1
|
Zhang Y, Luo B, Liu MC, OuYang RH, Fan XM, Jiang N, Yang FJ, Wang LJ, Zhou BY. Analysis of immune response in BALB/c mice immunized with recombinant plasmids pMZ-X3-Ts14-3-3.3 and pMZ-X3-sp-Ts14-3-3.3 of Taenia solium. Acta Trop 2022; 232:106517. [PMID: 35595093 DOI: 10.1016/j.actatropica.2022.106517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022]
Abstract
There is a lack of vaccine against human cysticercosis, thus making a huge population at the risk of infection. In this study, we chose a novel potential antigen molecule Taenia solium 14-3-3.3 (Ts14-3-3.3) and optimized it as sp-Ts14-3-3.3 (sp is immunoglobulin H chain V-region precursor, partial) in order to construct recombinant plasmids pMZ-X3-Ts14-3-3.3 and pMZ-X3-sp-Ts14-3-3.3. BALB/c mice were divided into four groups for immunization: pMZ-X3-Ts14-3-3.3, pMZ-X3-sp-Ts14-3-3.3, pMZ-X3 plasmid control group and PBS control group. Compared with two control groups, the proliferation level of splenic lymphocytes increased significantly in pMZ-X3-Ts14-3-3.3 and pMZ-X3-sp-Ts14-3-3.3 groups and reached the maximum in week 6. And the same case arose as cytokines associated with Th1 response, IFN-γ, and IL-2 while those with Th2 response, IL-4, IL-10 went up and reached the maximum in week 4. The levels of serum specific IgG, IgG1 and IgG2a rose and reached the maximum in week 6, 4 and 6, respectively. Meanwhile, the proportion of CD4+/CD8+ splenic T lymphocytes increased and reached the peak in week 6. The results indicated that the recombinant plasmids pMZ-X3-Ts14-3-3.3 and pMZ-X3-sp-Ts14-3-3.3 can induce specific cellular and humoral immune responses in BALB/c mice with immunization. Notably, the recombinant plasmid pMZ-X3-sp-Ts14-3-3.3 has a better immune effect, which proves that Ts14-3-3.3 enjoys a higher possibility as a potential antigen molecule to T. solium vaccine.
Collapse
|
2
|
Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines (Basel) 2022; 10:1134. [PMID: 35891298 PMCID: PMC9323668 DOI: 10.3390/vaccines10071134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum circumsporozoite protein (PfCSP) and Pfs25 are leading candidates for the development of pre-erythrocytic and transmission-blocking vaccines (TBV), respectively. Although considerable progress has been made in developing PfCSP- and Pfs25-based vaccines, neither have elicited complete protection or transmission blocking in clinical trials. The combination of antigens targeting various life stages is an alternative strategy to develop a more efficacious malaria vaccine. In this study, female and male mice were immunized with DNA plasmids encoding PfCSP and Pfs25, administered alone or in combination via intramuscular in vivo electroporation (EP). Antigen-specific antibodies were analyzed for antibody titers, avidity and isotype by ELISA. Immune protection against sporozoite challenge, using transgenic P. berghei expressing PfCSP and a GFP-luciferase fusion protein (PbPfCSP-GFP/Luc), was assessed by in vivo bioluminescence imaging and blood-stage parasite growth. Transmission reducing activity (TRA) was evaluated in standard membrane feeding assays (SMFA). High levels of PfCSP- and Pfs25-specific antibodies were induced in mice immunized with either DNA vaccine alone or in combination. No difference in antibody titer and avidity was observed for both PfCSP and Pfs25 between the single DNA and combined DNA immunization groups. When challenged by PbPfCSP-GFP/Luc sporozoites, mice immunized with PfCSP alone or combined with Pfs25 revealed significantly reduced liver-stage parasite loads as compared to mice immunized with Pfs25, used as a control. Furthermore, parasite liver loads were negatively correlated with PfCSP-specific antibody levels. When evaluating TRA, we found that immunization with Pfs25 alone or in combination with PfCSP elicited comparable significant transmission reduction. Our studies reveal that the combination of PfCSP and Pfs25 DNAs into a vaccine delivered by in vivo EP in mice does not compromise immunogenicity, infection protection and transmission reduction when compared to each DNA vaccine individually, and provide support for further evaluation of this DNA combination vaccine approach in larger animals and clinical trials.
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Clifford T. H. Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Fidel Zavala
- Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (F.Z.); (A.K.T.)
| | - Abhai K. Tripathi
- Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (F.Z.); (A.K.T.)
