1
|
Boonroumkaew P, Sadaow L, Janwan P, Rodpai R, Sanpool O, Thanchomnang T, Yamasaki H, Intapan PM, Maleewong W. An immunochromatographic test using whole blood for rapid diagnosis of human paragonimiasis and its diagnostic usefulness. Food Waterborne Parasitol 2024; 37:e00246. [PMID: 39430056 PMCID: PMC11490730 DOI: 10.1016/j.fawpar.2024.e00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Paragonimiasis is a harmful food-borne zoonosis caused by lung flukes of the genus Paragonimus. The disease is found on most continents, several million people are at risk of infection, and it is a re-emerging disease in developing countries. The gold standard for diagnosis of pulmonary paragonimiasis requires the finding of eggs in sputa and/or fecal samples. In ectopic paragonimiasis cases, eggs are typically not seen, and supportive information is required such as a history of eating freshwater crabs or crayfishes, radiographic findings and immunological tests. Here, we developed a proof of concept based on lateral flow assay, an immunochromatographic test kit, named the paragonimiasis whole-blood test kit, for detection of specific IgG antibody in simulated whole-blood samples (WBSs) using worm excretory-secretory antigens to diagnose human paragonimiasis. The laboratory diagnostic values of this kit were compared with the detected IgG in serum samples. In simulated WBSs, the diagnostic sensitivity and specificity were 97.8 % and 96.1 %, respectively, while for serum samples, these values were 100.0 % and 94.8 %, respectively. The comparative IgG antibody detections whether a result was positive or negative between simulated WBSs and serum samples did not differ significantly with a concordance of 97.8 % in laboratory conditions using a circumscribed set of samples. The tool is fast and easy to use. The next step involves observing and evaluating native whole blood samples and using specific recombinant antigens need to be evaluated for support diagnosis of paragonimiasis caused by P. heterotremus, P. westermani and P. miyazakii at the bedside or at local and remote hospitals with limited facilities. It will also be valuable for epidemiological surveys in Asia where paragonimiasis is endemic.
Collapse
Affiliation(s)
- Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Penchom Janwan
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Rutchanee Rodpai
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tongjit Thanchomnang
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Hiroshi Yamasaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Ubeira FM, González-Warleta M, Martínez-Sernández V, Castro-Hermida JA, Paniagua E, Romarís F, Mezo M. Increased specificity of Fasciola hepatica excretory-secretory antigens combining negative selection on hydroxyapatite and salt precipitation. Sci Rep 2024; 14:3897. [PMID: 38365880 PMCID: PMC10873304 DOI: 10.1038/s41598-024-54290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024] Open
Abstract
A single and rapid method to obtain an antigenic fraction of excretory-secretory antigens (ESAs) from Fasciola hepatica suitable for serodiagnosis of fascioliasis is reported. The procedure consists in the negative selection of F. hepatica ESAs by hydroxyapatite (HA) chromatography (HAC; fraction HAC-NR) followed by antigen precipitation with 50% ammonium sulphate (AS) and subsequent recovery by means of a Millex-GV or equivalent filter (Fi-SOLE fraction). Tested in indirect ELISA, the Fi-SOLE antigens detected natural infections by F. hepatica with 100% sensitivity and 98.9% specificity in sheep, and 97.7% sensitivity and 97.7% specificity in cattle, as determined by ROC analysis. The SDS-PAGE and proteomic nano-UHPLC-Tims-QTOF MS/MS analysis of fractions showed that the relative abundance of L-cathepsins and fragments thereof was 57% in fraction HAC-NR and 93.8% in fraction Fi-SOLE. The second most abundant proteins in fraction HAC-NR were fatty-acid binding proteins (11.9%). In contrast, free heme, and heme:MF6p/FhHDM-1 complexes remained strongly bond to the HA particles during HAC. Interestingly, phosphorylcholine (PC)-bearing antigens, which are a frequent source of cross-reactivity, were detected with an anti-PC mAb (BH8) in ESAs and fraction HAC-NR but were almost absent in fraction Fi-SOLE.
Collapse
Affiliation(s)
- Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain.
