1
|
Souza THS, Cabral FV, Sarmento-Neto JF, Rebouças JS, Santos BS, Ribeiro MS, Figueiredo RCBQ, Fontes A. Targeting effective treatment to cutaneous Leishmaniasis: A preclinical investigation on photodynamic therapy mediated by the water-soluble Zn(II) porphyrin, ZnTnHex-2-PyP 4. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113077. [PMID: 39667245 DOI: 10.1016/j.jphotobiol.2024.113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The current chemotherapy for cutaneous leishmaniasis (CL) is accompanied by side effects and drug resistance emergence, encouraging the proposal of new treatment approaches for this disease. ZnTnHex-2-PyP4+ (ZnP hexyl) is a water-soluble Zn(II) porphyrin that exhibits remarkable potential for photodynamic therapy (PDT). This study aimed to investigate the ZnP hexyl-PDT against CL in vivo. As far as we know, this is the first investigation with this Zn(II) porphyrin in an animal model. The influence of the number and time interval of sessions on photodynamic effects was also investigated. BALB/c mice infected with Leishmania amazonensis were divided in 4 groups (untreated control, 1, 2, or 3 PDT sessions). In PDT groups, animals received ZnP hexyl (5 μM, 0.17 μg, 30 μL per animal/session) and were irradiated with blue LED. Parasite burden was quantified by bioluminescence for up to 21 days. The infected paw thickness and nociceptive analyses were also assessed. In treated groups, parasite burden showed an over time decrease compared to the control, indicating ZnP hexyl-PDT efficiency, mainly after 3 sessions, achieving about 91% reduction. Overall, no differences in infected paw thickness and nociceptive sensibility were observed among the groups. Results also indicated the importance of tuning the time interval between sessions to enhance therapeutic outcomes and diminish adverse effects. Under the conditions studied, weekly PDT sessions were superior, as intervals ≤ 72-h led to a temporary increase in infected paw thickness and nociceptive sensibility at day 7. This study pointed out that ZnP hexyl-PDT holds promise as an ally for CL treatment.
Collapse
Affiliation(s)
- Tiago H S Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco 50670-901, Brazil; Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco 50740-465, Brazil.
| | - Fernanda V Cabral
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN -CNEN/SP), São Paulo 05508-000, Brazil; Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - José F Sarmento-Neto
- Departamento de Química, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba 58051-900, Brazil
| | - Júlio S Rebouças
- Departamento de Química, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba 58051-900, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco 50740-520, Brazil
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN -CNEN/SP), São Paulo 05508-000, Brazil
| | - Regina C B Q Figueiredo
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), Recife, Pernambuco 50740-465, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco 50670-901, Brazil.
| |
Collapse
|
2
|
Bussmann AJC, Santos LFS, Ferreira RN, Pires BG, Gerez JR, Bracarense APFRL, Filho SCFG, Verri WA, Borghi SM. Leishmania spp. amastigotes surrounding sensory nerve fibers in human painless skin ulcers: Evidence of pathogen-neuron proximity and absence of neuronal apoptosis. Acta Trop 2024; 256:107265. [PMID: 38772434 DOI: 10.1016/j.actatropica.2024.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
In this present study, carried out between November 2020 and July 2023 at Londrina's University Hospital, patients with active lesions of cutaneous leishmaniasis (CL) were analyzed regarding pain perception and anatomopathological aspects of the ulcers. Pain was assessed using a numerical rating scale (NRS) to compare five patients diagnosed with CL with four control patients diagnosed with vascular skin ulcers. Histopathological evaluations were used to investigate the nociceptor neuron-Leishmania interface. Patients with CL ulcers reported less pain compared to patients with vascular ulcers (2.60 ± 2.30 and 7.25 ± 0.95, respectively, p = 0.0072). Histopathology evidenced Leishmania spp. amastigote forms nearby sensory nerve fibers in profound dermis. Schwann cells marker (S100 protein) was detected, and caspase-3 activation was not evidenced in the in the nerve fibers of CL patients' samples, suggesting absence of apoptotic activity in nerve endings. Additionally, samples taken from the active edge of the lesion were negative for bacilli acid-alcohol resistant (BAAR), which excludes concomitant leprosy, in which painless lesions are also observed. Thus, the present data unveil for the first time anatomopathological and microbiological details of painless ulcers in CL patients, which has important clinical implications for a better understanding on the intriguing painless clinical characteristic of CL.
Collapse
Affiliation(s)
- Allan J C Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, 86057-970, Brazil; Laboratory of Pathologic Anatomy, State University of Londrina, Londrina, Paraná, 86038-350, Brazil
| | - Luis Felipe S Santos
- Resident doctor in dermatology at the University Hospital, State University of Londrina, Londrina, Paraná, 86038-350, Brazil
| | - Renan N Ferreira
- Laboratory of Pathologic Anatomy, State University of Londrina, Londrina, Paraná, 86038-350, Brazil
| | - Bárbara G Pires
- Laboratory of Animal Pathology, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Juliana R Gerez
- Laboratory of Animal Pathology, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | | | - Silvio Cesar F G Filho
- Laboratory of Pathologic Anatomy, State University of Londrina, Londrina, Paraná, 86038-350, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, 86057-970, Brazil; Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, 86041-140, Brazil.
