1
|
Bartholomé J, Ospina JO, Sandoval M, Espinosa N, Arcos J, Ospina Y, Frouin J, Beartschi C, Ghneim T, Grenier C. Genomic selection for tolerance to aluminum toxicity in a synthetic population of upland rice. PLoS One 2024; 19:e0307009. [PMID: 39173048 PMCID: PMC11341055 DOI: 10.1371/journal.pone.0307009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Over half of the world's arable land is acidic, which constrains cereal production. In South America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Venezuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts have been made to breed for tolerance to aluminum toxicity using synthetic populations. The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to increase productivity for the Llanos in Colombia. In this study, we evaluated the performance of genomic prediction models to optimize the breeding scheme by hastening the development of an improved synthetic population and elite lines. We characterized 334 families at the S0:4 generation in two conditions. One condition was the control, managed with liming, while the other had high aluminum toxicity. Four traits were considered: days to flowering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain (ZN). The population presented a high tolerance to aluminum toxicity, with more than 72% of the families showing a higher yield under aluminum conditions. The performance of the families under the aluminum toxicity condition was predicted using four different models: a single-environment model and three multi-environment models. The multi-environment models differed in the way they integrated genotype-by-environment interactions. The best predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH, 0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment models ranged from 71% for YLD to 430% for FL. The selection of the best-performing families based on multi-trait indices, including the four traits mentioned above, facilitated the identification of suitable families for recombination. This information will be used to develop a new cycle of recurrent selection through genomic selection.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Alliance Bioversity CIAT, Cali, Colombia
| | | | | | - Natalia Espinosa
- Alliance Bioversity CIAT, Cali, Colombia
- FEDEARROZ–Fondo Nacional del Arroz, Bogotá, Colombia
| | - Jairo Arcos
- HarvestPlus Program, Alliance Bioversity CIAT, Cali, Colombia
| | | | - Julien Frouin
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Cédric Beartschi
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Thaura Ghneim
- Departamento de Ciencias Biológicas, Universidad ICESI, Cali, Colombia
| | - Cécile Grenier
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
2
|
Jahan N, Javed MA, Khan A, Manan FA, Tabassum B. Genetic architecture of Al 3+ toxicity tolerance in rice F 2:3 populations determined through QTL mapping. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:794-805. [PMID: 33871748 DOI: 10.1007/s10646-021-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al3+) toxicity is one of the factors limiting crop production in acidic soils. Identifying quantitative trait loci (QTLs)/genes for tolerance to Al3+ toxicity at seed germination can aid the development of new tolerant cultivars. The segregating population derived from Pak Basmati (Indica) × Pokkali (Indica) was used for mapping QTLs linked with tolerance to Al3+ toxicity ranging from 0 to 20 mM at pH 4 ± 0.2 at germination. The favorable alleles for all new QTLs were analyzed based on germination traits, i.e., final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean germination time (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC), and growth traits, such as root length (RL), shoot length (SL), total dry biomass (TDB) and germination vigor index (GVI). The phenotypic evolution showed transgressive variations. For genome-wide mapping, 90 polymorphic SSRs with 4 gene-specific markers and Win QTL Cart were used for QTL analysis. In all, 35 QTLs for germination and 11 QTLs for seedling growth were detected in distinct chromosomal regions by composite interval mapping (CIM), and multiple interval mapping (MIM) confirmed the pleiotropy at region RM128 on chromosome 1. Based on our genetic mapping studies, the genes/QTLs underlying tolerance to Al3+ toxicity could differ for both the germination and seedling stages in segregated populations. The QTLs identified in this study could be a source of new alleles for improving tolerance to Al3+ toxicity in rice.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan.
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia.
| | - Muhammad Arshad Javed
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia
| | - Anwar Khan
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Fazilah Abd Manan
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Kulkarni V, Sawbridge T, Kaur S, Hayden M, Slater AT, Norton SL. New sources of lentil germplasm for aluminium toxicity tolerance identified by high throughput hydroponic screening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:563-576. [PMID: 33854284 PMCID: PMC7981344 DOI: 10.1007/s12298-021-00954-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 05/11/2023]
Abstract
Aluminium (Al) toxicity in acid soils inhibits root elongation and development causing reduced water and nutrient uptake by the root system, which ultimately reduces the crop yield. This study established a high throughput hydroponics screening method and identified Al toxicity tolerant accessions from a set of putative acid tolerant lentil accessions. Four-day old lentil seedlings were screened at 5 µM Al (pH 4.5) for three days in hydroponics. Measured pre and post treatment root length was used to calculate the change in root length (ΔRL) and relative root growth (RRG%). A subset of 15 selected accessions were used for acid soil Al screening, and histochemical and biochemical analyses. Al treatment significantly reduced the ΔRL with an average of 32.3% reduction observed compared to the control. Approximately 1/4 of the focused identification of germplasm strategy accessions showed higher RRG% than the known tolerant line ILL6002 which has the RRG% of 37.9. Very tolerant accessions with RRG% of > 52% were observed in 5.4% of the total accessions. A selection index calculated based on all root traits in acid soil screening was highest in AGG70137 (636.7) whereas it was lowest in Precoz (76.3). All histochemical and biochemical analyses supported the hydroponic results as Northfield, AGG70137, AGG70561 and AGG70281 showed consistent good performance. The identified new sources of Al tolerant lentil germplasm can be used to breed new Al toxicity tolerant lentil varieties. The established high throughput hydroponic method can be routinely used for screening lentil breeding populations for Al toxicity tolerance. Future recommendations could include evaluation of the yield potential of the selected subset of accessions under acid soil field conditions, and the screening of a wider range of landrace accessions originating from areas with Al toxic acid soils.