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA; (H.S.); (C.N.Y.)
| | - Colin N. Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA; (H.S.); (C.N.Y.)
| | - Leor C. Clark
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Yukari Usuda
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Jacob M. Van Parys
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| |
Collapse
|
3
|
Developing an Effective Peptide-Based Vaccine for COVID-19: Preliminary Studies in Mice Models. Viruses 2022; 14:v14030449. [PMID: 35336856 PMCID: PMC8954996 DOI: 10.3390/v14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused massive health and economic disasters worldwide. Although several vaccines have effectively slowed the spread of the virus, their long-term protection and effectiveness against viral variants are still uncertain. To address these potential shortcomings, this study proposes a peptide-based vaccine to prevent COVID-19. A total of 15 B cell epitopes of the wild-type severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein were selected, and their HLA affinities predicted in silico. Peptides were divided into two groups and tested in C57BL/6 mice with either QS21 or Al(OH)3 as the adjuvant. Our results demonstrated that the peptide-based vaccine stimulated high and durable antibody responses in mice, with the T and B cell responses differing based on the type of adjuvant employed. Using epitope mapping, we showed that our peptide-based vaccine produced antibody patterns similar to those in COVID-19 convalescent individuals. Moreover, plasma from vaccinated mice and recovered COVID-19 humans had the same neutralizing activity when tested with a pseudo particle assay. Our data indicate that this adjuvant peptide-based vaccine can generate sustainable and effective B and T cell responses. Thus, we believe that our peptide-based vaccine can be a safe and effective vaccine against COVID-19, particularly because of the flexibility of including new peptides to prevent emerging SARS-CoV-2 variants and avoiding unwanted autoimmune responses.
Collapse
|
4
|
Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M. Heat Shock Proteins 90 kDa: Immunomodulators and Adjuvants in Vaccine Design Against Infectious Diseases. Front Bioeng Biotechnol 2021; 8:622186. [PMID: 33553125 PMCID: PMC7855457 DOI: 10.3389/fbioe.2020.622186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.
Collapse
Affiliation(s)
- Mariana G Corigliano
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Valeria A Sander
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Edwin F Sánchez López
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Víctor A Ramos Duarte
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Luisa F Mendoza Morales
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Sergio O Angel
- Unidad Biotecnológica 2-UB2, Laboratorio de Parasitología Molecular, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Marina Clemente
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
5
|
Prospects for Malaria Vaccines: Pre-Erythrocytic Stages, Blood Stages, and Transmission-Blocking Stages. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9751471. [PMID: 31687404 PMCID: PMC6794966 DOI: 10.1155/2019/9751471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
Malaria is a disease of public health importance in many parts of the world. Currently, there is no effective way to eradicate malaria, so developing safe, efficient, and cost-effective vaccines against this disease remains an important goal. Current research on malaria vaccines is focused on developing vaccines against pre-erythrocytic stage parasites and blood-stage parasites or on developing a transmission-blocking vaccine. Here, we briefly describe the progress made towards a vaccine against Plasmodium falciparum, the most pathogenic of the malaria parasite species to infect humans.
Collapse
|
6
|
A DNA Vaccine Expressing Fusion Protein E2-NT(gp96) Induces Hepatitis C Virus Cross-Neutralizing Antibody in BALB/c Mice. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.96347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Sander VA, Corigliano MG, Clemente M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front Vet Sci 2019; 6:20. [PMID: 30809529 PMCID: PMC6379251 DOI: 10.3389/fvets.2019.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
Coccidial parasites cause medical and veterinary diseases worldwide, frequently leading to severe illness and important economic losses. At present, drugs, chemotherapeutics and prophylactic vaccines are still missing for most of the coccidial infections. Moreover, the development and administration of drugs and chemotherapeutics against these diseases would not be adequate in livestock, since they may generate unacceptable residues in milk and meat that would avoid their commercialization. In this scenario, prophylactic vaccines emerge as the most suitable approach. Subunit vaccines have proven to be biologically safe and economically viable, allowing researchers to choose among the best antigens against each pathogen. However, they are generally poorly immunogenic and require the addition of adjuvant compounds to the vaccine formulation. During the last decades, research involving plant immunomodulatory compounds has become an important field of study based on their potential pharmaceutical applications. Some plant molecules such as saponins, polysaccharides, lectins and heat shock proteins are being explored as candidates for adjuvant/carriers formulations. Moreover, plant-derived immune stimulatory compounds open the possibility to attain the main goal in adjuvant research: a safe and non-toxic adjuvant capable of strongly boosting and directing immune responses that could be incorporated into different vaccine formulations, including mucosal vaccines. Here, we review the immunomodulatory properties of several plant molecules and discuss their application and future perspective as adjuvants in the development of vaccines against coccidial infections.