| |
Collapse
|
3
|
Aljedaie MM, Alam P. In silico identification of human microRNAs pointing centrin genes in Leishmania donovani: Considering the RNAi-mediated gene control. Front Genet 2024; 14:1329339. [PMID: 38390455 PMCID: PMC10883313 DOI: 10.3389/fgene.2023.1329339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Leishmaniasis, a parasitic disease caused by different species of the protozoa parasite Leishmania, is a neglected tropical human disease that is endemic in about a hundred countries worldwide. According to the World Health Organization (WHO), the annual incidence of cutaneous leishmaniasis (CL) is estimated to be 0.7-1.2 million cases globally, whereas the annual incidence of visceral leishmaniasis is estimated to be 0.2-0.4 million cases. In many eukaryotic organisms, including human beings and protozoan parasites, centrin genes encode proteins that play essential roles within the centrosome or basal body. Human microRNAs (miRNAs) have been linked to several infectious and non-infectious diseases associated with pathogen-host interactions, and they play the emphatic roles as gene expression regulators. In this study, we used the MirTarget bioinformatics tool, which is a machine learning-based approach implemented in miRDB, to predict the target of human miRNAs in Leishmania donovani centrin genes. For cross-validation, we utilized additional prediction algorithms, namely, RNA22 and RNAhybrid, targeting all five centrin isotypes. The centrin-3 (LDBPK_342160) and putative centrin-5 (NC_018236.1) genes in L. donovani were targeted by eight and twelve human miRNAs, respectively, among 2,635 known miRNAs (miRBase). hsa-miR-5193 consistently targeted both genes. Using TargetScan, TarBase, miRecords, and miRTarBase, we identified miRNA targets and off-targets in human homologs of centrin, inflammation, and immune-responsive genes. Significant targets were screened based on GO terminologies and KEGG pathway-enrichment analysis (Log10 p-value >0.0001). In silico tools that predict the biological roles of human miRNAs as primary gene regulators in pathogen-host interactions help unravel the regulatory patterns of these miRNAs, particularly in the early stages of inflammatory responses. It is also noted that these miRNAs played an important role in the late phase of adaptive immune response, inclusively their impacts on the immune system's response to L. donovani.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
4
|
Dourado D, Silva Medeiros T, do Nascimento Alencar É, Matos Sales E, Formiga FR. Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:37-50. [PMID: 38213574 PMCID: PMC10777206 DOI: 10.3762/bjnano.15.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Leishmaniasis is a neglected tropical disease that has affected more than 350 million people worldwide and can manifest itself in three different forms: cutaneous, mucocutaneous, or visceral. Furthermore, the current treatment options have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of Leishmania spp. Although its mechanism of action has not yet been fully elucidated, its leishmanicidal potential may be associated with its antioxidant and anti-inflammatory properties. However, it has limitations that compromise its clinical use. Conversely, nanotechnology has been used as a tool for solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1-1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded nanocarriers intended for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Douglas Dourado
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Thayse Silva Medeiros
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59010180, Natal, RN, Brazil
| | - Éverton do Nascimento Alencar
- College of Pharmaceutical Sciences, Food and Nutrition. Federal University of Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | | | - Fábio Rocha Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
- Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| |
Collapse
|
5
|
Volpedo G, Oljuskin T, Cox B, Mercado Y, Askwith C, Azodi N, Bernier M, Nakhasi HL, Gannavaram S, Satoskar AR. Leishmania mexicana promotes pain-reducing metabolomic reprogramming in cutaneous lesions. iScience 2023; 26:108502. [PMID: 38125023 PMCID: PMC10730346 DOI: 10.1016/j.isci.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timur Oljuskin
- Animal Parasitic Disease Lab, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yulian Mercado
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Matthew Bernier
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Mazón-Ortiz G, Cerda-Mejía G, Gutiérrez Morales E, Diéguez-Santana K, Ruso JM, González-Díaz H. Trends in Nanoparticles for Leishmania Treatment: A Bibliometric and Network Analysis. Diseases 2023; 11:153. [PMID: 37987264 PMCID: PMC10660713 DOI: 10.3390/diseases11040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Leishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors' contributions, institutions, and nations in terms of productivity, citations, and bibliographic linkages to the application of nanoparticles (NPs) for the treatment of leishmania. The study is based on a sample of 524 Scopus documents from 1991 to 2022. Utilising the Bibliometrix R-Tool version 4.0 and VOSviewer software, version 1.6.17 the analysis was developed. We identified crucial subjects associated with the application of NPs in the field of antileishmanial development (NPs and drug formulation for leishmaniasis treatment, animal models, and experiments). We selected research topics that were out of date and oversaturated. Simultaneously, we proposed developing subjects based on multiple analyses of the corpus of published scientific literature (title, abstract, and keywords). Finally, the technique used contributed to the development of a broader and more specific "big picture" of nanomedicine research in antileishmanial studies for future projects.
Collapse
Affiliation(s)
- Gabriel Mazón-Ortiz
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Galo Cerda-Mejía
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eberto Gutiérrez Morales
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
| | - Karel Diéguez-Santana
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Wood Engineering Department, University of Bio-Bio, Concepcion 4030000, Chile
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
7
|
Gnimavo RS, Fajloun F, Al-Bayssari C, Sodjinou E, Habib A, Ganlonon L, Claco E, Agoundoté I, Houngbo OA, Anagonou EG, Biaou CAO, Ayélo AG, Houezo JG, Boccarossa A, Moussa EH, Gomez B, Gine A, Sopoh GE, Marion E, Johnson RC, Kempf M. Importance of consultations using mobile teams in the screening and treatment of neglected tropical skin diseases in Benin. PLoS Negl Trop Dis 2023; 17:e0011314. [PMID: 37172044 DOI: 10.1371/journal.pntd.0011314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 04/15/2023] [Indexed: 05/14/2023] Open
Abstract
CONTEXT Since 2013, the World Health Organization has recommended integrated control strategies for neglected tropical diseases (NTDs) with skin manifestations. We evaluated the implementation of an integrated approach to the early detection and rapid treatment of skin NTDs based on mobile clinics in the Ouémé and Plateau areas of Benin. METHODS This descriptive cross-sectional study was performed in Ouémé and Plateau in Benin from 2018 to 2020. Consultations using mobile teams were performed at various sites selected by reasoned choice based on the epidemiological data of the National Program for the Control of Leprosy and Buruli Ulcer. All individuals presenting with a dermatological lesion who voluntarily approached the multidisciplinary management team on the day of consultation were included. The information collected was kept strictly anonymous and was entered into an Excel 2013 spreadsheet and analyzed with Stata 11 software. RESULTS In total, 5,267 patients with various skin conditions consulted the medical team. The median age of these patients was 14 years (IQR: 7-34 years). We saw 646 (12.3%) patients presenting NTDs with skin manifestations, principally scabies, in 88.4% (571/646), followed by 37 cases of Buruli ulcer (5.8%), 22 cases of leprosy (3.4%), 15 cases of lymphatic filariasis (2.3%) and one case of mycetoma (0.2%). We detected no cases of yaws. CONCLUSION This sustainable approach could help to decrease the burden of skin NTDs in resource-limited countries.