Collapse
Affiliation(s)
- Vani Kulkarni
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
| | - Tim Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sukhjiwan Kaur
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Anthony T. Slater
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sally L. Norton
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400 Australia
| |
Collapse
|
4
|
Yang L, Lei L, Liu H, Wang J, Zheng H, Zou D. Whole-genome mining of abiotic stress gene loci in rice. PLANTA 2020; 252:85. [PMID: 33052473 DOI: 10.1007/s00425-020-03488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
We projected meta-QTL (MQTL) for drought, salinity, cold state, and high metal ion tolerance in rice using a meta-analysis based on high-density consensus maps. In addition, a genome-wide association analysis was used to validate the results of the meta-analysis, and four new chromosome intervals for mining abiotic stress candidate genes were obtained. Drought, severe cold, high salinity, and high metallic ion concentrations severely restrict rice production. Consequently, the breeding of abiotic stress-tolerant variety is being paid increasingly more attention. This study aimed to identify meta-quantitative trait loci (MQTL) for abiotic stress tolerance in rice, as well as the molecular markers and potential candidate genes of the MQTL regions. We summarized 2785 rice QTL and conducted a meta-analysis of 159 studies. We found 82 drought tolerance (DT), 70 cold tolerance (CT), 70 salt tolerance (ST), and 51 heavy metal ion tolerance (IT) meta-QTL, as well as 20 DT, 11 CT, 22 ST, and 5 IT candidate genes in the MQTL interval. Thirty-one multiple-tolerance related MQTL regions, which were highly enriched, were also detected, and 13 candidate genes related to multiple-tolerance were obtained. In addition, the correlation between DT, CT, and ST was significant in the rice genome. Four candidate genes and four MM-QTL regions were detected simultaneously by GWAS and meta-analysis. The four candidate genes showed distinct genetic differentiation and substantial genetic distance between indica and japonica rice, and the four MM-QTL are potential intervals for mining abiotic stress-related candidate genes. The candidate genes identified in this study will not only be useful for marker-assisted selection and pyramiding but will also accelerate the fine mapping and cloning of the candidate genes associated with abiotic stress-tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - HuaLong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
5
|
Kulkarni SR, Balachandran SM, Ulaganathan K, Balakrishnan D, Praveen M, Prasad ASH, Fiyaz RA, Senguttuvel P, Sinha P, Kale RR, Rekha G, Kousik MBVN, Harika G, Anila M, Punniakoti E, Dilip T, Hajira SK, Pranathi K, Das MA, Shaik M, Chaitra K, Rao PK, Gangurde SS, Pandey MK, Sundaram RM. Molecular mapping of QTLs for yield related traits in recombinant inbred line (RIL) population derived from the popular rice hybrid KRH-2 and their validation through SNP genotyping. Sci Rep 2020; 10:13695. [PMID: 32792551 PMCID: PMC7427098 DOI: 10.1038/s41598-020-70637-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
The study was undertaken to identify the quantitative trait loci (QTLs) governing yield and its related traits using a recombinant inbred line (RIL) population derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R). A genetic map spanning 294.2 cM was constructed with 126 simple sequence repeats (SSR) loci uniformly distributed across the rice genome. QTL analysis using phenotyping and genotyping information identified a total of 22 QTLs. Of these, five major effect QTLs were identified for the following traits: total grain yield/plant (qYLD3-1), panicle weight (qPW3-1), plant height (qPH12-1), flag leaf width (qFLW4-1) and panicle length (qPL3-1), explaining 20.23–22.76% of the phenotypic variance with LOD scores range of 6.5–10.59. Few genomic regions controlling several traits (QTL hotspot) were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1). Significant epistatic interactions were also observed for total grain yield per plant (YLD) and panicle length (PL). While most of these QTLs were observed to be co-localized with the previously reported QTL regions, a novel, major QTL associated with panicle length (qPL3-1) was also identified. SNP genotyping of selected high and low yielding RILs and their QTL mapping with 1,082 SNPs validated most of the QTLs identified through SSR genotyping. This facilitated the identification of novel major effect QTLs with much better resolution and precision. In-silico analysis of novel QTLs revealed the biological functions of the putative candidate gene (s) associated with selected traits. Most of the high-yielding RILs possessing the major yield related QTLs were identified to be complete restorers, indicating their possible utilization in development of superior rice hybrids.
Collapse
Affiliation(s)
- Swapnil Ravindra Kulkarni
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - S M Balachandran
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India.
| | - K Ulaganathan
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, India
| | - Divya Balakrishnan
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M Praveen
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - A S Hari Prasad
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - R A Fiyaz
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - P Senguttuvel
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Pragya Sinha
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Ravindra R Kale
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - G Rekha
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M B V N Kousik
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - G Harika
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M Anila
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - E Punniakoti
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - T Dilip
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - S K Hajira
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - K Pranathi
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M Ayyappa Das
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Mastanbee Shaik
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - K Chaitra
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - P Koteswara Rao
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - R M Sundaram
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
6
|
Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype. Sci Rep 2020; 10:4580. [PMID: 32165659 PMCID: PMC7067865 DOI: 10.1038/s41598-020-61305-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
Aluminium (Al) toxicity is the single most important contributing factor constraining crop productivity in acidic soils. Hydroponics based screening of three rice genotypes, a tolerant (ARR09, AR), a susceptible (IR 1552, IR) and an acid soil adapted landrace (Theruvii, TH) revealed that AR accumulates less Al and shows minimum decrease in shoot and root biomass under Al toxicity conditions when compared with IR. Transcriptome data generated on roots (grown in presence or absence of Al) led to identification of ~1500 transcripts per genotype with percentage annotation ranging from 21.94% (AR) to 29.94% (TH). A total of 511, 804 and 912 DEGs were identified in genotypes AR, IR and TH, respectively. IR showed upregulation of transcripts involved in exergonic processes. AR appears to conserve energy by downregulating key genes of glycolysis pathway and maintaining transcript levels of key exergonic step enzymes under Al stress. The tolerance in AR appears to be as a result of novel mechanism as none of the reported Al toxicity genes or QTLs overlap with significant DEGs. Components of signal transduction and regulatory machinery like transcripts encoding zinc finger protein, calcieurin binding protein and cell wall associated transcripts are among the highly upregulated DEGs in AR, suggesting increased and better signal transduction in response to Al stress in tolerant rice. Sequencing of NRAT1 and glycine-rich protein A3 revealed distinct haplotype for indica type AR. The newly identified components of Al tolerance will help in designing molecular breeding tools to enhance rice productivity in acidic soils.
Collapse
|
7
|
Zhang P, Zhong K, Zhong Z, Tong H. Mining candidate gene for rice aluminum tolerance through genome wide association study and transcriptomic analysis. BMC PLANT BIOLOGY 2019; 19:490. [PMID: 31718538 PMCID: PMC6852983 DOI: 10.1186/s12870-019-2036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/12/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND The genetic mechanism of aluminum (Al) tolerance in rice is great complicated. Uncovering genetic mechanism of Al tolerance in rice is the premise for Al tolerance improvement. Mining elite genes within rice landrace is of importance for improvement of Al tolerance in rice. RESULTS Genome-wide association study (GWAS) performed in EMMAX for rice Al tolerance was carried out using 150 varieties of Ting's core collection constructed from 2262 Ting's collections with more than 3.8 million SNPs. Within Ting's core collection of clear population structure and kinship relatedness as well as high rate of linkage disequilibrium (LD) decay, 17 genes relating to rice Al tolerance including cloned genes like NRAT1, ART1 and STAR1 were identified in this study. Moreover, 13 new candidate regions with high LD and 69 new candidate genes were detected. Furthermore, 20 of 69 new candidate genes were detected with significant difference between Al treatment and without Al toxicity by transcriptome sequencing. Interestingly, both qRT-PCR and sequence analysis in CDS region demonstrated that the candidate genes in present study might play important roles in rice Al tolerance. CONCLUSIONS The present study provided important information for further using these elite genes existing in Ting's core collection for improvement of rice Al tolerance.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
8
|
Transcriptomic Analysis for Indica and Japonica Rice Varieties under Aluminum Toxicity. Int J Mol Sci 2019; 20:ijms20040997. [PMID: 30823582 PMCID: PMC6412857 DOI: 10.3390/ijms20040997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Aluminum (Al) at high concentrations inhibits root growth, damage root systems, and causes significant reductions in rice yields. Indica and Japonica rice have been cultivated in distinctly different ecological environments with different soil acidity levels; thus, they might have different mechanisms of Al-tolerance. In the present study, transcriptomic analysis in the root apex for Al-tolerance in the seedling stage was carried out within Al-tolerant and -sensitive varieties belonging to different subpopulations (i.e., Indica, Japonica, and mixed). We found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties, while the gene expression patterns of the Al-tolerant varieties in the mixed subgroup, which was inclined to Japonica, were similar to the Al-tolerant varieties in Japonica. Moreover, after further GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of the transcriptomic data, we found that eight pathways, i.e., “Terpenoid backbone biosynthesis”, “Ribosome”, “Amino sugar and nucleotide sugar metabolism”, “Plant hormone signal transduction”, “TCA cycle”, “Synthesis and degradation of ketone bodies”, and “Butanoate metabolism” were found uniquely for Indica Al-tolerant varieties, while only one pathway (i.e., “Sulfur metabolism”) was found uniquely for Japonica Al-tolerant varieties. For Al-sensitive varieties, one identical pathway was found, both in Indica and Japonica. Three pathways were found uniquely in “Starch and sucrose metabolism”, “Metabolic pathway”, and “Amino sugar and nucleotide sugar metabolism”.