Collapse
Affiliation(s)
- Valeria A Sander
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Mariana G Corigliano
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
8
|
Chen B, Liu B, Zhao Z, Wang G. Evaluation of a DNA vaccine encoding Brucella BvrR in BALB/c mice. Mol Med Rep 2018; 19:1302-1308. [PMID: 30569140 DOI: 10.3892/mmr.2018.9735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/06/2018] [Indexed: 11/05/2022] Open
Abstract
Brucellosis is an important neglected zoonotic disease, and the pathogens responsible are Brucellae. In order to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella BvrR, the recombinant plasmid pCDNA‑BvrR was constructed by inserting the BvrR gene fragment into a pCDNA3.0 vector. The His6‑tagged BvrR was purified with His‑trap FF crude affinity chromatography and verified with an anti‑histidine monoclonal antibody by western blot analysis. The specific immunoglobulin antigens and their isotypes were detected by indirect ELISA. The recombinant His6‑BvrR protein was expressed and purified by affinity chromatography. The optical density 450 value of immunoglobulin G (IgG) in the pCDNA‑BvrR group was significantly increased compared with the pCDNA3.0 vector or PBS groups (P<0.05), and the pCDNA3.0 vector and PBS groups exhibited no significant difference (P>0.05). BvrR induced specific antibodies with a dominance of IgG2a over IgG1 and the T cell‑proliferative response, in addition to a typical T helper‑1 (Th1)‑dominated immune response in mice. The splenocytes from mice of the pCDNA‑BvrR group demonstrated significant proliferative activity compared with the pCDNA3.0 vector group. The present results indicated that immunization with BvrR induced a specific Th1‑type immune response in mice. Subsequent to challenging with B. abortus S19, it was identified that the DNA vaccine pCDNA‑BvrR induced a significant level of protection in BALB/c mice by evaluating systemic bacterial clearance. These results suggested that BvrR may be a good candidate for a DNA vaccine against brucellosis.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pathogenic Biology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Baoshan Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Zhina Zhao
- Department of Microbiology and Cell Biology, College of Life Science and Pharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Guizhen Wang
- Department of Pathogenic Biology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
9
|
Olsen TM, Stone BC, Chuenchob V, Murphy SC. Prime-and-Trap Malaria Vaccination To Generate Protective CD8 + Liver-Resident Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1984-1993. [PMID: 30127085 DOI: 10.4049/jimmunol.1800740] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
Tissue-resident memory CD8+ T (Trm) cells in the liver are critical for long-term protection against pre-erythrocytic Plasmodium infection. Such protection can usually be induced with three to five doses of i.v. administered radiation-attenuated sporozoites (RAS). To simplify and accelerate vaccination, we tested a DNA vaccine designed to induce potent T cell responses against the SYVPSAEQI epitope of Plasmodium yoelii circumsporozoite protein. In a heterologous "prime-and-trap" regimen, priming using gene gun-administered DNA and boosting with one dose of RAS attracted expanding Ag-specific CD8+ T cell populations to the liver, where they became Trm cells. Vaccinated in this manner, BALB/c mice were completely protected against challenge, an outcome not reliably achieved following one dose of RAS or following DNA-only vaccination. This study demonstrates that the combination of CD8+ T cell priming by DNA and boosting with liver-homing RAS enhances formation of a completely protective liver Trm cell response and suggests novel approaches for enhancing T cell-based pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Tayla M Olsen
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Brad C Stone
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Vorada Chuenchob
- Center for Infectious Disease Research, University of Washington, Seattle, WA 98109; and
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109; .,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109.,Department of Microbiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
10
|
Silveira MM, Conceição FR, Mendonça M, Moreira GMSG, Da Cunha CEP, Conrad NL, Oliveira PDD, Hartwig DD, De Leon PMM, Moreira ÂN. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. J Med Microbiol 2017; 66:184-190. [DOI: 10.1099/jmm.0.000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marcelle Moura Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Avenida Bom Pastor, S/N, Boa Vista, 55292-270 Garanhuns, PE, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Gustavo Marçal Schmidt Garcia Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Carlos Eduardo Pouey Da Cunha
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Patrícia Diaz de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Priscila Marques Moura De Leon
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Campus Porto/Anglo, Rua Gomes Carneiro, 01 – Centro, Caixa Postal 354, 96010-610 Pelotas, RS, Brazil
| |
Collapse
|