Collapse
Affiliation(s)
- Ronald Sètondji Gnimavo
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
- Institut Régional de Santé Publique- Comlan Alfred Quenum, Université d'Abomey Calavi, Ouidah, Bénin
| | - Faraj Fajloun
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
- Ecole Doctorale en Sciences et Technologie, Université Libanaise, Campus Rafic Hariri, Hadath, Liban
- Laboratoire d'Innovation Thérapeutique, Faculté de Sciences 2, Campus Pierre Gemayel, Fanar, Liban
| | - Charbel Al-Bayssari
- Departement of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Tripoli, Lebanon
| | - Espoir Sodjinou
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Akimath Habib
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Line Ganlonon
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Eric Claco
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Irvine Agoundoté
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Odile Adjouavi Houngbo
- Centre de Dépistage et de Traitement de la Lèpre et de l´Ulcère de Buruli de Pobè, Fondation Raoul Follereau, Pobè, Bénin
| | - Esaï Gimatal Anagonou
- Programme National de Lutte contre la Lèpre et l'Ulcère de Buruli, Ministère de la Santé, Cotonou, Bénin
| | | | - Adjimon Gilbert Ayélo
- Programme National de Lutte contre la Lèpre et l'Ulcère de Buruli, Ministère de la Santé, Cotonou, Bénin
| | - Jean Gabin Houezo
- Programme National de Lutte contre la Lèpre et l'Ulcère de Buruli, Ministère de la Santé, Cotonou, Bénin
| | - Alexandra Boccarossa
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
| | - Elie Hajj Moussa
- Laboratoire d'Innovation Thérapeutique, Faculté de Sciences 2, Campus Pierre Gemayel, Fanar, Liban
| | | | - Anna Gine
- Fondation Anesvad, Henao, Bilbao, Spain
| | - Ghislain Emmanuel Sopoh
- Institut Régional de Santé Publique- Comlan Alfred Quenum, Université d'Abomey Calavi, Ouidah, Bénin
| | - Estelle Marion
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
| | | | - Marie Kempf
- University of Angers, Nantes Université, CHU Angers, Inserm, INCIT, Angers, France
- Département de Biologie des Agents Infectieux, UF de Bactériologie, Centre Hospitalier Universitaire Angers, Angers, France
| |
Collapse
|
8
|
Cornet-Gomez A, Retana Moreira L, Kronenberger T, Osuna A. Extracellular vesicles of trypomastigotes of Trypanosoma cruzi induce changes in ubiquitin-related processes, cell-signaling pathways and apoptosis. Sci Rep 2023; 13:7618. [PMID: 37165081 PMCID: PMC10171165 DOI: 10.1038/s41598-023-34820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. The disease has an acute and a chronic phase in which approximately 30% of the chronic patients suffer from heart disease and/or gastrointestinal symptoms. The pathogenesis of the disease is multifactorial and involves the virulence of the strains, immunological factors and extracellular vesicles (EV) shed by the parasite which participate in cell-cell communication and evasion of the immune response. In this work, we present a transcriptomic analysis of cells stimulated with EV of the trypomastigote stage of T. cruzi. Results after EV-cell incubation revealed 322 differentially expressed genes (168 were upregulated and 154 were downregulated). In this regard, the overexpression of genes related to ubiquitin-related processes (Ube2C, SUMO1 and SUMO2) is highlighted. Moreover, the expression of Rho-GTPases (RhoA, Rac1 and Cdc42) after the interaction was analyzed, revealing a downregulation of the analyzed genes after 4 h of interaction. Finally, a protective role of EV over apoptosis is suggested, as relative values of cells in early and late apoptosis were significantly lower in EV-treated cells, which also showed increased CSNK1G1 expression. These results contribute to a better understanding of the EV-cell interaction and support the role of EV as virulence factors.
Collapse
Affiliation(s)
- Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, 18071, Granada, Spain.
| |
Collapse
|
9
|
Dimmer JA, Cabral FV, Núñez Montoya SC, Ribeiro MS. Towards effective natural anthraquinones to mediate antimicrobial photodynamic therapy of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther 2023; 42:103525. [PMID: 36966867 DOI: 10.1016/j.pdpdt.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is an important tropical neglected disease with broad geographical dispersion. The lack of effective drugs has raised an urgent need to improve CL treatment, and antimicrobial photodynamic therapy (APDT) has been investigated as a new strategy to face it with positive outcomes. Natural compounds have emerged as promising photosensitizers (PSs), but their use in vivo remains unexplored. PURPOSE In this work, we investigated the potential of three natural anthraquinones (AQs) on CL induced by Leishmania amazonensis in BALB/c mice. STUDY DESIGN/METHODS ANIMALS WERE INFECTED AND RANDOMLY DIVIDED INTO FOUR GROUPS: CG (control, non-treated group), G5ClSor-gL (treated with 5-chlorosoranjidiol and green LED, 520±10 nm), GSor-bL and GBisor-bL (treated with soranjidiol and bisoranjidiol, respectively, exposed to violet-blue LED, 410±10 nm). All AQs were assayed at 10 μM and LEDs delivered a radiant exposure of 45 J/cm2 with an irradiance of 50 mW/cm2. We assessed the parasite burden in real time for three consecutive days. Lesion evolution and pain score were assessed over 3 weeks after a single APDT session. RESULTS G5ClSor-gL was able to sustain low levels of parasite burden over time. Besides, GSor-bL showed a smaller lesion area than the control group, inhibiting the disease progression. CONCLUSION Taken together, our data demonstrate that monoAQs are promising compounds for pursuing the best protocol for treating CL and helping to face this serious health problem. Studies involving host-pathogen interaction as well as monoAQ-mediated PDT immune response are also encouraged.
Collapse
Affiliation(s)
- Jesica A Dimmer
- Universidad Nacional Córdoba. Fac. Cs. Químicas. Dpto. Ciencias Farmacéuticas. Edificio de Ciencias 2, Medina Allende y Haya de La Torre, Ciudad Universitaria. CP, X5000HUA Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666 CP, X5016GCN Córdoba, Argentina.
| | - Fernanda V Cabral
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Av. Lineu Prestes 2242, C. Universitária "Armando de Salles Oliveira", CEP 05508-000 São Paulo, SP, Brasil
| | - Susana C Núñez Montoya
- Universidad Nacional Córdoba. Fac. Cs. Químicas. Dpto. Ciencias Farmacéuticas. Edificio de Ciencias 2, Medina Allende y Haya de La Torre, Ciudad Universitaria. CP, X5000HUA Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666 CP, X5016GCN Córdoba, Argentina
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Av. Lineu Prestes 2242, C. Universitária "Armando de Salles Oliveira", CEP 05508-000 São Paulo, SP, Brasil
| |
Collapse
|
10
|
Wijerathna T, Wickramasinghe K, Gunathilaka N, Perera A, Bandara S. The epidemiological trend of cutaneous leishmaniasis in Kegalle district, Sri Lanka: a newly established disease focus and assessment of bioclimatic suitability for disease establishment using ecological niche modelling. Acta Trop 2022; 237:106719. [DOI: 10.1016/j.actatropica.2022.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
|
11
|
Ferreira MA, de Almeida Júnior RF, Onofre TS, Casadei BR, Farias KJS, Severino P, de Oliveira Franco CF, Raffin FN, de Lima e Moura TFA, de Melo Barbosa R. Annatto Oil Loaded Nanostructured Lipid Carriers: A Potential New Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2021; 13:1912. [PMID: 34834327 PMCID: PMC8618414 DOI: 10.3390/pharmaceutics13111912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several studies have found it to have healing and antioxidant properties, as well as effective action against leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior, X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance (EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed by TEM results), a PDI of less than 0.30, ZP between -12.6 and -31.2 mV, and more than 50% of AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD). In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a potential therapeutic agent against leishmaniasis.
