1
|
Xue NY, Li ZY, Wang HT, Qin Y, Li XM, Hou QY, Jiang J, Yang X, Ni HB. High genetic diversity of Enterocytozoon bieneusi in minks and raccoon dogs in northern China. Parasite 2024; 31:71. [PMID: 39561302 PMCID: PMC11575893 DOI: 10.1051/parasite/2024071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 11/21/2024] Open
Abstract
Enterocytozoon bieneusi, a zoonotic pathogen prevalent in both humans and animals, is the most frequently diagnosed microsporidian species in humans and presents significant public health risks. However, data on the prevalence and genotypes of E. bieneusi in farmed minks (Neovison vison) and raccoon dogs (Nyctereutes procyonoides) in China are limited. Therefore, 275 minks (89 from Hebei Province, 57 from Heilongjiang Province, 109 from Liaoning Province, 20 from Shandong Province) and 235 raccoon dogs (114 from Hebei Province, 27 from Heilongjiang Province, 61 from Liaoning Province, 33 from Jilin Province) were examined for the prevalence and genotypes of E. bieneusi through sequence analysis of the internal transcribed spacer (ITS) region of the rRNA gene. The overall prevalence of E. bieneusi was 18.6% (95/510), with 10.5% (29/275) in farmed minks and 28.1% (66/235) in raccoon dogs. Ten genotypes (CHN-F1, genotype D, Type IV, EbpC, NCF2, NCF5, NCF6, Peru8, Henan V, and MJ5) were identified in minks and raccoon dogs. This study is the first to detect the CHN-F1, NCF2, NCF6, Peru8, and Henan V genotypes in minks and the NCF5, NCF6, and MJ5 genotypes in raccoon dogs. Additionally, the D, Type IV, and Peru8 genotypes, previously identified in humans, were also found in minks and raccoon dogs, suggesting that these animals could be potential sources of human microsporidiosis. These findings expand the understanding of E. bieneusi's host distribution in China and contribute to the prevention of zoonotic E. bieneusi infections among farmed animals.
Collapse
Affiliation(s)
- Nian-Yu Xue
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan Province, 671099, PR China - College of Life Sciences, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, PR China - College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225000, PR China
| | - Zhong-Yuan Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, the Guangxi Zhuang Autonomous Region, 541199, PR China
| | - Hai-Tao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Ya Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Xue-Min Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Qing-Yu Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Jing Jiang
- College of Life Sciences, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, PR China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan Province, 671099, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| |
Collapse
|
2
|
Ávalos G, Caballero-Gómez J, Matas-Méndez P, Castro-Scholten S, Jiménez-Martín D, Köster PC, Santín M, Bailo B, Cano-Terriza D, González-Barrio D, Mateo M, García-Bocanegra I, Dashti A, Nájera F, Carmena D. Detection and genotyping of zoonotic microsporidia in the endangered Iberian lynx (Lynx pardinus). Med Mycol 2024; 62:myae027. [PMID: 38499442 DOI: 10.1093/mmy/myae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Microsporidia is a diverse group of obligate, intracellular, and spore-forming parasites that infect a wide range of animals. Among them, Enterocytozoon bieneusi and Encephalitozoon spp. are the most frequently reported species in humans. Limited information is available about the presence and molecular diversity of microsporidian species in the endangered Iberian lynx (Lynx pardinus). Presence of Enterocytozoon bieneusi and Encephalitozoon spp. was investigated by molecular methods in wild and captive Iberian lynxes from Spain. Overall, E. bieneusi was detected in 3.2% (8/251) of the animals examined. None of the samples tested were positive for Encephalitozoon spp. Four known (D, EbfelA, PigEBITS7, and Type IV) and a novel (named as LynxSpEb1) E. bieneusi genotypes were identified. All the genotypes found belonged to the zoonotic Group 1 of E. bieneusi. This study provides the first genotyping data of E. bieneusi in Iberian lynx in Spain. Our result indicate that the Iberian lynx does not seem to play a relevant role in the epidemiology of Encephalitozoon spp., and that this endangered felid is likely acting as spillover host rather than a true reservoir of E. bieneusi. Additional studies should be conducted to assess the impact of this parasite in the health status of the endangered Iberian lynx.
