1
|
Mitesser V, Simantov K, Dzikowski R. Time to switch gears: how long noncoding RNAs function as epigenetic regulators in Apicomplexan parasites. Curr Opin Microbiol 2024; 79:102484. [PMID: 38688159 DOI: 10.1016/j.mib.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Long noncoding RNAs (lncRNA) are emerging as important regulators of gene expression in eukaryotes. In recent years, a large repertoire of lncRNA were discovered in Apicomplexan parasites and were implicated in several mechanisms of gene expression, including marking genes for activation, contributing to the formation of subnuclear compartments and organization, regulating the deposition of epigenetic modifications, influencing chromatin and chromosomal structure and manipulating host gene expression. Here, we aim to update recent knowledge on the role of lncRNAs as regulators in Apicomplexan parasites and highlight the possible molecular mechanisms by which they function. We hope that some of the hypotheses raised here will contribute to further investigation and lead to new mechanistic insight and better understanding of the role of lncRNA in parasite's biology.
Collapse
Affiliation(s)
- Vera Mitesser
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
2
|
Mead JR. Early immune and host cell responses to Cryptosporidium infection. FRONTIERS IN PARASITOLOGY 2023; 2:1113950. [PMID: 37325809 PMCID: PMC10269812 DOI: 10.3389/fpara.2023.1113950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine and cause diarrheal illness in both immunocompetent and immunodeficient individuals. These infections may be more severe in immunocompromised individuals and young children, especially in children under 2 in developing countries. The parasite has a global distribution and is an important cause of childhood diarrhea where it may result in cognitive impairment and growth deficits. Current therapies are limited with nitazoxanide being the only FDA-approved drug. However, it is not efficacious in immunocompromised patients. Additionally, there are no vaccines for cryptosporidiosis available. While acquired immunity is needed to clear Cryptosporidium parasites completely, innate immunity and early responses to infection are important in keeping the infection in check so that adaptive responses have time to develop. Infection is localized to the epithelial cells of the gut. Therefore, host cell defenses are important in the early response to infection and may be triggered through toll receptors or inflammasomes which induce a number of signal pathways, interferons, cytokines, and other immune mediators. Chemokines and chemokine receptors are upregulated which recruit immune cells such neutrophils, NK cells, and macrophages to the infection site to help in host cell defense as well as dendritic cells that are an important bridge between innate and adaptive responses. This review will focus on the host cell responses and the immune responses that are important in the early stages of infection.
Collapse
Affiliation(s)
- Jan R. Mead
- Department of Pediatrics, Children’s Healthcare Organization of Atlanta, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
3
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
4
|
He X, Huang W, Sun L, Hou T, Wan Z, Li N, Guo Y, Kváč M, Xiao L, Feng Y. A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. J Infect 2022; 84:710-721. [PMID: 35192895 DOI: 10.1016/j.jinf.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Studies on the pathogenesis and immune responses of Cryptosporidium infection and development of drugs and vaccines use mostly immunocompromised mouse models. In this study, we establish an immunocompetent mouse model of cryptosporidiosis with high intensity and long duration of infection. METHODS We have obtained a Cryptosporidium tyzzeri isolate from laboratory mice, and infect adult C57BL/6J mice experimentally with the isolate for determinations of infectivity, infection patterns, pathological changes, and transcriptomic responses. RESULTS The isolate has an ID50 of 5.2 oocysts, with oocyst shedding lasting at high levels for >2 months. The oocyst shedding is boosted by immunosuppression of animals and suppressed by paromomycin treatment. The isolate induces strong inflammatory and acquired immune responses, but down-regulates the expression of α-defensins in epithelium. Comparative genomics analysis has revealed significant sequence differences from other isolates in subtelomeric genes. The down-regulation of the expression of α-defensins may be responsible for the high-intensity and long-lasting infection in this animal model. CONCLUSIONS The immunocompetent mouse model of cryptosporidiosis developed has the advantages of high oocyst shedding intensity and long oocyst shedding duration. It provides an effective mechanism for the propagation of Cryptosporidium, evaluations of potential therapeutics, and studies of pathogen biology and immune responses.