Collapse
Affiliation(s)
- Marianna Araújo Ferreira
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Thiago Souza Onofre
- Biochemistry and Molecular Biology Department, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil;
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo 05508-090, Brazil;
| | | | - Patricia Severino
- Institute of Technology and Research (ITP), Aracaju 49010-390, Brazil;
| | | | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| |
Collapse
|
12
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
13
|
Nitric-oxide releasing chitosan nanoparticles towards effective treatment of cutaneous leishmaniasis. Nitric Oxide 2021; 113-114:31-38. [PMID: 33940194 DOI: 10.1016/j.niox.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022]
Abstract
Cutaneous leishmaniasis (CL) is a major public health problem caused by Leishmania parasites that produce destructive and disfiguring skin conditions. There is an urgent need for alternative topical therapies due to the limitations of current systemic treatments. Recently, we have synthesized nitric oxide-releasing chitosan nanoparticles (NONPs) and shown their potential in vitro against Leishmania amazonensis. Herein we evaluated the application of NONPs for the treatment of CL on infected BALB/c mice. Mice were treated with topical administration of increasing concentrations of NONPs and disease progression was investigated regarding parasite load, lesion thickness, and pain score. As a result, we observed a dose-dependent NONPs effect. Parasite burden and lesion thickness were substantially lower on animals receiving NONPs at a 2 mM concentration compared to untreated control. Moreover, the clinical presentation of the lesions did not show any visible signs of ulcer, suggesting clinical healing in these animals. This successful outcome was sustained for at least 21 days after therapy even in one single dose. Thus, we demonstrate that NONPs are suitable for topical administration, and represent an attractive approach to treat CL.
Collapse
|
14
|
Zahedi SN, Hejazi SH, Boshtam M, Amini F, Fazeli H, Sarmadi M, Rahimi M, Khanahmad H. Recombinant C-Reactive Protein: A Potential Candidate for the Treatment of Cutaneous Leishmaniasis of BALB/c Mice Caused by Leishmania major. Acta Parasitol 2021; 66:53-59. [PMID: 32676917 DOI: 10.1007/s11686-020-00251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Leishmaniasis, a widespread parasitic disease, is a public health concern that is endemic in more than 90 countries. Owing to the drug resistance and also undesirable complications, designing new therapeutic methods are essential. C-reactive protein (CRP) is an acute phase protein of plasma with several immune modulatory functions. This study aimed to evaluate the effect of human recombinant CRP (hrCRP) on treating cutaneous leishmaniasis in mice models. METHODS hrCRP was expressed in E. coli Rosetta-gami and extracted from the SDS-PAGE gel. Male BALB/c mice were inoculated subcutaneously at the base of their tails by 1 × 105 stationary-phase of Leishmania major promastigotes (MHRO/IR/75/ER) suspended in sterile phosphate buffered saline (PBS). Nodules and subsequently, ulcers developed 14 days post-injection. 1.5 µg of the purified protein was administered on lesions of pre-infected mice by Leishmania major in the intervention group for five consecutive days. RESULTS The mean area of the lesions was decreased by about seven folds in the intervention group as compared to the control group after two weeks of the treatment (p = 0.024). The results were verified by the real-time polymerase chain reaction so that the parasite burden was determined 27 times in the control group as compared to the intervention group (p = 0.02). Two weeks after treatment, the conversion of the lesions to scars in the intervention group was observed. CONCLUSION The results indicate a potential therapeutic role for hrCRP in improving cutaneous leishmaniasis due to Leishmania major in mice models. The healing was in a stage-dependent manner.
Collapse
Affiliation(s)
- Seyedeh Noushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran
| | - Mahsa Rahimi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Hezarjerib Street, 8174643446, Isfahan, Iran.
| |
Collapse
|
15
|
Mohammadi AM, Duthie MS, Reed SG, Javadi A, Khamesipour A. Evolution of antigen-specific immune responses in cutaneous leishmaniasis patients. Parasite Immunol 2021; 43:e12814. [PMID: 33351204 DOI: 10.1111/pim.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
AIMS Despite immunization appearing to be the most appropriate strategy for long-term control of the vector-borne leishmaniases, no sustainable vaccine is currently available against any form of leishmaniasis. We therefore evaluated, in the context of vaccine antigen candidates, antigen-specific immune response at various stages of cutaneous leishmaniasis (CL). METHODS AND RESULTS Peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers and CL patients (caused by either Leishmania major or L tropica) were incubated with crude Leishmania proteins (soluble Leishmania antigen; SLA), single recombinant proteins (TSA, LeIF, LmSTI1) or chimeric fusion proteins (LEISH-F2 and LEISH-F3). The concentrations of immune modulatory cytokines were then determined. While we did not detect appreciable antigen-specific IL-5 secretion, SLA induced secretion of interleukin (IL)-10 in cultures from early active lesion CL patients and even from healthy individuals. Conversely, interferon (IFN)-γ responses to SLA and recombinant proteins followed a similar pattern, developing only in the late active CL lesion phase. Once established, antigen-specific IFN-γ responses persisted in cured CL patients. CONCLUSION Together, our results provide further insight into the development of immune responses during CL and further validate the selection of LEISH-F2 and LEISH-F3 as vaccine antigen candidates.
Collapse
Affiliation(s)
- Akram Miramin Mohammadi
- Center for Research & Training in Skin Diseases & Leprosy (CRTSDL), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | | | - Amir Javadi
- Department of Social Medicines, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Khamesipour
- Center for Research & Training in Skin Diseases & Leprosy (CRTSDL), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
16
|
Inhibition of anti-inflammatory cytokines, IL-10 and TGF-β, in Leishmania major infected macrophage by miRNAs: A new therapeutic modality against leishmaniasis. Microb Pathog 2021; 153:104777. [PMID: 33592260 DOI: 10.1016/j.micpath.2021.104777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/03/2023]
Abstract
Leishmania major (L. major) applies several mechanisms to escape the immune system. Interleukin-10 (IL-10) and Transforming Growth Factor (TGF-β) downregulate nitric oxide synthase (iNOS) leading to the survival of Leishmania within macrophages. The miRNAs are known as the modulators of the immune system. The present study was conducted to assess the effect of synthetic miR-340 mimic on cytokines (IL-10 and TGF-β1) involved in L. major infected macrophages. The miRNAs targeting of IL-10 and TGF-β1 was predicted using bioinformatic tools. Relative expression of predicted miRNA, IL-10, and TGF-β1 was measured by RT-qPCR before and after synthetic miRNA mimic transfection. Concentration of IL-10 and TGF-β was measured in posttreatment condition using ELISA method. Also, infectivity was assessed by Giemsa staining. mmu-miR-340 received the highest score for targeting cytokines. The expression of miR-340 was downregulated in L. major infected macrophages. By contrast, expression of IL-10 and TGF-β1 was upregulated in infected macrophages. After miRNA transfection, TGF-β1 and IL-10 were both downregulated and interestingly, the combination of miR-340 and miR-27a had a stronger effect on the downregulation of target genes. This research revealed that transfection of infected macrophages with miR-340 alone or in combination with miR-27a mimic can reduce macrophage infectivity and might be introduced as a novel therapeutic agent for cutaneous leishmaniasis.