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Victoria Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
- Servicio de Dermatología Médico-Quirúrgica y Venereología, Complejo Hospitalario Universitario de Pontevedra (CHUP), 36071, Pontevedra, Spain
| | - José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, 15782, Santiago de Compostela, Spain
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, AGACAL, 15318, Abegondo (A Coruña), Spain
| |
Collapse
|
4
|
Di Maggio LS, Curtis KC, Erdmann-Gilmore P, Sprung RSW, Townsend RR, Weil GJ, Fischer PU. Comparative proteomics of adult Paragonimus kellicotti excretion/secretion products released in vitro or present in the lung cyst nodule. PLoS Negl Trop Dis 2022; 16:e0010679. [PMID: 35976975 PMCID: PMC9423667 DOI: 10.1371/journal.pntd.0010679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Paragonimus kellicotti is a zoonotic lung fluke infection, the agent of North American paragonimiasis, and an excellent model for other Paragonimus infections. The excretory/secretory proteins (ESP) released by parasites and presented at the parasite-host interface are frequently proposed to be useful targets for drugs and/or vaccines In vitro culture conditions may alter ESP compared to those produced in vivo. In order to investigate ESPs produced in vivo we took advantage of the fact that adult P. kellicotti reproduce in the lungs of experimentally infected gerbils in tissue cysts. We performed a mass-spectrometric analysis of adult P. kellicotti soluble somatic protein (SSPs) extracts, excreted/secreted proteins (ESPs) produced by adult worms during in vitro culture, and lung cyst fluid proteins (CFPs) from experimentally infected gerbils. We identified 2,137 P. kellicotti proteins that were present in at least two of three biological replicates and supported by at least two peptides. Among those were 1,914 proteins found in SSP, 947 in ESP and 37 in CFP. In silico analysis predicted that only 141 of the total 2,137 proteins were secreted via classical or non-classical pathways. The most abundant functional categories in SSP were storage and oxidative metabolism. The most abundant categories in ESP were proteins related to metabolism and signal transduction. The 37 parasite-related proteins in CFP belonged to 11 functional categories. The largest groups were proteins with unknown function, cytoskeletal proteins and proteasome machinery. 29 of these 37 proteins were shared among all three sample types. To our knowledge, this is the first study that compares in vitro and in vivo ESP for any Paragonimus species. This study has provided new insights into ESPs of food-borne trematodes that are produced and released in vivo. Proteins released at the host-parasite interface may help the parasite evade host immunity and may represent new targets for novel treatments or diagnostic tests for paragonimiasis.
Collapse
Affiliation(s)
- Lucia S. Di Maggio
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt C. Curtis
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert S. W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
5
|
Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:5185. [PMID: 34372422 PMCID: PMC8348896 DOI: 10.3390/s21155185] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Fabio Di Nardo
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (S.C.); (C.B.); (L.A.)
| | | | | | | | | |
Collapse
|
6
|
Janwan P, Intapan PM, Sadaow L, Rodpai R, Yamasaki H, Boonroumkaew P, Sanpool O, Thanchomnang T, Sadee P, Maleewong W. Development of Immunochromatographic Test Kit for Rapid Detection of Specific IgG4 Antibody in Whole-Blood Samples for Diagnosis of Human Gnathostomiasis. Diagnostics (Basel) 2021; 11:diagnostics11050862. [PMID: 34064745 PMCID: PMC8151850 DOI: 10.3390/diagnostics11050862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Human gnathostomiasis is a harmful food-borne zoonosis caused by roundworms of the genus Gnathostoma. The parasite can occasionally migrate to the central nervous system, causing life-threatening disease and death. Here, we report a new point-of-care (POC) test kit, the gnathostomiasis blood immunochromatographic test (GB-ICT) kit. The kit is based on recombinant Gnathostoma spinigerum antigen and detects specific IgG4 antibody in whole-blood samples (WBSs). The GB-ICT kit showed potentially high diagnostic values with simulated WBSs (n = 248), which were obtained by spiking patients’ sera with red blood cells. The accuracy, sensitivity, specificity, and positive and negative predictive values were 95.2%, 100%, 93.8%, 81.5%, and 100%, respectively. Ten WBSs from clinically suspected gnathostomiasis patients were all positive according to the GB-ICT kit, while 10 WBSs from healthy volunteers were negative. The GB-ICT kit is a simple and convenient POC testing tool using finger-prick blood samples: venous blood sampling and serum separation processes are not required. The GB-ICT kit can support clinical diagnosis in remote areas and field settings without sophisticated equipment facilities.
Collapse
Affiliation(s)
- Penchom Janwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand;
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.I.); (L.S.); (R.R.); (P.B.); (O.S.)
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.I.); (L.S.); (R.R.); (P.B.); (O.S.)
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.I.); (L.S.); (R.R.); (P.B.); (O.S.)
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Hiroshi Yamasaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.I.); (L.S.); (R.R.); (P.B.); (O.S.)
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.I.); (L.S.); (R.R.); (P.B.); (O.S.)
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Tongjit Thanchomnang
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Phuangphaka Sadee
- Clinical Immunology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.I.); (L.S.); (R.R.); (P.B.); (O.S.)
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: ; Tel.: +66-4336-3434
| |
Collapse
|