Collapse
Affiliation(s)
- Xi He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianbei Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Tianyi Hou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| |
Collapse
|
5
|
Persistent Cryptosporidium parvum Infection Leads to the Development of the Tumor Microenvironment in an Experimental Mouse Model: Results of a Microarray Approach. Microorganisms 2021; 9:microorganisms9122569. [PMID: 34946170 PMCID: PMC8704780 DOI: 10.3390/microorganisms9122569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Cryptosporidium spp. are enteric protozoa parasites that infect a variety of vertebrate hosts. These parasites are capable of inducing life-threatening gastrointestinal disease in immunocompromised individuals. With the rising epidemiological evidence of the occurrence of Cryptosporidium infections in humans with digestive cancer, the tumorigenic potential of the parasite has been speculated. In this regard, Cryptosporidium parvum has been reported to induce digestive adenocarcinoma in a rodent model of chronic cryptosporidiosis. However, the processes by which the parasite could induce this carcinogenesis are still unknown. Therefore, the transcriptomes of C. parvum infected ileo-cecal regions of mice developing tumors were analyzed in the current study. For the first time, downregulation of the expression of α-defensin, an anti-microbial target of the parasite in response to C. parvum infection was observed in the transformed tissues. This phenomenon has been speculated to be the result of resistance of C. parvum to the host defense through the upregulated expression of interferon γ-stimulated genes. The inflammatory response generated as result of attenuated expression of anti-microbial peptides highlights the role of immune evasion in the C. parvum-induced tumorigenesis. The study has also succeeded in the characterization of the tumor microenvironment (TME) which is characterized by the presence of cancer associated fibroblasts, myeloid-derived suppressor cells, tumor-associated macrophages and extracellular matrix components. Identification of immune suppressor cells and accumulation of pro-inflammatory mediators speculates that chronic inflammation induced by persistent C. parvum infection assists in development of an immunosuppressive tumor microenvironment.
Collapse
|
6
|
A Bioinformatics Approach to Identifying Potential Biomarkers for Cryptosporidium parvum: A Coccidian Parasite Associated with Fetal Diarrhea. Vaccines (Basel) 2021; 9:vaccines9121427. [PMID: 34960172 PMCID: PMC8705633 DOI: 10.3390/vaccines9121427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023] Open
Abstract
Cryptosporidium parvum (C. parvum) is a protozoan parasite known for cryptosporidiosis in pre-weaned calves. Animals and patients with immunosuppression are at risk of developing the disease, which can cause potentially fatal diarrhoea. The present study aimed to construct a network biology framework based on the differentially expressed genes (DEGs) of C. parvum infected subjects. In this way, the gene expression profiling analysis of C. parvum infected individuals can give us a snapshot of actively expressed genes and transcripts under infection conditions. In the present study, we have analyzed microarray data sets and compared the gene expression profiles of the patients with the different data sets of the healthy control. Using a network medicine approach to identify the most influential genes in the gene interaction network, we uncovered essential genes and pathways related to C. parvum infection. We identified 164 differentially expressed genes (109 up- and 54 down-regulated DEGs) and allocated them to pathway and gene set enrichment analysis. The results underpin the identification of seven significant hub genes with high centrality values: ISG15, MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These genes are associated with diverse biological processes not limited to host interaction, type 1 interferon production, or response to IL-gamma. Furthermore, four genes (IFI44, IFIT3, IFITM1, and MX1) were also discovered to be involved in innate immunity, inflammation, apoptosis, phosphorylation, cell proliferation, and cell signaling. In conclusion, these results reinforce the development and implementation of tools based on gene profiles to identify and treat Cryptosporidium parvum-related diseases at an early stage.
Collapse
|
7
|
Walters HA, Temesvari LA. Target acquired: transcriptional regulators as drug targets for protozoan parasites. Int J Parasitol 2021; 51:599-611. [PMID: 33722681 PMCID: PMC8169582 DOI: 10.1016/j.ijpara.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
Protozoan parasites are single-celled eukaryotic organisms that cause significant human disease and pose a substantial health and socioeconomic burden worldwide. They are responsible for at least 1 million deaths annually. The treatment of such diseases is hindered by the ability of parasites to form latent cysts, develop drug resistance, or be transmitted by insect vectors. Additionally, these pathogens have developed complex mechanisms to alter host gene expression. The prevalence of these diseases is predicted to increase as climate change leads to the augmentation of ambient temperatures, insect ranges, and warm water reservoirs. Therefore, the discovery of novel treatments is necessary. Transcription factors lie at the junction of multiple signalling pathways in eukaryotes and aberrant transcription factor function contributes to the progression of numerous human diseases including cancer, diabetes, inflammatory disorders and cardiovascular disease. Transcription factors were previously thought to be undruggable. However, due to recent advances, transcription factors now represent appealing drug targets. It is conceivable that transcription factors, and the pathways they regulate, may also serve as targets for anti-parasitic drug design. Here, we review transcription factors and transcriptional modulators of protozoan parasites, and discuss how they may be useful in drug discovery. We also provide information on transcription factors that play a role in stage conversion of parasites, TATA box-binding proteins, and transcription factors and cofactors that participate with RNA polymerases I, II and III. We also highlight a significant gap in knowledge in that the transcription factors of some of parasites have been under-investigated. Understanding parasite transcriptional pathways and how parasites alter host gene expression will be essential in discovering innovative drug targets.