Collapse
|
17
|
Borghi SM, Fattori V, Carvalho TT, Tatakihara VLH, Zaninelli TH, Pinho-Ribeiro FA, Ferraz CR, Staurengo-Ferrari L, Casagrande R, Pavanelli WR, Cunha FQ, Cunha TM, Pinge-Filho P, Verri WA. Experimental Trypanosoma cruzi Infection Induces Pain in Mice Dependent on Early Spinal Cord Glial Cells and NFκB Activation and Cytokine Production. Front Immunol 2021; 11:539086. [PMID: 33574810 PMCID: PMC7870690 DOI: 10.3389/fimmu.2020.539086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The neglected tropical infirmity Chagas disease (CD) presents high mortality. Its etiological agent T. cruzi is transmitted by infected hematophagous insects. Symptoms of the acute phase of the infection include fever, fatigue, body aches, and headache, making diagnosis difficult as they are present in other illnesses as well. Thus, in endemic areas, individuals with undetermined pain may be considered for CD. Although pain is a characteristic symptom of CD, its cellular and molecular mechanisms are unknown except for demonstration of a role for peripheral TNF-α in CD pain. In this study, we evaluate the role of spinal cord glial cells in experimental T. cruzi infection in the context of pain using C57BL/6 mice. Pain, parasitemia, survival, and glial and neuronal function as well as NFκB activation and cytokine/chemokine production were assessed. T. cruzi infection induced chronic mechanical and thermal hyperalgesia. Systemic TNF-α and IL-1β peaked 14 days postinfection (p.i.). Infected mice presented increased spinal gliosis and NFκB activation compared to uninfected mice at 7 days p.i. Glial and NFκB inhibitors limited T. cruzi–induced pain. Nuclear phosphorylated NFκB was detected surrounded by glia markers, and glial inhibitors reduced its detection. T. cruzi–induced spinal cord production of cytokines/chemokines was also diminished by glial inhibitors. Dorsal root ganglia (DRG) neurons presented increased activity in infected mice, and the production of inflammatory mediators was counteracted by glial/NFκB inhibitors. The present study unveils the contribution of DRG and spinal cord cellular and molecular events leading to pain in T. cruzi infection, contributing to a better understanding of CD pathology.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil.,Center for Research in Health Science, University of Northern Paraná-Unopar, Londrina, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Vera L H Tatakihara
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Health Sciences Center, University Hospital, Londrina State University, Londrina, Brazil
| | - Wander R Pavanelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Phileno Pinge-Filho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| |
Collapse
|
18
|
Paul S, Ruiz-Manriquez LM, Serrano-Cano FI, Estrada-Meza C, Solorio-Diaz KA, Srivastava A. Human microRNAs in host-parasite interaction: a review. 3 Biotech 2020; 10:510. [PMID: 33178551 PMCID: PMC7644590 DOI: 10.1007/s13205-020-02498-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules with significant capacity to regulate the gene expression at the post-transcriptional level in a sequence-specific manner either through translation repression or mRNA degradation triggering a fine-tuning biological impact. They have been implicated in several processes, including cell growth and development, signal transduction, cell proliferation and differentiation, metabolism, apoptosis, inflammation, and immune response modulation. However, over the last few years, extensive studies have shown the relevance of miRNAs in human pathophysiology. Common human parasitic diseases, such as Malaria, Leishmaniasis, Amoebiasis, Chagas disease, Schistosomiasis, Toxoplasmosis, Cryptosporidiosis, Clonorchiasis, and Echinococcosis are the leading cause of death worldwide. Thus, identifying and characterizing parasite-specific miRNAs and their host targets, as well as host-related miRNAs, are important for a deeper understanding of the pathophysiology of parasite-specific diseases at the molecular level. In this review, we have demonstrated the impact of human microRNAs during host-parasite interaction as well as their potential to be used for diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Francisco I. Serrano-Cano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Karla A. Solorio-Diaz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
19
|
Fattori V, Ferraz CR, Rasquel-Oliveira FS, Verri WA. Neuroimmune communication in infection and pain: Friends or foes? Immunol Lett 2020; 229:32-43. [PMID: 33248166 DOI: 10.1016/j.imlet.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Clinically, a variety of micro-organisms cause painful infections. Before seen as bystanders in the context of infections, recent studies have demonstrated that, as immune cells, nociceptors can sense pathogen-derived products. Nociceptors and immune cells, therefore, have evolved to communicate with each other to control inflammatory and host responses against pathogens in a complementary way. This interaction is named as neuroimmune communication (or axon-axon immune reflex) and initiates after the release of neuropeptides, such as CGRP and VIP by neurons. By this neurogenic response, nociceptors orchestrate the activity of innate and adaptive immune cells in a context-dependent manner. In this review, we focus on how nociceptors sense pathogen-derived products to shape the host response. We also highlight the new concept involving the resolution of inflammation, which is related to an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). At very low doses, SPMs act on specific receptors to silence nociceptors, limit pain and neurogenic responses, and resolve infections. Furthermore, stimulation of the vagus nerve induces SPMs production to regulate immune responses in infections. Therefore, harnessing the current understanding of neuro-immune communication and neurogenic responses might provide the bases for reprogramming host responses against infections through well balanced and effective immune response and inflammation resolution.
Collapse
Affiliation(s)
- Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil.
| |
Collapse
|
20
|
Effect of Artesunate on Leishmania Amazonesis Induced Neuroinflammation and Nociceptive Behavior in Male Balb/C Mice. Animals (Basel) 2020; 10:ani10040557. [PMID: 32230725 PMCID: PMC7222374 DOI: 10.3390/ani10040557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Leishmaniasis is a multisystemic zoonotic disease with several symptoms, and treating this disease is a great challenge for veterinary medicine. Artemisinin derivatives are currently the most widely used drugs for the treatment of malaria, especially for their excellent safety profile and low cost. Artesunate is a more stable derivative of its precursor, artemisin, and has been shown to be a pluripotent agent with different pharmacological actions. In this study, we evaluated the role of neuroinflammation in leishmaniasis and its correlation with pain and sickness behavior, and the anti-inflammatory and neuroprotective effects of artesunate in a murine model of Leishmania amazonensis infection in BALB/c mice. The results from this study indicate that artesunate is a good candidate for treatment and/or as an adjuvant in anti- leishmaniasis therapy, and for preventing and alleviating leishmaniasis-induced pain and neuroinflammation. Abstract Background: Leishmaniasis is a multisystemic zoonotic disease with several symptoms, including neurological disorders. Leishmaniasis is accompanied by an increase in nociceptive behaviors, linked to the presence of a chronic inflammatory state, in both peripheral tissue and the central nervous system. Artesunate is a more stable derivative of its precursor artemisin and has been shown to be a pluripotent agent with different pharmacological actions. Methods: In this study, we investigated the effects of artesunate in Leishmaniaamazonensi- infected BALB/c mice, evaluating its effectiveness in reducing inflammation, neuroinflammation, and nociceptive and sickness behaviors. Results: Our results demonstrate a significant increase in pain sensitivity and sickness behaviors after L. amazonensis infection. Moreover, the infection induced a significant increase in inflammatory response at both the paw and spinal cord level. Treatment with artesunate was able to induce a significant decrease in tissue inflammation and neuroinflammation and thus induce a significant decrease in pain sensitivity and sickness behaviors. Conclusions: The results from this study indicate that artesunate is a good candidate for treatment and/or as an adjuvant in leishmanicidal therapy, and to prevent and alleviate leishmaniasis-induced pain and neuroinflammation and thereby improve the quality of life of leishmaniasis patients.