Collapse
|
9
|
Identification of Quantitative Trait Loci Associated with Nutrient Use Efficiency Traits, Using SNP Markers in an Early Backcross Population of Rice ( Oryza sativa L.). Int J Mol Sci 2019; 20:ijms20040900. [PMID: 30791412 PMCID: PMC6413108 DOI: 10.3390/ijms20040900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022] Open
Abstract
The development of rice cultivars with nutrient use efficiency (NuUE) is highly crucial for sustaining global rice production in Asia and Africa. However, this requires a better understanding of the genetics of NuUE-related traits and their relationship to grain yield. In this study, simultaneous efforts were made to develop nutrient use efficient rice cultivars and to map quantitative trait loci (QTLs) governing NuUE-related traits in rice. A total of 230 BC1F5 introgression lines (ILs) were developed from a single early backcross population involving Weed Tolerant Rice 1, as the recipient parent, and Hao-an-nong, as the donor parent. The ILs were cultivated in field conditions with a different combination of fertilizer schedule under six nutrient conditions: minus nitrogen (–N), minus phosphorus (–P), (–NP), minus nitrogen phosphorus and potassium (–NPK), 75% of recommended nitrogen (75N), and NPK. Analysis of variance revealed that significant differences (p < 0.01) were noted among ILs and treatments for all traits. A high-density linkage map was constructed by using 704 high-quality single nucleotide polymorphism (SNP) markers. A total of 49 main-effect QTLs were identified on all chromosomes, except on chromosome 7, 11 and 12, which are showing 20.25% to 34.68% of phenotypic variation. With further analysis of these QTLs, we refined them to four top hotspot QTLs (QTL harbor-I to IV) located on chromosomes 3, 5, 9, and 11. However, we identified four novel putative QTLs for agronomic efficiency (AE) and 22 QTLs for partial factor productivity (PFP) under –P and 75N conditions. These interval regions of QTLs, several transporters and genes are located that were involved in nutrient uptake from soil to plant organs and tolerance to biotic and abiotic stresses. Further, the validation of these potential QTLs, genes may provide remarkable value for marker-aided selection and pyramiding of multiple QTLs, which would provide supporting evidence for the enhancement of grain yield and cloning of NuUE tolerance-responsive genes in rice.
Collapse
|
10
|
Zhao M, Song J, Wu A, Hu T, Li J. Mining Beneficial Genes for Aluminum Tolerance Within a Core Collection of Rice Landraces Through Genome-Wide Association Mapping With High Density SNPs From Specific-Locus Amplified Fragment Sequencing. FRONTIERS IN PLANT SCIENCE 2018; 9:1838. [PMID: 30619409 PMCID: PMC6305482 DOI: 10.3389/fpls.2018.01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Trivalent Aluminum (Al3+) in acidic soils is harmful to root growth and significantly reduce crop yields. Therefore, mining beneficial genes for Al tolerance is valuable for rice production. The objective of this research is to identify some beneficial genes for Al tolerance from rice landraces with high density SNP set from SLAF-seq (Specific-Locus Amplified Fragment sequencing). A total of 67,511 SNPs were obtained from SLAF-seq and used for genome-wide association study (GWAS) for Al tolerance with the 150 accessions of rice landraces in the Ting's rice core collection. The results showed that rice landraces in the Ting's rice core collection possessed a wide-range of variation for Al tolerance, measured by relative root elongation (RRE). With the mixed linear models, GWAS identified a total of 25 associations between SNPs and Al tolerant trait with p < 0.001 and false discovery rate (FDR) <10%. The explained percentage by quantitative trait locus (QTL) to phenotypic variation was from 7.27 to 13.31%. Five of twenty five QTLs identified in this study were co-localized with the previously cloned genes or previously identified QTLs related to Al tolerance or root growth/development. These results indicated that landraces are important sources for Al tolerance in rice and the mapping results could provide important information to breed Al tolerant rice cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Minghui Zhao
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Jiayu Song
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Aiting Wu
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Tao Hu
- Rice Research Institute, Shenyang Agriculture University, Shenyang, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
11
|
Niedziela A. The influence of Al 3+ on DNA methylation and sequence changes in the triticale (× Triticosecale Wittmack) genome. J Appl Genet 2018; 59:405-417. [PMID: 30159773 PMCID: PMC7902597 DOI: 10.1007/s13353-018-0459-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023]
Abstract
Abiotic stressors such as drought, salinity, and exposure to heavy metals can induce epigenetic changes in plants. In this study, liquid chromatography (RP-HPLC), methylation amplified fragment length polymorphisms (metAFLP), and methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effects of aluminum (Al) stress on DNA methylation levels in the crop species triticale. RP-HPLC, but not metAFLP or MSAP, revealed significant differences in methylation between Al-tolerant (T) and non-tolerant (NT) triticale lines. The direction of methylation change was dependent on phenotype and organ. Al treatment increased the level of global DNA methylation in roots of T lines by approximately 0.6%, whereas demethylation of approximately 1.0% was observed in NT lines. DNA methylation in leaves was not affected by Al stress. The metAFLP and MSAP approaches identified DNA alterations induced by Al3+ treatment. The metAFLP technique revealed sequence changes in roots of all analyzed triticale lines and few mutations in leaves. MSAP showed that demethylation of CCGG sites reached approximately 3.97% and 3.75% for T and NT lines, respectively, and was more abundant than de novo methylation, which was observed only in two tolerant lines affected by Al stress. Three of the MSAP fragments showed similarity to genes involved in abiotic stress.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.
| |
Collapse
|
12
|
Tao Y, Niu Y, Wang Y, Chen T, Naveed SA, Zhang J, Xu J, Li Z. Genome-wide association mapping of aluminum toxicity tolerance and fine mapping of a candidate gene for Nrat1 in rice. PLoS One 2018; 13:e0198589. [PMID: 29894520 PMCID: PMC5997306 DOI: 10.1371/journal.pone.0198589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/22/2018] [Indexed: 11/30/2022] Open
Abstract
Aluminum (Al) stress is becoming the major limiting factor in crop production in acidic soils. Rice has been reported as the most Al-tolerant crop and the capacity of Al toxicity tolerance is generally evaluated by comparing root growth under Al stress. Here, we performed an association mapping of Al toxicity tolerance using a core collection of 211 indica rice accessions with 700 K high quality SNP data. A total of 21 putative QTL affecting shoot height (SH), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW) and shoot water content (SWC) were identified at seedling stage, including three QTL detected only under control condition, eight detected only under Al stress condition, ten simultaneously detected in both control and Al stress conditions, and seven were identified by stress tolerance index of their corresponding traits. Total of 21 candidate genes for 7 important QTL regions associated with Al toxicity tolerance were identified based on combined haplotype analysis and functional annotation, and the most likely candidate gene(s) for each important QTL were also discussed. Also a candidate gene Nrat1 on chromosome 2 was further fine-mapped using BSA-seq and linkage analysis in the F2 population derived from the cross of Al tolerant accession CC105 and super susceptible accession CC180. A new non-synonymous SNP variation was observed at Nrat1 between CC105 and CC180, which resulted in an amino-acid substitution from Ala (A) in CC105 to Asp (D) in CC180. Haplotype analysis of Nrat1 using 327 3K RGP accessions indicated that minor allele variations in aus and indica subpopulations decreased Al toxicity tolerance in rice. The candidate genes identified in this study provide valuable information for improvement of Al toxicity tolerance in rice. Our research indicated that minor alleles are important for QTL mapping and its application in rice breeding when natural gene resources are used.