Collapse
Affiliation(s)
- H A Walters
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, United States
| | - L A Temesvari
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, United States; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
8
|
Cryptosporidium: host and parasite transcriptome in infection. Curr Opin Microbiol 2020; 58:138-145. [PMID: 33160225 DOI: 10.1016/j.mib.2020.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Cryptosporidium is a waterborne gastrointestinal parasite that causes outbreaks of diarrheal disease worldwide. Despite the impact of this parasite on human health there are no effective drugs or vaccines. Transcriptomic data can provide insights into host-parasite interactions that lead to identification of targets for therapeutic interventions. However, for Cryptosporidium, interpreting transcriptomes has been challenging, in part due to the presence of multiple life cycle stages, the lack of appropriate host cells and the inability to culture the parasite through its complete life cycle. The recent improvements in cell culture and the ability to tag and isolate specific life cycle stages will radically improve transcriptomic data and advance our understanding of Cryptosporidium host-parasite interactions.
Collapse
|
9
|
Cryptosporidium parvum Subverts Antimicrobial Activity of CRAMP by Reducing Its Expression in Neonatal Mice. Microorganisms 2020; 8:microorganisms8111635. [PMID: 33113928 PMCID: PMC7690728 DOI: 10.3390/microorganisms8111635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cryptosporidium parvum causes diarrhea in infants under 5 years, in immunosuppressed individuals or in young ruminants. This parasite infects the apical side of ileal epithelial cells where it develops itself and induces inflammation. Antimicrobial peptides (AMPs) are part of the innate immune response, playing a major role in the control of the acute phase of C. parvum infection in neonates. Intestinal AMP production in neonates is characterized by high expressions of Cathelicidin Related Antimicrobial Peptide (CRAMP), the unique cathelicidin in mice known to fight bacterial infections. In this study, we investigated the role of CRAMP during cryptosporidiosis in neonates. We demonstrated that sporozoites are sensitive to CRAMP antimicrobial activity. However, during C. parvum infection the intestinal expression of CRAMP was significantly and selectively reduced, while other AMPs were upregulated. Moreover, despite high CRAMP expression in the intestine of neonates at homeostasis, the depletion of CRAMP did not worsen C. parvum infection. This result might be explained by the rapid downregulation of CRAMP induced by infection. However, the exogenous administration of CRAMP dampened the parasite burden in neonates. Taken together these results suggest that C. parvum impairs the production of CRAMP to subvert the host response, and highlight exogenous cathelicidin supplements as a potential treatment strategy.
Collapse
|
10
|
Li Y, Baptista RP, Kissinger JC. Noncoding RNAs in Apicomplexan Parasites: An Update. Trends Parasitol 2020; 36:835-849. [DOI: 10.1016/j.pt.2020.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/26/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
|
11
|
Genetic basis for virulence differences of various Cryptosporidium parvum carcinogenic isolates. Sci Rep 2020; 10:7316. [PMID: 32355272 PMCID: PMC7193590 DOI: 10.1038/s41598-020-64370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidium parvum is known to cause life-threatening diarrhea in immunocompromised hosts and was also reported to be capable of inducing digestive adenocarcinoma in a rodent model. Interestingly, three carcinogenic isolates of C. parvum, called DID, TUM1 and CHR, obtained from fecal samples of naturally infected animals or humans, showed higher virulence than the commercially available C. parvum IOWA isolate in our animal model in terms of clinical manifestations, mortality rate and time of onset of neoplastic lesions. In order to discover the potential genetic basis of the differential virulence observed between C. parvum isolates and to contribute to the understanding of Cryptosporidium virulence, entire genomes of the isolates DID, TUM1 and CHR were sequenced then compared to the C. parvum IOWA reference genome. 125 common SNVs corresponding to 90 CDSs were found in the C. parvum genome that could explain this differential virulence. In particular variants in several membrane and secreted proteins were identified. Besides the genes already known to be involved in parasite virulence, this study identified potential new virulence factors whose functional characterization can be achieved through CRISPR/Cas9 technology applied to this parasite.
Collapse
|