Collapse
Affiliation(s)
- Gabriel Ávalos
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Javier Caballero-Gómez
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Pablo Matas-Méndez
- Faculty of Veterinary, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
| | - Sabrina Castro-Scholten
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
| | - Débora Jiménez-Martín
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Women for Africa Foundation, Madrid, Spain
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Nájera
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Chen M, Wang H, Li X, Guo Y, Lu Y, Zheng L, Liang G, Sui Y, Wang B, Dai H, Dong H, Zhang L. Molecular epidemiology of Enterocytozoon bieneusi from foxes and raccoon dogs in the Henan and Hebei provinces in China. BMC Vet Res 2024; 20:53. [PMID: 38341563 PMCID: PMC10858577 DOI: 10.1186/s12917-024-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.
Collapse
Affiliation(s)
- Minghui Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Haidong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xinmiao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yunan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Ying Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Liping Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Guoqing Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yuzhen Sui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bukang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Hongyu Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Haiju Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
4
|
Qi T, Zheng W, Guo L, Sun Y, Li J, Kang M. First description of Blastocystis sp. and Entamoeba sp. infecting zoo animals in the Qinghai-Tibetan plateau area, China. Front Cell Infect Microbiol 2023; 13:1212617. [PMID: 37360523 PMCID: PMC10287090 DOI: 10.3389/fcimb.2023.1212617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Protozoan parasites are a well-known threat to human health, particularly for people working at or visiting zoos, and potentially cause zoonotic diseases in humans. Captive wildlife may be potential reservoirs for human infection with protozoan parasites. Therefore, focusing on zoonotic protozoan infections in zoo animals is critical. However, there is no report on this topic in the Qinghai-Tibetan Plateau region. In this study, a total of 167 and 103 fecal samples were collected from 12 animal species from Qinghai-Tibet Plateau Wildlife Park in winter and summer, respectively, to detection the prevalence of infections and subtype distribution with Entamoeba sp., Cryptosporidium sp., Giardia duodenalis, Enteromicrosporidia bieneusi sp., Blastocystis sp. by PCR assay. The results showed that a total of 21 fecal samples collected in winter, including from 2 white-lipped deer, 8 Sika deer, 6 blue sheep, 2 wolves and 3 bears, were positive for Entamoeba, with a 12.6% (21/167) positive rate. However, 4.9% (5/103) of animals in summer were positive for Entamoeba, including 1 snow leopard, 1 tiger, 1 Tibetan argali and 2 mouflon. Moreover, 1 white-lipped deer and 1 bear were found to be positive for Blastocystis sp., one zoonotic STs (ST10) was identified and found in white-lipped deer. We found no effect on season on Blastocystis sp. and Entamoeba sp. colonization. To the best of our knowledge, this study is the first description of Blastocystis sp. and Entamoeba sp. infecting zoo animals in the plateau area. The findings provide the latest data on Entamoeba sp. and Blastocystis sp. in zoo animals in China.
Collapse
Affiliation(s)
- Tongsheng Qi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wangli Zheng
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Liangting Guo
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yali Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, China
| | - Jixu Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, China
| | - Ming Kang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
5
|
Liu H, Xu J, Shen Y, Cao J, Yin J. Genotyping and Zoonotic Potential of Enterocytozoon bieneusi in Stray Dogs Sheltered from Shanghai, China. Animals (Basel) 2021; 11:ani11123571. [PMID: 34944346 PMCID: PMC8698015 DOI: 10.3390/ani11123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Enterocytozoon bieneusi is the most prevalent species with zoonotic risks in humans and various livestock, wildlife and companion mammals. Dogs being the most popular companion animals of humans become more and more regarded recently. The present study reported the total E. bieneusi positive rate of 8.8% (24/272), and 8 genotypes including three known (genotypes EbpA, Henan V and Type IV) and 5 novel genotypes (genotypes SHZJD1–5) in stray dogs from Shanghai but sheltered in Zhenjiang, Jiangsu Province, China. In addition, all the genotypes here were all clustered into group 1 with zoonotic potential. Abstract Microsporidia are considered to be highly diverged and specialized parasites, and can infect a wide variety of vertebrate and invertebrate hosts. Enterocytozoon bieneusi is the most prevalent species in humans and various livestock, wildlife, and companion mammals. Dogs being the most popular companion animals of humans become more and more regarded. In this study, 272 fecal specimens were collected from stray dogs from Shanghai, but the dogs were adopted in a shelter in Zhenjiang, Jiangsu Province, China. E. bieneusi was examined by PCR amplification of the internal transcribed spacer (ITS) region and sequence analysis. The total positive rate of E. bieneusi was 8.8% (24/272). Moreover, 8 genotypes were found, including three known (genotypes EbpA, Henan V and Type IV) and 5 novel genotypes (genotypes SHZJD1–5). Two samples were positive for two genotypes, one was positive fortype SHZJD4 and Henan V, the other was positive for Henan V and Type IV. In addition, phylogenetic analysis showed all genotypes obtained in this study were all clustered into the zoonotic group 1. Therefore, the risk of zoonotic transmission of pathogens such as E. bieneusi from stray dogs to humans potentially threaten human health, and it is time to strengthen their health management.