Collapse
|
21
|
Crupi R, Gugliandolo E, Siracusa R, Impellizzeri D, Cordaro M, Di Paola R, Britti D, Cuzzocrea S. N-acetyl-L-cysteine reduces Leishmania amazonensis-induced inflammation in BALB/c mice. BMC Vet Res 2020; 16:13. [PMID: 31931804 PMCID: PMC6958694 DOI: 10.1186/s12917-020-2234-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023] Open
Abstract
Background Leishmaniasis is a emergent disease characterized by different clinical manifestations in both humans and dogs. Predominant clinical features of cutaneous leishmaniasis are ulcerative painless skin lesions. Several data reported that pain is associated with human and dog leishmaniasis, out with areas of painless ulcerative lesions per se. Actually, current medications used for leishmaniasis management are characterized by several side effects and, in addition, some cases of the disease are refractory to the treatment. On this background it is mandatory the identification of new and safe candidates for designing less toxic and low-cost remedies. Therefore, the search for new leishmanicidal compounds is indispensable. Methods In the present paper we investigated the effect of orally N-acetyl-L-cysteine (NAC) supplementation at dose of 200 mg/Kg for 10 weeks, in subcutaneous Leishmania (L). amazonensis infected BALB/c mice. And evaluating the effect of NAC on inflammatory response such as TNF-α, IL-6, IL-1β levels, and on thermal and mechanical hyperalgesia. Results In the present paper we showed how NAC supplementation affected parameters of oxidative stress (GSH, MDA, SOD), inflammation such as cytokines levels (IL-1β, IL-6, TNFα) and mast cell activation and consequently on induced pain, during leishmaniosis in BALB\c mice. Conclusions The findings of our study provided the scientific data demonstrating that L. amazonensis infection induces inflammation and pain in BALB/c mice that are reversed by administration of NAC.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy.,Department of Veterinary Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy
| | - Domenico Britti
- a C.I.S. - Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres n°31, 98166, Messina, Italy. .,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
22
|
Cabral FV, Sabino CP, Dimmer JA, Sauter IP, Cortez MJ, Ribeiro MS. Preclinical Investigation of Methylene Blue‐mediated Antimicrobial Photodynamic Therapy on
Leishmania
Parasites Using Real‐Time Bioluminescence. Photochem Photobiol 2019; 96:604-610. [DOI: 10.1111/php.13188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Fernanda V. Cabral
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN‐CNEN/SP) São Paulo SP Brazil
| | - Caetano P. Sabino
- School of Pharmaceutical Sciences University of São Paulo São Paulo SP Brazil
- Biolambda, Translational Biophotonics LTD São Paulo SP Brazil
| | - Jesica A. Dimmer
- Pharmaceutical Sciences Department School of Chemical Sciences National University of Córdoba Córdoba Argentina
- Multidisciplinary Institute of Plant Biology (IMBIV) CONICET Córdoba Argentina
| | - Ismael P. Sauter
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN‐CNEN/SP) São Paulo SP Brazil
| | - Mauro J. Cortez
- Institute of Biosciences University of São Paulo (ICB/USP) São Paulo SP Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN‐CNEN/SP) São Paulo SP Brazil
| |
Collapse
|
23
|
Cutaneous Leishmaniasis: The Complexity of Host's Effective Immune Response against a Polymorphic Parasitic Disease. J Immunol Res 2019; 2019:2603730. [PMID: 31871953 PMCID: PMC6913332 DOI: 10.1155/2019/2603730] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
This review is aimed at providing a comprehensive outline of the immune response displayed against cutaneous leishmaniasis (CL), the more common zoonotic infection caused by protozoan parasites of the genus Leishmania. Although of polymorphic clinical presentation, classically CL is characterized by leishmaniotic lesions on the face and extremities of the patients, which can be ulcerative, and even after healing can lead to permanent injuries and disfigurement, affecting significantly their psychological, social, and economic well-being. According a report released by the World Health Organization, the disability-adjusted life years (DALYs) lost due to leishmaniasis are close to 2.4 million, annually there are 1.0–1.5 million new cases of CL, and a numerous population is at risk in the endemic areas. Despite its increasing worldwide incidence, it is one of the so-called neglected tropical diseases. Furthermore, this review provides an overview of the existing knowledge of the host innate and acquired immune response to cutaneous species of Leishmania. The use of animal models and of in vitro studies has improved the understanding of parasite-host interplay and the complexity of immune mechanisms involved. The importance of diagnosis accuracy associated with effective patient management in CL reduction is highlighted. However, the multiple factors involved in CL epizoology associated with the unavailability of vaccines or drugs to prevent infection make difficult to formulate an effective strategy for CL control.
Collapse
|
24
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Borghi SM, Fattori V, Pinho-Ribeiro FA, Domiciano TP, Miranda-Sapla MM, Zaninelli TH, Casagrande R, Pinge-Filho P, Pavanelli WR, Alves-Filho JC, Cunha FQ, Cunha TM, Verri WA. Contribution of spinal cord glial cells to L. amazonensis experimental infection-induced pain in BALB/c mice. J Neuroinflammation 2019; 16:113. [PMID: 31138231 PMCID: PMC6540403 DOI: 10.1186/s12974-019-1496-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
Background The cellular and molecular pathophysiological mecha\nisms of pain processing in neglected parasitic infections such as leishmaniasis remain unknown. The present study evaluated the participation of spinal cord glial cells in the pathophysiology of pain induced by Leishmania amazonensis infection in BALB/c mice. Methods Mice received intra-plantar (i.pl.) injection of L. amazonensis (1 × 105) and hyperalgesia, and paw edema were evaluated bilaterally for 40 days. The levels of TNF-α and IL-1β, MPO activity, and histopathology were assessed on the 40th day. ATF3 mRNA expression was assessed in DRG cells at the 30th day post-infection. Blood TNF-α and IL-1β levels and systemic parasite burden were evaluated 5–40 days after the infection. At the 30th day post-infection L. amazonensis, the effects of intrathecal (i.t.) treatments with neutralizing antibody anti-CX3CL1, etanercept (soluble TNFR2 receptor), and interleukin-1 receptor antagonist (IL-1ra) on infection-induced hyperalgesia and paw edema were assessed. In another set of experiments, we performed a time course analysis of spinal cord GFAP and Iba-1 (astrocytes and microglia markers, respectively) and used confocal immunofluorescence and Western blot to confirm the expression at the protein level. Selective astrocyte (α-aminoadipate) and microglia (minocycline) inhibitors were injected i.t. to determine the contribution of these cells to hyperalgesia and paw edema. The effects of i.t. treatments with glial and NFκB (PDTC) inhibitors on spinal glial activation, TNF-α, IL-1β, CX3CR1 and CX3CL1 mRNA expression, and NFκB activation were