit the mechanisms involved in this process are still debated. Among the cells of the immune system possibly involved in this pathological process is the mast cell (MC) due to its well-known role in the bi-directional communication between the immune and nervous systems. Using ultrastructural analysis, we found an increased number of degranulated MCs in close proximity to nerve fibers in infected patients when compared with uninfected controls. We also immunostained MCs for the two pro-inflammatory molecules tryptase and chymase, the first being also important in neuronal death. The number of MCs immunostained for tryptase or chymase was increased in patients with megacolon, whereas increased tryptase staining was additionally observed in patients without megacolon. Moreover, we detected the expression of the tryptase receptor PAR2 in neurons of the enteric nervous system, which correlated to the tryptase staining results. Altogether, the data presented herein point to the participation of MCs on the denervation process that occurs in the development of T. cruzi-induced megacolon.
Collapse
|
6
|
Lu F, Huang S. The Roles of Mast Cells in Parasitic Protozoan Infections. Front Immunol 2017; 8:363. [PMID: 28428784 PMCID: PMC5382204 DOI: 10.3389/fimmu.2017.00363] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
Protozoan parasites such as Plasmodium spp., Leishmania spp., Trypanosoma spp., and Toxoplasma gondii are major causes of parasitic diseases in both humans and animals. The immune system plays a critical role against protozoa, but their immune mechanism remains poorly understood. This highlights the need to investigate the function of immune cells involved in the process of parasite infections and the responses of host immune system to parasite infections. Mast cells (MCs) are known to be central players in allergy and anaphylaxis, and it has been demonstrated that MCs have crucial roles in host defense against a number of different pathogens, including parasites. To date, there are many studies that have examined the interaction of helminth-derived antigens and MCs. As one of the major effector cells, MCs also play an important role in the immune response against some parasitic protozoa, but their role in protozoan infections is, however, less well characterized. Herein, we review the current knowledge about the roles of MCs and their mediators during infections involving highly pathogenic protozoa including Plasmodium spp., Leishmania spp., Trypanosoma spp., and T. gondii. We offer a general review of the data from patients and experimental animal models infected with the aforementioned protozoa, which correlate MCs and MC-derived mediators with exacerbated inflammation and disease progression as well as protection against the parasitic infections in different circumstances. This review updates our current understanding of the roles of MCs during parasitic protozoan infections, and the participation of MCs in parasitic protozoan infections could be of a potential therapeutic target.
Collapse
Affiliation(s)
- Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Nascimento CR, Andrade D, Carvalho-Pinto CE, Serra RR, Vellasco L, Brasil G, Ramos-Junior ES, da Mota JB, Almeida LN, Andrade MV, Correia Soeiro MDN, Juliano L, Alvarenga PH, Oliveira AC, Sicuro FL, de Carvalho ACC, Svensjö E, Scharfstein J. Mast Cell Coupling to the Kallikrein-Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease. Front Immunol 2017; 8:840. [PMID: 28824610 PMCID: PMC5539176 DOI: 10.3389/fimmu.2017.00840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain) demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2). Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs) and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR)/endothelin B receptor (ETBR)] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein-kinin system (KKS). Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs) and the KKS by topically exposing the hamster cheek pouch (HCP) tissues to dextran sulfate (DXS), a potent "contact" activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII)-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK). Guided by this mechanistic insight, we next exposed TCTs to "leaky" HCP-forged by low dose histamine application-and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream) and FXII-mediated generation of BK (downstream). We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i.) in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT mice pretreated with (i) cromoglycate (MC stabilizer) (ii) infestin-4, a specific inhibitor of FXIIa (iii) HOE-140 (specific antagonist of B2R), and (iv) bosentan, a non-selective antagonist of ETAR/ETBR. Notably, histopathology of heart tissues from mice pretreated with these G protein-coupled receptors blockers revealed that myocarditis and heart fibrosis (30 d.p.i.) was markedly and redundantly attenuated. Collectively, our study suggests that inflammatory edema propagated via activation of the MC/KKS pathway fuels intracardiac parasitism by generating infection-stimulatory peptides (BK and endothelins) in the edematous heart tissues.
Collapse
Affiliation(s)
- Clarissa R. Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rafaela Rangel Serra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Vellasco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilherme Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Erivan Schnaider Ramos-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- University of the Pacific, San Francisco, CA, United States
| | - Julia Barbalho da Mota
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Larissa Nogueira Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcus V. Andrade
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Clinica Medica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Luiz Juliano
- Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Patrícia Hessab Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando Lencastre Sicuro
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Julio Scharfstein,
| |
Collapse
|
8
|
Increased Duodenal Eosinophil Degranulation in Patients with Functional Dyspepsia: A Prospective Study. Sci Rep 2016; 6:34305. [PMID: 27708358 PMCID: PMC5052603 DOI: 10.1038/srep34305] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Functional dyspepsia (FD) is a functional gastrointestinal disorder diagnosed by symptom-based criteria. It has been said that duodenal immune activation plays a role in the pathogenesis of FD. The primary aims of the study were to compare the total number of duodenal eosinophil and evaluate the eosinophil degranulation rate, number of duodenal degranulated eosinophil and mast cell between patients with FD and healthy subjects. We enrolled 96 patients with FD and 24 healthy controls at Sir Run Run Shaw Hospital. The total number of eosinophil was comparable in the second portion of duodenum (D2) and duodenal bulb (D1) between patients with FD and healthy controls (all P > 0.05). Significant higher eosinophil degranulation positive rate in D2 (P = 0.003) and a trend towards higher in D1 (P = 0.084) were observed in patients with FD compared with healthy controls. Moreover, the number of duodenal degranulated eosinophil in patients with FD were significantly increased than healthy controls in D1(9.8 ± 6.3 vs 2.9 ± 2.1 per HPF, P = 0.0002) and a trend towards increase in D2 (10.7 ± 7.7 vs 5.3 ± 0.9 per HPF, P = 0.077), respectively. However, degranulated mast cells in patients with FD were almost same with healthy controls. Increased eosinophils degranulation in duodenum play an important role in pathogenesis of FD.
Collapse
|
9
|
Dos-Santos A, Carvalho-Kelly L, Dick C, Meyer-Fernandes J. Innate immunomodulation to trypanosomatid parasite infections. Exp Parasitol 2016; 167:67-75. [DOI: 10.1016/j.exppara.2016.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 01/05/2023]
|
10
|
Gangwar RS, Friedman S, Seaf M, Levi-Schaffer F. Mast cells and eosinophils in allergy: Close friends or just neighbors. Eur J Pharmacol 2016; 778:77-83. [DOI: 10.1016/j.ejphar.2015.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022]
|