Collapse
Affiliation(s)
- Yonghong Tao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanan Niu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianxiao Chen
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shahzad Amir Naveed
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
13
|
Meng L, Wang B, Zhao X, Ponce K, Qian Q, Ye G. Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations. FRONTIERS IN PLANT SCIENCE 2017; 8:1822. [PMID: 29123537 PMCID: PMC5662918 DOI: 10.3389/fpls.2017.01822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
Excessive amounts of metal are toxic and severely affect plant growth and development. Understanding the genetic control of metal tolerance is crucial to improve rice resistance to Fe, Zn, and Al toxicity. The multi-parent advanced generation inter-cross (MAGIC) populations were genotyped using a 55 K rice SNP array and screened at the seedling stage for Fe, Zn, and Al toxicity using a hydroponics system. Association analysis was conducted by implementing a mixed linear model (MLM) for each of the five MAGIC populations double cross DC1 (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1), double cross DC2 (founders of double cross were FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127), eight parents population 8way (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127), DC12 (DC1+DC2) and rice multi-parent recombinant inbred line population RMPRIL (DC1+DC2+8way). A total of 21, 30, and 21 QTL were identified for Fe, Zn, and Al toxicity tolerance, respectively. For multi tolerance (MT) as Fe, Zn, and Al tolerance-related traits, three genomic regions, MT1.1 (chr.1: 35.4-36.3 Mb), MT1.2 (chr.1: 35.4-36.3 Mb), and MT3.2 (chr.3: 35.4-36.2 Mb) harbored QTL. The chromosomal regions MT2.1 (chr.2: 2.4-2.8 Mb), MT2.2 (chr.2: 24.5-25.8 Mb), MT4 (chr.4: 1.2 Mb Mb), MT8.1 (chr.8: 0.7-0.9 Mb), and MT8.2 (chr.8: 2.2-2.4 Mb) harbored QTL for Fe and Zn tolerance, while MT2.3 (chr.2: 30.5-31.6 Mb), MT3.1 (chr.3: 12.5-12.8 Mb), and MT6 (chr.6: 2.0-3.0 Mb) possessed QTL for Al and Zn tolerance. The chromosomal region MT9.1 (chr.9: 14.2-14.7 Mb) possessed QTL for Fe and Al tolerance. A total of 11 QTL were detected across different MAGIC populations and 12 clustered regions were detected under different metal conditions, suggesting that these genomic regions might constitute valuable regions for further marker-assisted selection (MAS) in breeding programs.
Collapse
Affiliation(s)
- Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences in Jiangsu Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Lianyungang, China
| | - Xiangqian Zhao
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - Kimberly Ponce
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Qian Qian
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
14
|
Liu S, Gao H, Wu X, Fang Q, Chen L, Zhao FJ, Huang CF. Isolation and Characterization of an Aluminum-resistant Mutant in Rice. RICE (NEW YORK, N.Y.) 2016; 9:60. [PMID: 27837430 PMCID: PMC5106411 DOI: 10.1186/s12284-016-0132-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 10/27/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aluminum (Al) toxicity represents a major constraint for crop production on acid soils. Rice is a high Al-resistant plant species among small-grain cereals, but its molecular mechanisms of Al resistance are not fully understood. We adopted a forward genetic screen strategy to uncover the Al-resistance mechanisms in rice. In this study, we screened an ethylmethylsulfone (EMS)-mutagenized library to isolate and characterize mutants with altered sensitivity to Al in rice. RESULTS Treatment of an Al-intolerant indica variety Kasalath with 20 μM Al induced root swelling. This phenotype could be suppressed by the addition of aminoethoxyvinylglycine (AVG, an ethylene synthesis inhibitor), suggesting that increased production of ethylene is responsible for the root swelling under Al stress. By utilizing the root swelling as an indicator, we developed a highly effective method to screen Al-sensitive or -resistant mutants in rice. Through screening of ~5000 M2 lines, we identified 10 Al-sensitive mutants and one Al-resistant mutant ral1 (resistance to aluminum 1). ral1 mutant showed short root phenotype under normal growth condition, which was attributed to reduced cell elongation in the mutant. A dose-response experiment revealed that ral1 mutant was more resistant to Al than wild-type (WT) at all Al concentrations tested. The mutant was also more resistant to Al when grown in an acid soil. The mutant accumulated much lower Al in the root tips (0-1 cm) than WT. The mutant contained less Al in the cell wall of root tips than WT, whereas Al concentration in the cell sap was similar between WT and the mutant. In addition to Al, the mutant was also more resistant to Cd than WT. Quantitative RT-PCR analysis showed that the expression levels of known Al-resistance genes were not increased in the mutant compared to WT. Genetic analysis indicated that the Al-resistance phenotype in ral1 mutant was controlled by a single recessive gene mapped on the long arm of chromosome 6. CONCLUSIONS We have developed a highly efficient method for the screening of rice mutants with altered Al sensitivity. We identified a novel mutant ral1 resistant to Al by this screening. The increased resistance of ral1 to Al toxicity is caused by the reduced Al binding to the cell wall of root tips and the responsible gene is mapped on the long arm of chromosome 6.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huiling Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoyan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiu Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
Zhang P, Zhong K, Tong H, Shahid MQ, Li J. Association Mapping for Aluminum Tolerance in a Core Collection of Rice Landraces. FRONTIERS IN PLANT SCIENCE 2016; 7:1415. [PMID: 27757115 PMCID: PMC5047912 DOI: 10.3389/fpls.2016.01415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 09/05/2016] [Indexed: 05/27/2023]
Abstract
Trivalent aluminum (Al3+) has drastic effect on the rice production in acidic soils. Elite genes for aluminum (Al) tolerance might exist in rice landraces. Therefore, the purpose of this research is to mine the elite genes within rice landraces. Association mapping for Al tolerance traits [i.e., relative root elongation (RRE)] was performed by using a core collection of 150 accessions of rice landraces (i.e., Ting's rice core collection). Our results showed that the Ting's rice core collection possessed a wide-range of phenotypic variation for Al tolerance, and the index of Al tolerance (RRE) was ranged from 0.22 to 0.89. Moreover, the groups with different origins and compositions of indica and japonica rice showed different degrees of tolerance to varying levels of Al. These rice landraces were further screened with 274 simple sequence repeat markers, and association mapping was performed using a mixed linear model approach. The mapping results showed that a total of 23 significant (P < 0.05) trait-marker associations were detected for Al tolerance. Of these, three associations (13%) were identical to the quantitative trait loci reported previously, and other 20 associations were reported for the first time in this study. The proportion of phenotypic variance (R2) explained by 23 significant associations ranged from 5.03 to 20.03% for Al tolerance. We detected several elite alleles for Al tolerance based on multiple comparisons of allelic effects, which could be used to develop Al tolerant rice cultivars through marker-assisted breeding.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
16
|
Gimhani DR, Gregorio GB, Kottearachchi NS, Samarasinghe WLG. SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa). Mol Genet Genomics 2016; 291:2081-2099. [PMID: 27535768 DOI: 10.1007/s00438-016-1241-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/10/2016] [Indexed: 02/02/2023]
Abstract
Breeding for salt tolerance is the most promising approach to enhance the productivity of saline prone areas. However, polygenic inheritance of salt tolerance in rice acts as a bottleneck in conventional breeding for salt tolerance. Hence, we set our goals to construct a single nucleotide polymorphism (SNP)-based molecular map employing high-throughput SNP marker technology and to investigate salinity tolerant QTLs with closest flanking markers using an elite rice background. Seedling stage salinity responses were assessed in a population of 281 recombinant inbred lines (RILs) derived from the cross between At354 (salt tolerant) and Bg352 (salt susceptible), by 11 morpho-physiological indices under a hydroponic system. Selected extreme 94 RILs were genotyped using Illumina Infinium rice 6K SNP array and densely saturated molecular map spanning 1460.81 cM of the rice genome with an average interval of 1.29 cM between marker loci was constructed using 1135 polymorphic SNP markers. The results revealed 83 significant QTLs for 11 salt responsive traits explaining 12.5-46.7 % of phenotypic variation in respective traits. Of them, 72 QTLs responsible for 10 traits were co-localized together forming 14 QTL hotspots at 14 different genomic regions. The all QTL hotspots were flanked less than 1 Mb intervals and therefore the SNP loci associated with these QTL hotspots would be important in candidate gene discovery for salt tolerance.