also evaluated. Finally, the contribution of TNF-α and IL-1β to CX3CL1 mRNA expression was investigated. Results L. amazonensis infection induced chronic mechanical and thermal hyperalgesia and paw edema in the infected paw. Mechanical hyperalgesia was also observed in the contralateral paw. TNF-α, IL-1β, MPO activity, and epidermal/dermal thickness increased in the infected paw, which confirmed the peripheral inflammation at the primary foci of this infection. ATF3 mRNA expression at the ipsilateral DRG of the infected paw was unaltered 30 days post-infection. TNF-α and IL-1β blood levels were not changed over the time course of disease, and parasitism increased in a time-dependent manner in the ipsilateral draining lymph node. Treatments targeting CX3CL1, TNF-α, and IL-1β inhibited L. amazonensis-induced ongoing mechanical and thermal hyperalgesia, but not paw edema. A time course of GFAP, Iba-1, and CX3CR1 mRNA expression indicated spinal activation of astrocytes and microglia, which was confirmed at the GFAP and Iba-1 protein level at the peak of mRNA expression (30th day). Selective astrocyte and microglia inhibition diminished infection-induced ipsilateral mechanical hyperalgesia and thermal hyperalgesia, and contralateral mechanical hyperalgesia, but not ipsilateral paw edema. Targeting astrocytes, microglia and NFκB diminished L. amazonensis-induced GFAP, Iba-1, TNF-α, IL-1β, CX3CR1 and CX3CL1 mRNA expression, and NFκB activation in the spinal cord at the peak of spinal cord glial cells activation. CX3CL1 mRNA expression was also detected in the ipsilateral DRG of infected mice at the 30th day post-infection, and the i.t. injection of TNF-α or IL-1β in naïve animals induced CX3CL1 mRNA expression in the spinal cord and ipsilateral DRG. Conclusions L. amazonensis skin infection produces chronic pain by central mechanisms involving spinal cord astrocytes and microglia-related production of cytokines and chemokines, and NFκB activation contributes to L. amazonensis infection-induced hyperalgesia and neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-019-1496-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.,Center for Research in Health Sciences, University of Northern Paraná - Unopar, Rua Marselha, 591, Jardim Piza, Londrina, Paraná, 86041-140, Brazil
| | - Victor Fattori
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Felipe A Pinho-Ribeiro
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Talita P Domiciano
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Milena M Miranda-Sapla
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Tiago H Zaninelli
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Health Sciences Center, University Hospital, Londrina State University, Avenida Robert Koch, 60, Londrina, Paraná, 86038-350, Brazil
| | - Phileno Pinge-Filho
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Wander R Pavanelli
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Waldiceu A Verri
- Departament of Pathology, Biological Sciences Center, Londrina State University, Rodovia Celso Garcia Cid, Pr 445, Km 380 Cx. Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
26
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
27
|
Saliba M, Shalhoub A, Taraif S, Loya A, Houreih MA, El Hajj R, Khalifeh I. Cutaneous leishmaniasis: an evolving disease with ancient roots. Int J Dermatol 2019; 58:834-843. [PMID: 30968403 DOI: 10.1111/ijd.14451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) remains a prioritized neglected tropical disease. CL novel presentations call for updating its features. METHODS A multiregional cohort of 396 patients with confirmed CL was reviewed. Lesion's clinical stage and eruption type were assigned. Disease was considered as extensive if numerous (≥5), large (>3 cm), disfiguring, threatening vital sensory organs, and/or older than 12 months. Microscopically, Ackerman's inflammatory pattern, Ridley's pattern (RP), and parasitic index (PI) were recorded. Microscopic variables pertaining to the organisms, epidermis, and host's inflammatory response were also assessed. All cases were confirmed and speciated molecularly. RESULTS In our region, 71.8% of cases showed extensive disease with 15.7% exceeding 12 months duration. Leishmania tropica accounted for 91.3% of cases while Leishmania major constituted 8.7% and presented solely as dry lesions. The dominant inflammatory composite consisted of plasma cells, lymphocytes, and histiocytes. Granulomatous inflammation was present in 55.5%. Most cases showed interface changes (72.7%), spongiosis (75.3%), and marked epidermal hyperplasia (63.9%). Transepidermal elimination of organisms was present in 29.2% of cases. None of traditional classification patterns (clinical stage, microscopic pattern, and RP) showed the predicted linear correlation with lesion age. High and low PI levels correlated with early and healing microscopic patterns, respectively, but did not correlate with the corresponding RPs. PI was bimodal with peaks at 3-6 and 9-12 months. CONCLUSION Cutaneous leishmaniasis is an evolving disease defying the traditional prediction classifications. Our study sets the ground for adopting updated clinical courses, microscopic presentation, and species mapping.
Collapse
Affiliation(s)
- Maelle Saliba
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Awss Shalhoub
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Suad Taraif
- Department of Pathology, Temple University Hospital, Philadelphia, PA, USA
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Mohammad A Houreih
- Department of Pathology, Tishreen University, Lattakia, Syrian Arab Republic
| | - Rana El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
28
|
de Souza A, Marins DSS, Mathias SL, Monteiro LM, Yukuyama MN, Scarim CB, Löbenberg R, Bou-Chacra NA. Promising nanotherapy in treating leishmaniasis. Int J Pharm 2018; 547:421-431. [PMID: 29886097 DOI: 10.1016/j.ijpharm.2018.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Leishmaniases are infectious diseases caused by an intracellular protozoan in humans by 20 different species of Leishmania among more than 53 species. There are at least twelve million cases of infections worldwide and three hundred and fifty million people are at risk in at least 98 developing countries in Africa, South-East Asia, and the Americas. Only Brazil presented high burden for both visceral leishmaniasis (VL) and cutaneous (CL). Chemotherapy is the main means of dealing with this infection. Nevertheless, only a few effective drugs are available, and each has a particular disadvantage; toxicity and long-term regimens compromise most chemotherapeutic options, which decreases patient compliance and adherence to the treatment and consequently the emergence of drug-resistant strains. Nano drug delivery systems (NanoDDS) can direct antileishmanial drug substances for intracellular localization in macrophage-rich organs such as bone marrow, liver, and spleen. This strategy can improve the therapeutic efficacy and reduce the toxic effects of several antileishmanial drug substances. This review is an effort to comprehensively compile recent findings, with the aim of advancing understanding of the importance of nanotechnology for treating leishmaniases.
