1
|
Latip W, Raja Abd Rahman RNZ, Leow ATC, Mohd Shariff F, Kamarudin NHA, Mohamad Ali MS. The Effect of N-Terminal Domain Removal towards the Biochemical and Structural Features of a Thermotolerant Lipase from an Antarctic Pseudomonas sp. Strain AMS3. Int J Mol Sci 2018; 19:ijms19020560. [PMID: 29438291 PMCID: PMC5855782 DOI: 10.3390/ijms19020560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022] Open
Abstract
Lipase plays an important role in industrial and biotechnological applications. Lipases have been subject to modification at the N and C terminals, allowing better understanding of lipase stability and the discovery of novel properties. A thermotolerant lipase has been isolated from Antarctic Pseudomonas sp. The purified Antarctic AMS3 lipase (native) was found to be stable across a broad range of temperatures and pH levels. The lipase has a partial Glutathione-S-transferase type C (GST-C) domain at the N-terminal not found in other lipases. To understand the influence of N-terminal GST-C domain on the biochemical and structural features of the native lipase, the deletion of the GST-C domain was carried out. The truncated protein was successfully expressed in E. coli BL21(DE3). The molecular weight of truncated AMS3 lipase was approximately ~45 kDa. The number of truncated AMS3 lipase purification folds was higher than native lipase. Various mono and divalent metal ions increased the activity of the AMS3 lipase. The truncated AMS3 lipase demonstrated a similarly broad temperature range, with the pH profile exhibiting higher activity under alkaline conditions. The purified lipase showed a substrate preference for a long carbon chain substrate. In addition, the enzyme activity in organic solvents was enhanced, especially for toluene, Dimethylsulfoxide (DMSO), chloroform and xylene. Molecular simulation revealed that the truncated lipase had increased structural compactness and rigidity as compared to native lipase. Removal of the N terminal GST-C generally improved the lipase biochemical characteristics. This enzyme may be utilized for industrial purposes.
Collapse
Affiliation(s)
- Wahhida Latip
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Department of Microbiology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Department of Microbiology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Cichoski AJ, Rampelotto C, Silva MS, de Moura HC, Terra NN, Wagner R, de Menezes CR, Flores EMM, Barin JS. Ultrasound-assisted post-packaging pasteurization of sausages. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Chen H, Wu J, Yang L, Xu G. Characterization and structure basis of Pseudomonas alcaligenes lipase's enantiopreference towards d,l-menthyl propionate. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Fan X, Liu X, Wang K, Wang S, Huang R, Liu Y. Highly soluble expression and molecular characterization of an organic solvent-stable and thermotolerant lipase originating from the metagenome. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Gaur R, Khare SK. Solvent tolerant Pseudomonads as a source of novel lipases for applications in non-aqueous systems. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.609588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Peng R, Lin J, Wei D. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase. Appl Biochem Biotechnol 2011; 165:926-37. [PMID: 21720839 DOI: 10.1007/s12010-011-9309-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
Abstract
The genes of CS-2 lipase and its cognate foldase were cloned from Pseudomonas aeruginosa CS-2. A stop codon was not found in the lipase gene. The amino acid sequence deduced from the lipase gene from P. aeruginosa CS-2 showed 97.8%, 71.3%, and 71.2% identity with lipases from P. aeruginosa LST-03, P seudomonas mendocina ymp, and Pseudomonas stutzeri A1501, respectively. The co-expression of CS-2 lipase and its cognate foldase of P. aeruginosa CS-2 in E scherichia coli BL21 (DE3) resulted in the formation of a soluble lipase. The recombinant lipase and foldase were purified to homogeneity using nickel affinity chromatography and about 10.2-fold with 40.9% recovery was achieved for the purification of the recombinant lipase. The molecular masses of the lipase and the foldase were estimated to be 35.7 and 38.3 kDa in SDS-PAGE, respectively. The recombinant lipase showed stability in the presence of some organic solvents. The recombinant CS-2 lipase was immobilized and subsequently used for the synthesis of butyl acetate in heptane. The conversion of substrate decreased from 98.2% to 87.4% after 5 cycles in reuse of the immobilized lipase.