Collapse
Affiliation(s)
- D R Gimhani
- Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba Univesity of Sri Lanka, Makandura, Gonawila (NWP), 60170, Sri Lanka.
| | - Glenn B Gregorio
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- East-West Seed Company (EWS), Km. 54 Cagayan Valley Road, Sampaloc, San Rafael, 3008, Bulacan, Philippines
| | - N S Kottearachchi
- Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba Univesity of Sri Lanka, Makandura, Gonawila (NWP), 60170, Sri Lanka
| | - W L G Samarasinghe
- Rice Research and Development Institute, Batalagoda, Ibbagamuwa, Sri Lanka
| |
Collapse
|
17
|
Sade H, Meriga B, Surapu V, Gadi J, Sunita MSL, Suravajhala P, Kavi Kishor PB. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 2016; 29:187-210. [PMID: 26796895 DOI: 10.1007/s10534-016-9910-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
18
|
Bian M, Jin X, Broughton S, Zhang XQ, Zhou G, Zhou M, Zhang G, Sun D, Li C. A new allele of acid soil tolerance gene from a malting barley variety. BMC Genet 2015. [PMID: 26219378 PMCID: PMC4518660 DOI: 10.1186/s12863-015-0254-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Acid soil is a serious limitation to crop production all over the world. Toxic aluminium (Al) cations in acid soil inhibit root growth and reduce yield. Although a gene tolerant to acid soil has been identified, it has not been used in malting barley breeding, which is partly due to the acid soil tolerance gene being linked to unfavorable malting quality traits. Results A Brazilian malting barley variety Br2 was identified as tolerant to acid soil. A doubled haploid (DH) population was developed from a cross between Br2 and the Australian acid-sensitive cultivar Hamelin. The DH population was tested for acid soil tolerance in native acid soil and a hydroponic system with pH 4.2, pH 4.2 + Al or pH 6.5, and genotyped using SSR, DArT and gene-specific markers. A single QTL was detected for all parameters related to acid soil tolerance. The QTL was mapped to the known HvMATE location on chromosome 4H. Sequence alignment of the HvMATE gene identified 13 INDELs and 87 SNPs, where one SNP coded for a single amino acid difference between the two varieties. A gene-specific marker was developed to detect the single nucleotide polymorphism between Hamelin and Br2. This marker co-segregated with aluminium tolerance and accounted for 79 % of phenotypic variation for acid soil tolerance. Conclusion The present study identified a novel source of acid soil/Al tolerance from a Brazilian malting barley cultivar Br2. This variety tolerated Al toxicity but was sensitive to low pH which is similar to most other Al-tolerant varieties. A gene-specific marker Cit7 was developed based on the HvMATE gene sequence. Cit7 will improve the efficiency of molecular-assisted selection of new barley varieties with tolerance to acid soil. Multiple alleles exist for the acid soil tolerance gene on chromosome 4H, so a malting barley variety that tolerates acid soil could be developed by selecting suitable tolerant alleles. Tolerance to low pH may play an important role for barley to adapt to acid soils. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0254-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miao Bian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Xiaoli Jin
- Agronomy Department, Zhejiang University, Hangzhou, China.
| | - Sue Broughton
- Department of Agriculture & Food WA, 3 Baron-Hay Court, South Perth, WA, 6155, Australia.
| | - Xiao-Qi Zhang
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Gaofeng Zhou
- Department of Agriculture & Food WA, 3 Baron-Hay Court, South Perth, WA, 6155, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, P.O. Box 46, Kings Meadows, TAS, 7249, Australia.
| | - Guoping Zhang
- Agronomy Department, Zhejiang University, Hangzhou, China.
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chengdao Li
- Department of Agriculture & Food WA, 3 Baron-Hay Court, South Perth, WA, 6155, Australia. .,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
19
|
Liu J, Piñeros MA, Kochian LV. The role of aluminum sensing and signaling in plant aluminum resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:221-30. [PMID: 24417891 DOI: 10.1111/jipb.12162] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resistance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcriptional activation of resistance genes has led to the identification of several transcription factors as well as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation.
Collapse
Affiliation(s)
- Jiping Liu
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Tower Road, Cornell University, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
20
|
Bian M, Zhou M, Sun D, Li C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.08.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 2011; 7:e1002221. [PMID: 21829395 PMCID: PMC3150440 DOI: 10.1371/journal.pgen.1002221] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/21/2011] [Indexed: 01/22/2023] Open
Abstract
Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype-genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates the fundamental importance of subpopulation in interpreting and manipulating the genetics of complex traits in rice.
Collapse
Affiliation(s)
- Adam N. Famoso
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Keyan Zhao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Randy T. Clark
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York, United States of America
| | - Chih-Wei Tung
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mark H. Wright
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Carlos Bustamante
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Leon V. Kochian
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York, United States of America
| | - Susan R. McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. PLANT PHYSIOLOGY 2010; 153:1678-91. [PMID: 20538888 PMCID: PMC2923895 DOI: 10.1104/pp.110.156794] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/01/2010] [Indexed: 05/18/2023]
Abstract
The genetic and physiological mechanisms of aluminum (Al) tolerance have been well studied in certain cereal crops, and Al tolerance genes have been identified in sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Rice (Oryza sativa) has been reported to be highly Al tolerant; however, a direct comparison of rice and other cereals has not been reported, and the mechanisms of rice Al tolerance are poorly understood. To facilitate Al tolerance phenotyping in rice, a high-throughput imaging system and root quantification computer program was developed, permitting quantification of the entire root system, rather than just the longest root. Additionally, a novel hydroponic solution was developed and optimized for Al tolerance screening in rice and compared with the Yoshida's rice solution commonly used for rice Al tolerance studies. To gain a better understanding of Al tolerance in cereals, comparisons of Al tolerance across cereal species were conducted at four Al concentrations using seven to nine genetically diverse genotypes of wheat, maize (Zea mays), sorghum, and rice. Rice was significantly more tolerant than maize, wheat, and sorghum at all Al concentrations, with the mean Al tolerance level for rice found to be 2- to 6-fold greater than that in maize, wheat, and sorghum. Physiological experiments were conducted on a genetically diverse panel of more than 20 rice genotypes spanning the range of rice Al tolerance and compared with two maize genotypes to determine if rice utilizes the well-described Al tolerance mechanism of root tip Al exclusion mediated by organic acid exudation. These results clearly demonstrate that the extremely high levels of rice Al tolerance are mediated by a novel mechanism, which is independent of root tip Al exclusion.
Collapse
Affiliation(s)
| | | | | | | | | | - Leon V. Kochian
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853–1901 (A.N.F., S.R.M.); Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853–2901 (R.T.C., J.E.S., E.C., L.V.K.)
| |
Collapse
|
23
|
Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. THE PLANT CELL 2009; 21:3339-49. [PMID: 19880795 PMCID: PMC2782276 DOI: 10.1105/tpc.109.070771] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.