Collapse
Affiliation(s)
- Aline de Souza
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| | - Débora Soares Souza Marins
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| | - Samir Leite Mathias
- Federal University of São Carlos, Department of Physics, Chemistry and Mathematics, João Leme dos Santos Highway, Km 110, 18052-780 Sorocaba, SP, Brazil
| | - Lis Marie Monteiro
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil
| | - Megumi Nishitani Yukuyama
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil
| | - Cauê Benito Scarim
- São Paulo State University "Júlio de Mesquita Filho" - UNESP, Faculty of Pharmaceutical Sciences, Department of Drugs and Medicines, Rodovia Araraquara Jaú, Km 01 - s/n, 14800-903 Araraquara, SP, Brazil
| | - Raimar Löbenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada.
| | - Nádia Araci Bou-Chacra
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
29
|
da Silva SS, Mizokami SS, Fanti JR, Costa IN, Bordignon J, Felipe I, Pavanelli WR, Verri WA, Conchon Costa I. Glucantime reduces mechanical hyperalgesia in cutaneous leishmaniasis and complete Freund's adjuvant models of chronic inflammatory pain. J Pharm Pharmacol 2018. [PMID: 29532470 DOI: 10.1111/jphp.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To evaluate the analgesic effect of Glucantime (antimoniate N-methylglucamine) in Leishmania amazonensis infection and complete Freund's adjuvant (CFA), chronic paw inflammation model, in BALB/c mice. METHODS Two models of chronic inflammatory pain in BALB/c mice paw were used: infection with L. amazonensis and CFA stimulation. Both animals models received daily treatment with Glucantime (10 mg/kg, i.p.) and during the treatment was measured the mechanical hyperalgesia with electronic version of von Frey filaments. After the treatment, the paw skin sample was collected for analysis of myeloperoxidase (MPO) and N-acetyl-β-glucosaminidase (NAG) activity, and IL-1β, TNF-α, IL-6, IFN-γ and IL-10 cytokines production by ELISA. KEY FINDINGS Leishmania amazonensis-induced chronic inflammation with significant increase in mechanical hyperalgesia, MPO and NAG activity, and IL-1β, TNF-α and IL-6 production in the paw skin. Glucantime (10 mg/kg, i.p.) inhibited L. amazonensis-induced mechanical hyperalgesia and IL-1β and IL-6 cytokines productions. In chronic inflammatory model induced by CFA, Glucantime treatment during 7 days inhibited CFA-induced mechanical hyperalgesia, MPO and NAG activity, and IL-1β, TNF-α, IL-6 and IFN-γ production as well as increased IL-10 production. CONCLUSIONS Our data demonstrated that Glucantime reduced the chronic inflammatory pain induced by L. amazonensis and CFA stimuli by inhibiting the hyperalgesic cytokines production.
Collapse
Affiliation(s)
- Suelen S da Silva
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Sandra S Mizokami
- Laboratório de dor e Inflamação, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Jacqueline R Fanti
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Idessania N Costa
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz/PR), Curitiba, Brazil
| | - Ionice Felipe
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Wander R Pavanelli
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratório de dor e Inflamação, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Ivete Conchon Costa
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| |
Collapse
|
30
|
Antonio LDF, Lyra MR, Saheki MN, Schubach ADO, Miranda LDFC, Madeira MDF, Lourenço MCDS, Fagundes A, Ribeiro ÉADS, Barreto L, Pimentel MIF. Effect of secondary infection on epithelialisation and total healing of cutaneous leishmaniasis lesions. Mem Inst Oswaldo Cruz 2017; 112:640-646. [PMID: 28902290 PMCID: PMC5572450 DOI: 10.1590/0074-02760160557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/06/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) generally presents with a single or several localised cutaneous ulcers without involvement of mucous membranes. Ulcerated lesions are susceptible to secondary contamination that may slow the healing process. OBJECTIVE This study verified the influence of non-parasitic wound infection on wound closure (epithelialisation) and total healing. METHODS Twenty-five patients with a confirmed diagnosis of CL and ulcerated lesions underwent biopsy of ulcer borders. One direct microbial parameter (germ identification in cultures) and four indirect clinical parameters (secretion, pain, burning sensation, pruritus) were analysed. FINDINGS Biopsies of ten lesions showed secondary infection by one or two microorganisms (Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Streptococcus pyogenes and Candida parapsilosis). “Secretion” and “burning sensation” influenced epithelialisation time but not total healing time. Positive detection of germs in the ulcer border and “pain” and “pruritus” revealed no influence on wound closure. CONCLUSIONS Our borderline proof of clinical CL ulcer infection inhibiting CL wound healing supports the need to follow antimicrobial stewardship in CL ulcer management, which was recently proposed for all chronic wounds.
Collapse
Affiliation(s)
- Liliane de Fátima Antonio
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Marcelo Rosandiski Lyra
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Maurício Naoto Saheki
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Armando de Oliveira Schubach
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, RJ, Brasil.,Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luciana de Freitas Campos Miranda
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Maria de Fátima Madeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, RJ, Brasil.,Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Maria Cristina da Silva Lourenço
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Bacteriologia, Rio de Janeiro, RJ, Brasil
| | - Aline Fagundes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Érica Aparecida Dos Santos Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Bacteriologia, Rio de Janeiro, RJ, Brasil
| | - Leonardo Barreto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Bacteriologia, Rio de Janeiro, RJ, Brasil
| | - Maria Inês Fernandes Pimentel
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
31
|
Zulfiqar B, Jones AJ, Sykes ML, Shelper TB, Davis RA, Avery VM. Screening a Natural Product-Based Library against Kinetoplastid Parasites. Molecules 2017; 22:E1715. [PMID: 29023425 PMCID: PMC6151456 DOI: 10.3390/molecules22101715] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Kinetoplastid parasites cause vector-borne parasitic diseases including leishmaniasis, human African trypanosomiasis (HAT) and Chagas disease. These Neglected Tropical Diseases (NTDs) impact on some of the world's lowest socioeconomic communities. Current treatments for these diseases cause severe toxicity and have limited efficacy, highlighting the need to identify new treatments. In this study, the Davis open access natural product-based library was screened against kinetoplastids (Leishmania donovani DD8, Trypanosoma brucei brucei and Trypanosoma cruzi) using phenotypic assays. The aim of this study was to identify hit compounds, with a focus on improved efficacy, selectivity and potential to target several kinetoplastid parasites. The IC50 values of the natural products were obtained for L. donovani DD8, T. b. brucei and T. cruzi in addition to cytotoxicity against the mammalian cell lines, HEK-293, 3T3 and THP-1 cell lines were determined to ascertain parasite selectivity. Thirty-one compounds were identified with IC50 values of ≤ 10 µM against the kinetoplastid parasites tested. Lissoclinotoxin E (1) was the only compound identified with activity across all three investigated parasites, exhibiting IC50 values < 5 µM. In this study, natural products with the potential to be new chemical starting points for drug discovery efforts for kinetoplastid diseases were identified.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Amy J Jones
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Todd B Shelper
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Rohan A Davis
- Natural Product Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
32
|
Borghi SM, Fattori V, Ruiz-Miyazawa KW, Miranda-Sapla MM, Casagrande R, Pinge-Filho P, Pavanelli WR, Verri WA. Leishmania (L). amazonensis induces hyperalgesia in balb/c mice: Contribution of endogenous spinal cord TNFα and NFκB activation. Chem Biol Interact 2017; 268:1-12. [DOI: 10.1016/j.cbi.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
|