Collapse
Affiliation(s)
- Ren Peng
- New World Institute of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | |
Collapse
|
7
|
Ji Q, Xiao S, He B, Liu X. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.06.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Chaperone-dependent gene expression of organic solvent-tolerant lipase from Pseudomonas aeruginosa strain S5. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
|
10
|
Madan B, Mishra P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl Microbiol Biotechnol 2009; 85:597-604. [PMID: 19629472 DOI: 10.1007/s00253-009-2131-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022]
Abstract
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99-100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37 degrees C, though it was active between pH 5.0 and pH 9.0 and up to 45 degrees C. K (m) and V (max) values for recombinant P. aeruginosa lipase were found to be 151.5 +/- 29 microM and 217 +/- 22.5 micromol min(-1) mg(-1) protein, respectively.
Collapse
Affiliation(s)
- Bhawna Madan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | |
Collapse
|
11
|
Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, Gemba Y, Doukyu N, Yasuda M, Ishimi K, Ishikawa H. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 2007; 11:809-17. [PMID: 17657406 DOI: 10.1007/s00792-007-0101-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Organic solvent-tolerant Pseudomonas aeruginosa LST-03 secretes an organic solvent-stable lipase, LST-03 lipase. The gene of the LST-03 lipase (Lip9) and the gene of the lipase-specific foldase (Lif9) were cloned and expressed in Escherichia coli. In the cloned 2.6 kbps DNA fragment, two open reading frames, Lip9 consisting of 933 nucleotides which encoded 311 amino acids and Lif9 consisting of 1,020 nucleotides which encoded 340 amino acids, were found. The overexpression of the lipase gene (lip9) was achieved when T7 promoter was used and the signal peptide of the lipase was deleted. The expressed amount of the lipase was greatly increased and overexpressed lipase formed inclusion body in E. coli cell. The collected inclusion body of the lipase from the cell was easily solubilized by urea and activated by using lipase-specific foldase of which 52 or 58 amino acids of N-terminal were deleted. Especially, the N-terminal methionine of the lipase of which the signal peptide was deleted was released in E. coli and the amino acid sequence was in agreement with that of the originally-produced lipase by P. aeruginosa LST-03. Furthermore, the overexpressed and solubilized lipase of which the signal peptide was deleted was more effectively activated by lipase-specific foldase.
Collapse
Affiliation(s)
- Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2006.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ogino H, Mimitsuka T, Muto T, Matsumura M, Yasuda M, Ishimi K, Ishikawa H. Cloning, expression, and characterization of a lipolytic enzyme gene (lip8) from Pseudomonas aeruginosa LST-03. J Mol Microbiol Biotechnol 2004; 7:212-23. [PMID: 15383719 DOI: 10.1159/000079830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A lipolytic enzyme gene (lip8) was cloned from organic solvent-tolerant Pseudomonas aeruginosa LST-03 and sequenced. In the sequenced nucleotides, an open reading frame consisting of 1,173 nucleotides and encoding 391 amino acids was found. Lip8 is considered to belong to the family VIII of lipolytic enzymes whose serine in the consensus sequence of -Ser-Xaa-Xaa-Lys- acts as catalytic nucleophile. The gene was expressed in Escherichia coli and purified by a combination of ammonium sulfate fractionation and hydrophobic interaction and ion-exchange chromatographies to homogeneity on SDS-PAGE analysis. The optimum temperature and heat stability of Lip8 were not as high as those of Lip3 and LST-03 lipase, two other lipolytic enzymes from the same strain. Addition of glycerol to a solution containing Lip8 stabilized this enzyme. By measuring the activities against various triacylglycerols and fatty acid methyl esters having carbon chains of different lengths, Lip8 was categorized as an esterase which has higher activities against fatty acid methyl esters with short-chain fatty acids.
Collapse
Affiliation(s)
- Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|