Collapse
Affiliation(s)
- Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Chao Feng Huang
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Sakiko Nagao
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Masahiro Yano
- QTL Genomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Sato
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoshiaki Nagamura
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
- Address correspondence to
| |
Collapse
|
24
|
López-Marín HD, Rao IM, Blair MW. Quantitative trait loci for root morphology traits under aluminum stress in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:449-458. [PMID: 19436988 DOI: 10.1007/s00122-009-1051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
Aluminum (Al) toxicity is a major limiting factor of crop production in acid soils, which are found mostly in developing countries of the tropics and sub-tropics. Common bean (Phaseolus vulgaris L.) is particularly sensitive to Al toxicity; and development of genotypes with better root growth in Al-toxic soils is a priority. The objectives of the present study were to physiologically assess root architectural traits in a recombinant inbred line (RIL) population of common bean that contrasts for Al resistance (DOR364 x G19833) and to identify quantitative trait loci (QTL) controlling root growth under two nutrient solutions, one with 20 microM Al concentration and the other without Al, both at pH 4.5. A total of 24 QTL were found through composite interval mapping analysis, 9 for traits under Al treatment, 8 for traits under control treatment, and 7 for relative traits. Root characteristics expressed under Al treatment were found to be under polygenic control, and some QTL were identified at the same location as QTL for tolerance to low phosphorous stress, thus, suggesting cross-links in genetic control of adaptation of common bean to different abiotic stresses.
Collapse
|
25
|
Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:389-99. [PMID: 18826429 DOI: 10.1111/j.1365-313x.2008.03696.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.
Collapse
Affiliation(s)
- Jiping Liu
- US Plant Soil and Nutrition Laboratory, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
26
|
Hu SW, Bai GH, Carver BF, Zhang DD. Diverse origins of aluminum-resistance sources in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 118:29-41. [PMID: 18787805 DOI: 10.1007/s00122-008-0874-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/15/2008] [Indexed: 05/26/2023]
Abstract
Aluminum (Al) toxicity is a major constraint for wheat production in acidic soils. Wheat producers now routinely use Al-resistant cultivars as one cost-effective means to reduce risks associated with acidic soils. To date, diverse Al-resistant materials have been identified, but their genetic relationship has not been well characterized. A total of 57 wheat accessions, including the majority of the parents of Al-resistant accessions we identified in a previous study, were evaluated for Al resistance and analyzed with 49 simple sequence repeat (SSR) markers and 4 markers for Al-activated malate transporter (ALMT1). Pedigree and principle coordinate analysis (PCA) both separated Al-resistant accessions into four groups labeled according to common ancestry or geographical origin: US-Fultz, Polyssu, Mexican and Chinese. Al resistance in the four groups may have three independent origins given their distinct geographic origins and gene pools. Fultz originated in the USA as a major ancestor to soft red winter wheat, Polyssu originated in Brazil as a major source of Al resistance used in most genetic studies worldwide, and the Chinese group originated in China. Based on ALMT1 marker haplotypes, the Al resistance in the Polyssu and Mexico groups was likely derived from Polyssu, while most Al-resistant cultivars developed in the USA most likely inherited most of Al resistance from Fultz. Fultz was released about 50 years earlier than Polyssu. Norin 10 likely played a pivotal role in passing Al-resistant gene(s) from Fultz to better adapted, semi-dwarf wheat cultivars developed in the USA. Further characterization of Al resistance in the three different sources could reveal multiple Al-resistant mechanisms in wheat.
Collapse
Affiliation(s)
- Sheng-Wu Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | |
Collapse
|
27
|
Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L). Genetics 2008; 179:669-82. [PMID: 18493079 PMCID: PMC2390642 DOI: 10.1534/genetics.107.083451] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 03/04/2008] [Indexed: 12/19/2022] Open
Abstract
Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of wheat. Tolerant (M39A-1-6) and intolerant (M77A-1) rye haplotypes contain five and two genes, respectively, of which two (ScALMT1-M39.1 and ScALMT1-M39.2) and one (ScALMT1-M77.1) are highly expressed in the root tip, typically the main site of plant Al tolerance/susceptibility. All three transcripts are upregulated by exposure to Al. High-resolution genetic mapping identified two resistant lines resulting from recombination within the gene cluster. These recombinants exclude all genes flanking the gene cluster as candidates for controlling Alt4 tolerance, including a homolog of the barley HvMATE Al-tolerance gene. In the recombinants, one hybrid gene containing a chimeric open reading frame and the ScALMT1-M39.1 gene each appeared to be sufficient to provide full tolerance. mRNA splice variation was observed for two of the rye ALMT1 genes and in one case, was correlated with a approximately 400-bp insertion in an intron.
Collapse
Affiliation(s)
- N C Collins
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | | | | | | | |
Collapse
|
28
|
Xue Y, Jiang L, Su N, Wang JK, Deng P, Ma JF, Zhai HQ, Wan JM. The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice. PLANTA 2007; 227:255-62. [PMID: 17721709 DOI: 10.1007/s00425-007-0613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/03/2007] [Indexed: 05/16/2023]
Abstract
Aluminium (Al) toxicity is a primary cause of low rice productivity in acid soils. We have mapped a number of quantitative-trait loci (QTL) controlling Al tolerance in a recombinant inbred line population derived from a cross between the tolerant japonica cultivar Asominori and the sensitive indica cultivar IR24. Tolerance was assessed on the basis of relative root elongation. QTL were detected on chromosomes 1, 9, and 11, with the percentages of phenotypic variance explained ranging from 13.5 to 17.7%. Alleles from Asominori at all three QTL were associated with increased Al tolerance. qRRE-9 is expressed both in the genetic background of IR24 and in an Asominori/IR24-mixed background. qRRE-9 was reduced to the single recessive Mendelian factor Alt-9. High-resolution genetic and physical maps were constructed for Alt-9 in a BC(3)F(2) population of 1,043 individuals. Alt-9 maps between RM24702 and ID47-2 on chromosome 9, and co-segregates with RM5765.
Collapse
Affiliation(s)
- Y Xue
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Caniato FF, Guimarães CT, Schaffert RE, Alves VMC, Kochian LV, Borém A, Klein PE, Magalhaes JV. Genetic diversity for aluminum tolerance in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:863-76. [PMID: 17252254 DOI: 10.1007/s00122-006-0485-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 12/11/2006] [Indexed: 05/13/2023]
Abstract
Genetic variation for aluminum (Al) tolerance in plants has allowed the development of cultivars that are high yielding on acidic, Al toxic soils. However, knowledge of intraspecific variation for Al tolerance control is needed in order to assess the potential for further Al tolerance improvement. Here we focused on the major sorghum Al tolerance gene, Alt ( SB ), from the highly Al tolerant standard SC283 to investigate the range of genetic diversity for Al tolerance control in sorghum accessions from diverse origins. Two tightly linked STS markers flanking Alt ( SB ) were used to study the role of this locus in the segregation for Al tolerance in mapping populations derived from different sources of Al tolerance crossed with a common Al sensitive tester, BR012, as well as to isolate the allelic effects of Alt ( SB ) in near-isogenic lines. The results indicated the existence not only of multiple alleles at the Alt ( SB ) locus, which conditioned a wide range of tolerance levels, but also of novel sorghum Al tolerance genes. Transgressive segregation was observed in a highly Al tolerant breeding line, indicating that potential exists to exploit the additive or codominant effects of distinct Al tolerance loci. A global, SSR-based, genetic diversity analysis using a broader sorghum set revealed the presence of both multiple Alt ( SB ) alleles and different Al tolerance genes within highly related accessions. This suggests that efforts toward broadening the genetic basis for Al tolerance in sorghum may benefit from a detailed analysis of Al tolerance gene diversity within subgroups across a target population.