Collapse
|
6
|
Perec-Matysiak A, Leśniańska K, Buńkowska-Gawlik K, Merta D, Popiołek M, Hildebrand J. Zoonotic Genotypes of Enterocytozoon bieneusi in Wild Living Invasive and Native Carnivores in Poland. Pathogens 2021; 10:1478. [PMID: 34832633 PMCID: PMC8619129 DOI: 10.3390/pathogens10111478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
Wild carnivores, both introduced and native species, are able to adapt well to peri-urban environments, facilitating cross-species pathogen transmission with domestic animals, and potentially humans. The role of wild living reservoir hosts cannot be ignored because of their known carriage of E. bieneusi zoonotic genotypes. In the past decades, populations of wild living carnivores, i.e., native, such as red foxes, and invasive, such as raccoon dogs and raccoons, have increased and adapted to synanthropic environments across Europe, including Poland. The knowledge concerning E. bieneusi genotype identification and distribution in wild carnivores is limited worldwide. A total of 322 individual fecal samples from six carnivore species, i.e., raccoon, raccoon dog, red fox, European badger, pine and beech martens, were collected and then analysed for the presence of E. bieneusi using the nested PCR method. Overall prevalence of the pathogen was estimated to be as high as 27.3%. The infection rates for E. bieneusi varied between the carnivore species, from 13.7% in beech martens to 40.4% in raccoon dogs. Based on sequence analysis of the ITS region of the rRNA gene marker, we detected five known genotypes of E. bieneusi in examined animals. In the invasive species, E. bieneusi NCF2 and D genotypes have been identified, whereas in the native ones, E. bieneusi NCF2, D, C, EbCar2 and Type IV genotypes were identified. All E. bieneusi genotypes recorded in this survey clustered in Group 1, showing their zoonotic potential. Our results provide the first description of the occurrence and genotypes of the microsporidian E. bieneusi in wild living population of raccoon dogs in Europe. Our findings are important for the study of pathogen epidemiology and emphasize the fact that the invasive and the native wild living carnivores, both widely distributed, should be considered more seriously as significant sources of zoonotic pathogens hazardous to domestic and farmed animals and humans.
Collapse
Affiliation(s)
- Agnieszka Perec-Matysiak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (K.L.); (K.B.-G.); (M.P.); (J.H.)
| | - Kinga Leśniańska
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (K.L.); (K.B.-G.); (M.P.); (J.H.)
| | - Katarzyna Buńkowska-Gawlik
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (K.L.); (K.B.-G.); (M.P.); (J.H.)
| | - Dorota Merta
- Department of Ecology and Environmental Protection, Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| | - Marcin Popiołek
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (K.L.); (K.B.-G.); (M.P.); (J.H.)
| | - Joanna Hildebrand
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland; (K.L.); (K.B.-G.); (M.P.); (J.H.)
| |
Collapse
|
7
|
Guo Y, Li N, Feng Y, Xiao L. Zoonotic parasites in farmed exotic animals in China: Implications to public health. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:241-247. [PMID: 33898224 PMCID: PMC8056123 DOI: 10.1016/j.ijppaw.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Several species of wild mammals are farmed in China as part of the rural development and poverty alleviation, including fur animals, bamboo rats, and macaque monkeys. Concerns have been raised on the potential dispersal of pathogens to humans and other farm animals brought in from native habitats. Numerous studies have been conducted on the genetic identity and public health potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in these newly farmed exotic animals. The data generated have shown a high prevalence of the pathogens in farmed wildlife, probably due to the stress from the short captivity and congregation of large numbers of susceptible animals. Host adaptation at species/genotype and subtype levels has reduced the potential for cross-species and zoonotic transmission of pathogens, but the farm environment appears to favor the transmission of some species, genotypes, and subtypes, with reduced pathogen diversity compared with their wild relatives. Most genotypes and subtypes of the pathogens detected appear to be brought in from their native habitats. A few of the subtypes have emerged as human pathogens. One Health measures should be developed to slow the dispersal of indigenous pathogens among farmed exotic animals and prevent their spillover to other farm animals and humans.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
8
|
Zhang Y, Xin L, Zhao A, Xu C, Wang T, Jing B, Qi M. Molecular detection and genotypes of Enterocytozoon bieneusi in farmed mink ( Neovison vison), blue foxes ( Alopex lagopus), and raccoon dogs ( Nyctereutes procyonoides) in Xinjiang, China. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:211-215. [PMID: 33898222 PMCID: PMC8056124 DOI: 10.1016/j.ijppaw.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
Enterocytozoon bieneusi is a zoonotic pathogen that infects a variety of hosts including humans, livestock, wildlife, companion animals, and birds, as well as being abundant in the environment. Humans and nonhuman animals could be infected with E. bieneusi via consumption of food or water that contains zoonotic and host-adapted genotypes. In this study, 288 fecal specimens were collected from farmed minks, blue foxes, and raccoon dogs, in Xinjiang, China. Enterocytozoon bieneusi was examined by PCR amplification based on sequence analysis of the internal transcribed spacer (ITS) region. The overall infection rate of E. bieneusi was 4.9% (14/288), with mink samples showing the highest infection rate (5.6%, 12/214), followed by blue foxes (2.9%, 1/35), and then raccoon dogs (2.6%, 1/39). Six E. bieneusi genotypes were identified, including D (n = 5), PigEBITS7 (n = 4), EbpA (n = 2), CAM5 (n = 1), WildBoar3 (n = 1), and a novel genotype XJMI-1 (n = 1). Phylogenetic analysis showed that all E. bieneusi genotypes belonged to group 1, which composed of over 300 genotypes and most of them have been identified in human and variety of animals, suggesting a risk of zoonotic transmission from farmed wildlife to humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Jing
- Corresponding author. College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang, 843300, China.
| | - Meng Qi
- Corresponding author. College of Animal Science, Tarim University, Tarim Road 1487, Alar, Xinjiang, 843300, China.
| |
Collapse
|
9
|
Zhang Z, Ma J, Huang X, Wen X, Jiang W, Chen L, Li N, Guo Y, Zhang L, Xiao L, Feng Y. Population genetic analysis suggests genetic recombination is responsible for increased zoonotic potential of Enterocytozoon bieneusi from ruminants in China. One Health 2020; 11:100184. [PMID: 33392377 PMCID: PMC7772688 DOI: 10.1016/j.onehlt.2020.100184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Enterocytozoon bieneusi is a zoonotic pathogen with worldwide distribution. Among the 11 established groups of E. bieneusi genotypes based on phylogenetic analysis of the ribosomal internal transcribed spacer (ITS), the human-infective potential and population genetics of the Group 1 genotypes from diverse hosts are well characterized. In contrast, Group 2 genotypes from ruminants have unclear population genetics, leading to poor understanding of their host range and zoonotic potential. In this study, we sequence-characterized 121 Group 2 isolates from dairy cattle, beef cattle, yaks, Tibetan sheep, golden takins, and deer from China at five genetic loci (ITS, MS1, MS3, MS4 and MS7), comparing with data from 113 Group 1 isolates from nonhuman primates. Except for MS7, most of the genetic loci produced efficient PCR amplification and high nucleotide identity between Groups 1 and 2 of E. bieneusi genotypes. In population genetic analyses of the sequence data, a strong linkage disequilibrium was observed among these genetic loci in the overall Group 2 population. The individual ITS genotypes (I, J and BEB4) within Group 2, however, had reduced linkage disequilibrium and increased genetic exchanges among isolates. There was only partial genetic differentiation between Group 1 and Group 2 genotypes, with some occurrence of genetic recombination between them. Genetic recombination was especially common between genotypes I and J within Group 2. The data presented indicate a high genetic identity between Group 1 and Group 2 genotypes of E. bieneusi, which could be responsible for the broad host range and high zoonotic potential of Group 2 genotypes in China. As there is no effective treatment against E. bieneusi, the One Health approach should be used in the control and prevention of zoonotic transmission of the pathogen.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Jingbo Ma
- Department of Parasitology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xitong Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xi Wen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen Jiang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Chen
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|