Collapse
Affiliation(s)
- F F Caniato
- Embrapa Maize and Sorghum, Rod. MG 424, Km 65, 35701-970, Sete Lagoas, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:249-60. [PMID: 17063338 DOI: 10.1007/s00122-006-0427-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 10/06/2006] [Indexed: 05/12/2023]
Abstract
Among cereal crops, rye is one of the most tolerant species to aluminum. A candidate gene approach was used to determine the likely molecular identity of an Al tolerance locus (Alt4). Using PCR primers designed from a wheat aluminum tolerance gene encoding an aluminum-activated malate transporter (TaALMT1), a rye gene (ScALMT1) was amplified, cloned and sequenced. Subsequently, the ScALMT1 gene of rye was found to be located on 7RS by PCR amplification using the wheat-rye addition lines. SNP polymorphisms for this gene were detected among the parents of three F(2) populations that segregate for the Alt4 locus. A map of the rye chromosome 7R, including the Alt4 locus ScALMT1 and several molecular markers, was constructed showing a complete co-segregation between Alt4 and ScALMT1. Furthermore, expression experiments were carried out to clarify the function of this candidate gene. Briefly, the ScALMT1 gene was found to be primarily expressed in the root apex and upregulated when aluminum was present in the medium. Five-fold differences in the expression were found between the Al tolerant and the Al non-tolerant genotypes. Additionally, much higher expression was detected in the rye genotypes than the moderately tolerant "Chinese Spring" wheat cultivar. These results suggest that the Alt4 locus encodes an aluminum-activated organic acid transporter gene that could be utilized to increase Al tolerance in Al sensitive plant species. Finally, TaALMT1 homologous sequences were identified in different grasses and in the dicotyledonous plant Phaseolus vulgaris. Our data support the hypothesis of the existence of a common mechanism of Al tolerance encoded by a gene located in the homoeologous group four of cereals.
Collapse
Affiliation(s)
- G Fontecha
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX. Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B 2006; 7:769-87. [PMID: 16972319 PMCID: PMC1599801 DOI: 10.1631/jzus.2006.b0769] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/28/2006] [Indexed: 11/11/2022]
Abstract
Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plasmalemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.
Collapse
Affiliation(s)
- Jun-ping Wang
- Tasmanian Institute of Agricultural Research and School of Agricultural Science, University of Tasmania, P.O. Box, Kings Meadows, TAS 6249, Australia
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW 2650, Australia
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW 2650, Australia
| | - Guo-ping Zhang
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Neville Mendham
- Tasmanian Institute of Agricultural Research and School of Agricultural Science, University of Tasmania, P.O. Box, Kings Meadows, TAS 6249, Australia
| | - Mei-xue Zhou
- Tasmanian Institute of Agricultural Research and School of Agricultural Science, University of Tasmania, P.O. Box, Kings Meadows, TAS 6249, Australia
| |
Collapse
|
32
|
CHEN RONGFU, SHEN RENFANG, GU PEI, DONG XIAOYING, DU CHANGWEN, MA JIANFENG. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. ANNALS OF BOTANY 2006; 98:389-95. [PMID: 16735401 PMCID: PMC2803463 DOI: 10.1093/aob/mcl110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 03/24/2006] [Accepted: 04/10/2006] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Rice (Oryza sativa) is an aquatic plant with a characteristic of forming iron plaque on its root surfaces. It is considered to be the most Al-tolerant species among the cereal crops. The objective of this study was to determine the effects of root surface iron plaque on Al translocation, accumulation and the change of physiological responses under Al stress in rice in the presence of iron plaque. METHODS The japonica variety rice, Koshihikari, was used in this study and was grown hydroponically in a growth chamber. Iron plaque was induced by exposing the rice roots to 30 mg L(-1) ferrous iron either as Fe(II)-EDTA in nutrient solution (6 d, Method I) or as FeSO(4) in water solution (12 h, Method II). Organic acid in root exudates was retained in the anion-exchange resin and eluted with 2 m HCl, then analysed by high-performance liquid chromatography (HPLC) after proper pre-treatment. Fe and Al in iron plaque were extracted with DCB (dithionite-citrate-bicarbonate) solution. KEY RESULTS AND CONCLUSIONS Both methods (I and II) could induce the formation of iron plaque on rice root surfaces. The amounts of DCB-extractable Fe and Al on root surfaces were much higher in the presence of iron plaque than in the absence of iron plaque. Al contents in root tips were significantly decreased with iron plaque; translocation of Al from roots to shoots was significantly reduced with iron plaque. Al-induced secretion of citrate was observed and iron plaque could greatly depress this citrate secretion. These results suggested that iron plaque on rice root surfaces can be a sink to sequester Al onto the root surfaces and Fe ions can pre-saturate Al-binding sites in root tips, which protects the rice root tips from suffering Al stress to a certain extent.
Collapse
Affiliation(s)
- RONG FU CHEN
- State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China and Research Institute for Bioresources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046 Japan
| | - REN FANG SHEN
- State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China and Research Institute for Bioresources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046 Japan
| | - PEI GU
- State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China and Research Institute for Bioresources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046 Japan
| | - XIAO YING DONG
- State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China and Research Institute for Bioresources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046 Japan
| | - CHANG WEN DU
- State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China and Research Institute for Bioresources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046 Japan
| | - JIAN FENG MA
- State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China and Research Institute for Bioresources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
33
|
Wight CP, Kibite S, Tinker NA, Molnar SJ. Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:222-31. [PMID: 16323000 DOI: 10.1007/s00122-005-0114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 09/14/2005] [Indexed: 05/05/2023]
Abstract
The degree of aluminium tolerance varies widely across cereal species, with oats (Avena spp.) being among the most tolerant. The objective of this study was to identify molecular markers linked to aluminium tolerance in the diploid oat A. strigosa. Restriction fragment length polymorphism markers were tested in regions where comparative mapping indicated the potential for orthologous quantitative trait loci (QTL) for aluminium tolerance in other grass species. Amplified fragment length polymorphism (AFLP) and sequence-characterized amplified region (SCAR) markers were used to provide additional coverage of the genome. Four QTL were identified. The largest QTL explained 39% of the variation and is possibly orthologous to the major gene found in the Triticeae as well as Alm1 in maize and a minor gene in rice. A second QTL may be orthologous to the Alm2 gene in maize. Two other QTL were associated with anonymous markers. Together, these QTL accounted for 55% of the variation. A SCAR marker linked to the major QTL identified in this study could be used to introgress the aluminium tolerance trait from A. strigosa into cultivated oat germplasm.
Collapse
Affiliation(s)
- C P Wight
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | | | | | | |
Collapse
|
34
|
Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 2005; 48:781-91. [PMID: 16391684 DOI: 10.1139/g05-054] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major aluminum (Al) tolerance gene in wheat ALMT1 confers. An Al-activated efflux of malate from root apices. We determined the genomic structure of the ALMT1 gene and found it consists of 6 exons interrupted by 5 introns. Sequencing a range of wheat genotypes identified 3 alleles for ALMT1, 1 of which was identical to the ALMT1 gene from an Aegilops tauschii accession. The ALMT1 gene was mapped to chromosome 4DL using 'Chinese Spring' deletion lines, and loss of ALMT1 coincided with the loss of both Al tolerance and Al-activated malate efflux. Aluminium tolerance in each of 5 different doubled-haploid populations was found to be conditioned by a single major gene. When ALMT1 was polymorphic between the parental lines, QTL and linkage analyses indicated that ALMT1 mapped to chromosome 4DL and cosegregated with Al tolerance. In 2 populations examined, Al tolerance also segregated with a greater capacity for Al-activated malate efflux. Aluminium tolerance was not associated with a particular coding allele for ALMT1, but was significantly correlated with the relative level of ALMT1 expression. These findings suggest that the Al tolerance in a diverse range of wheat genotypes is primarily conditioned by ALMT1.Key words: aluminum, tolerance, genetic marker, Triticum aestivum, QTL, deletion mapping.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kochian LV, Piñeros MA, Hoekenga OA. The Physiology, Genetics and Molecular Biology of Plant Aluminum Resistance and Toxicity. PLANT AND SOIL 2005; 274:175-195. [PMID: 0 DOI: 10.1007/s11104-004-1158-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
36
|
Ma JF, Nagao S, Huang CF, Nishimura M. Isolation and characterization of a rice mutant hypersensitive to Al. PLANT & CELL PHYSIOLOGY 2005; 46:1054-61. [PMID: 15857838 DOI: 10.1093/pcp/pci116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is a highly Al-resistant species among small grain crops, but the mechanism responsible for the high Al resistance has not been elucidated. In this study, rice mutants sensitive to Al were isolated from M(3) lines derived from an Al-resistant cultivar, Koshihikari, irradiated with gamma-rays. Relative root elongation was used as a parameter for evaluating Al resistance. After initial screening plus two rounds of confirmatory testing, a mutant (als1) was isolated from a total of 560 lines. This mutant showed a phenotype similar to the wild-type plant in the absence of Al. However, in the presence of 10 microM Al, root elongation was inhibited 70% in the mutant, but only 8% in the wild-type plant. The mutant also showed poorer root growth in acid soil. The Al content of root apices (0-1 cm) was much lower in the wild-type plant. The sensitivity to other metals including Cd and La did not differ between the mutant and the wild-type plants. A small amount of citrate was secreted from the roots of the mutant in response to Al stress, but there was no difference from that secreted by the wild-type plant. Genetic analysis of F(2) populations between als1 and wild-type plants showed that the Al-resistant seedlings and Al-sensitive seedlings segregated at a 3 : 1 ratio, indicating that the high sensitivity to Al in als1 is controlled by a single recessive gene. The gene was mapped to the long arm of chromosome 6, flanked by InDel markers MaOs0619 and MaOs0615.
Collapse
Affiliation(s)
- Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan.
| | | | | | | |
Collapse
|
37
|
Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae. Genetics 2005; 167:1905-14. [PMID: 15342528 PMCID: PMC1471010 DOI: 10.1534/genetics.103.023580] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In several crop species within the Triticeae tribe of the grass family Poaceae, single major aluminum (Al) tolerance genes have been identified that effectively mitigate Al toxicity, a major abiotic constraint to crop production on acidic soils. However, the trait is quantitatively inherited in species within other tribes, and the possible ancestral relationships between major Al tolerance genes and QTL in the grasses remain unresolved. To help establish these relationships, we conducted a molecular genetic analysis of Al tolerance in sorghum and integrated our findings with those from previous studies performed in crop species belonging to different grass tribes. A single locus, AltSB, was found to control Al tolerance in two highly Al tolerant sorghum cultivars. Significant macrosynteny between sorghum and the Triticeae was observed for molecular markers closely linked to putatively orthologous Al tolerance loci present in the group 4 chromosomes of wheat, barley, and rye. However, AltSB was not located within the homeologous region of sorghum but rather mapped near the end of sorghum chromosome 3. Thus, AltSB not only is the first major Al tolerance gene mapped in a grass species that does not belong to the Triticeae, but also appears to be different from the major Al tolerance locus in the Triticeae. Intertribe map comparisons suggest that a major Al tolerance QTL on rice chromosome 1 is likely to be orthologous to AltSB, whereas another rice QTL on chromosome 3 is likely to correspond to the Triticeae group 4 Al tolerance locus. Therefore, this study demonstrates a clear evolutionary link between genes and QTL encoding the same trait in distantly related species within a single plant family.
Collapse
Affiliation(s)
- Jurandir V Magalhaes
- U. S. Plant Soil and Nutrition Laboratory, U. S. Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kochian LV, Piñeros MA, Hoekenga OA. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/1-4020-4099-7_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
39
|
Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:459-93. [PMID: 15377228 DOI: 10.1146/annurev.arplant.55.031903.141655] [Citation(s) in RCA: 759] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acid soils significantly limit crop production worldwide because approximately 50% of the world's potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring tolerance to acid soil stress has been a focus of intense research interest over the past decade. The primary limitations on acid soils are toxic levels of aluminum (Al) and manganese (Mn), as well as suboptimal levels of phosphorous (P). This review examines our current understanding of the physiological, genetic, and molecular basis for crop Al tolerance, as well as reviews the emerging area of P efficiency, which involves the genetically based ability of some crop genotypes to tolerate P deficiency stress on acid soils. These are interesting times for this field because researchers are on the verge of identifying some of the genes that confer Al tolerance in crop plants; these discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of these tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving crop Al tolerance via both molecular-assisted breeding and biotechnology.
Collapse
Affiliation(s)
- Leon V Kochian
- U.S. Plant, Soil, and Nutrition Laboratory, USDA-ARS, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
40
|
Ma JF, Furukawa J. Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 2003; 97:46-51. [PMID: 14507459 DOI: 10.1016/s0162-0134(03)00245-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aluminum (Al) is highly toxic to plant growth. The toxicity is characterized by rapid inhibition of root elongation. However, some plant species and cultivars have evolved some mechanisms for detoxifying Al both internally and externally. In this review, the recent progress made in the research of external detoxification of Al is described. Accumulating evidence has shown that organic acids play an important role in the detoxification of Al. Some plant species and cultivars respond to Al by secreting citrate, malate or oxalate from the roots. Recently, the anion channel of malate and citrate in the plasma membrane has been characterized and a gene encoding the malate channel has been cloned. The metabolism of organic acids seems to be poorly correlated with the Al-induced secretion of organic acid anions. A number of QTLs (quantitative trait loci) for Al resistance have been identified in rice, Arabidopsis, and other species. Transgenic plants with enhanced resistance to Al have also been reported, but introduction of multiple genes may be required to gain high Al resistance in future.
Collapse
Affiliation(s)
- Jian Feng Ma
- Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | | |
Collapse
|
41
|
Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. PLANT PHYSIOLOGY 2003; 132:936-48. [PMID: 12805622 PMCID: PMC167032 DOI: 10.1104/pp.103.023085] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Revised: 03/09/2003] [Accepted: 03/09/2003] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity, which is caused by the solubilization of Al3+ in acid soils resulting in inhibition of root growth and nutrient/water acquisition, is a serious limitation to crop production, because up to one-half of the world's potentially arable land is acidic. To date, however, no Al tolerance genes have yet been cloned. The physiological mechanisms of tolerance are somewhat better understood; the major documented mechanism involves the Al-activated release of Al-binding organic acids from the root tip, preventing uptake into the primary site of toxicity. In this study, a quantitative trait loci analysis of Al tolerance in Arabidopsis was conducted, which also correlated Al tolerance quantitative trait locus (QTL) with physiological mechanisms of tolerance. The analysis identified two major loci, which explain approximately 40% of the variance in Al tolerance observed among recombinant inbred lines derived from Landsberg erecta (sensitive) and Columbia (tolerant). We characterized the mechanism by which tolerance is achieved, and we found that the two QTL cosegregate with an Al-activated release of malate from Arabidopsis roots. Although only two of the QTL have been identified, malate release explains nearly all (95%) of the variation in Al tolerance in this population. Al tolerance in Landsberg erecta x Columbia is more complex genetically than physiologically, in that a number of genes underlie a single physiological mechanism involving root malate release. These findings have set the stage for the subsequent cloning of the genes responsible for the Al tolerance QTL, and a genomics-based cloning strategy and initial progress on this are also discussed.
Collapse
Affiliation(s)
- Owen A Hoekenga
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|