1
|
Bae SH, Zoclanclounon YAB, Park GH, Lee JD, Kim TH. Genome-Wide In Silico Analysis of Leucine-Rich Repeat R-Genes in Perilla citriodora: Classification and Expression Insights. Genes (Basel) 2025; 16:200. [PMID: 40004529 PMCID: PMC11855831 DOI: 10.3390/genes16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Resistance (R) genes are crucial for defending Perilla against pathogens like anthracnose, downy mildew, and phytophthora blight. Nucleotide-binding site leucine-rich repeat (NBS-LRR) genes, the largest R-gene family, play a central role in immunity. This study aimed to identify and characterize NBS-LRR genes in P. citriodora 'Jeju17'. METHODS Previously conducted genome-wide data for 'Jeju17' were analyzed in silico to identify NBS-LRR genes. RESULTS A total of 535 NBS-LRR genes were identified, with clusters on chromosomes 2, 4, and 10. A unique RPW8-type R-gene was located on chromosome 7. CONCLUSIONS This study provides insights into the NBS-LRR gene family in 'Je-ju17', highlighting its role in disease resistance and evolutionary dynamics. By identifying can-didate R-genes, this research supports breeding programs to develop disease-resistant cultivars and improves our understanding of plant immunity.
Collapse
Affiliation(s)
- Seon-Hwa Bae
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Republic of Korea;
| | | | - Gyu-Hwang Park
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si 54874, Republic of Korea;
| | - Jun-Dae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Tae-Ho Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si 54874, Republic of Korea;
| |
Collapse
|
2
|
Yang H, Yao X, Wu W, He A, Ma C, Yang S, Ruan J. Genome-wide identification and gene expression pattern analysis of the glycoside hydrolase family 1 in Fagopyrum tataricum. BMC PLANT BIOLOGY 2024; 24:1183. [PMID: 39695944 DOI: 10.1186/s12870-024-05919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The β-glucosidases (BGLU) of glycoside hydrolase family 1 hydrolyze the glycosidic bond to release β-D-glucose and related ligands, which are widely involved in important physiological processes in plants. Genome-wide analysis of the BGLU genes in the model crops Arabidopsis thaliana and Oryza sativa revealed that they are functionally diverse. In contrast, the BGLU gene family in Tartary buckwheat remains unclear. RESULTS This study identified the FtBGLU gene family based on Tartary buckwheat genomic data and analyzed the biological function of the FtBGLU gene using bioinformatics methods and the expression pattern of the gene using fluorescence quantitative PCR. The results showed that 39 BGLU genes were identified in Tartary buckwheat, which were classified into 10 subfamilies and one unclassified group. They were unevenly distributed on 10 chromosomes, and seven tandem duplication events involving 19 FtBGLU genes were observed, which mainly occurred in subfamily II. Their physicochemical properties are highly variable; however, they have relatively conserved exon-intron structures and high sequence homology in the subfamily, and most of the FtBGLUs contain conserved motifs, among which the expression products FtBGLU1, FtBGLU17, FtBGLU19, FtBGLU21, FtBGLU22, and FtBGLU28 have no β-glucosidase activity. Additionally, we analyzed the tissue expression specificity of 10 FtBGLU genes during Tartary buckwheat growth and development and their expression patterns under adversity stress and hormone treatments. Revealing the important role of the BGLU gene family in Tartary buckwheat growth and development, as well as its response to adversity, provides strong support for further analysis of its regulatory mechanisms and functional applications. A total of 39 FtBGLU genes were identified. Bioinformatics analysis of the gene structure, evolutionary relationship, and expression pattern of the Fagopyrum tataricum BGLU gene family establishes a foundation for a better understanding and future research on the Tartary buckwheat BGLU gene family.
Collapse
Affiliation(s)
- Haizhu Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Ailing He
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Lu Y, Huang J, Liu D, Kong X, Song Y, Jing L. Pangenome Data Analysis Reveals Characteristics of Resistance Gene Analogs Associated with Sclerotinia sclerotiorum Resistance in Sunflower. Life (Basel) 2024; 14:1322. [PMID: 39459622 PMCID: PMC11509514 DOI: 10.3390/life14101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The sunflower, an important oilseed crop and food source across the world, is susceptible to several pathogens, which cause severe losses in sunflower production. The utilization of genetic resistance is the most economical, effective measure to prevent infectious diseases. Based on the sunflower pangenome, in this study, we explored the variability of resistance gene analogs (RGAs) within the species. According to a comparative analysis of RGA candidates in the sunflower pangenome using the RGAugury pipeline, a total of 1344 RGAs were identified, comprising 1107 conserved, 199 varied, and 38 rare RGAs. We also identified RGAs associated with resistance against Sclerotinia sclerotiorum (S. sclerotiorum) in sunflower at the quantitative trait locus (QTL). A total of 61 RGAs were found to be located at four quantitative trait loci (QTLs). Through a detailed expression analysis of RGAs in one susceptible and two tolerant sunflower inbred lines (ILs) across various time points post inoculation, we discovered that 348 RGAs exhibited differential expression in response to Sclerotinia head rot (SHR), with 17 of these differentially expressed RGAs being situated within the QTL regions. In addition, 15 RGA candidates had gene introgression. Our data provide a better understanding of RGAs, which facilitate genomics-based improvements in disease resistance in sunflower.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Jing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot 010011, China; (Y.L.); (J.H.); (D.L.); (X.K.); (Y.S.)
| |
Collapse
|
4
|
Goh FJ, Huang CY, Derevnina L, Wu CH. NRC Immune receptor networks show diversified hierarchical genetic architecture across plant lineages. THE PLANT CELL 2024; 36:3399-3418. [PMID: 38922300 PMCID: PMC11371147 DOI: 10.1093/plcell/koae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages.
Collapse
Affiliation(s)
- Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402202, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
5
|
Bish MD, Ramachandran SR, Wright A, Lincoln LM, Whitham SA, Graham MA, Pedley KF. The Soybean Rpp3 Gene Encodes a TIR-NBS-LRR Protein that Confers Resistance to Phakopsora pachyrhizi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:561-570. [PMID: 38569009 DOI: 10.1094/mpmi-01-24-0007-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Soybean rust is an economically significant disease caused by the fungus Phakopsora pachyrhizi that negatively impacts soybean (Glycine max [L.] Merr.) production throughout the world. Susceptible plants infected by P. pachyrhizi develop tan-colored lesions on the leaf surface that give rise to funnel-shaped uredinia as the disease progresses. While most soybean germplasm is susceptible, seven genetic loci (Rpp1 to Rpp7) that provide race-specific resistance to P. pachyrhizi (Rpp) have been identified. Rpp3 was first discovered and characterized in the soybean accession PI 462312 (Ankur), and it was also determined to be one of two Rpp genes present in PI 506764 (Hyuuga). Genetic crosses with PI 506764 were later used to fine-map the Rpp3 locus to a 371-kb region on chromosome 6. The corresponding region in the susceptible Williams 82 (Wm82) reference genome contains several homologous nucleotide binding site-leucine rich repeat (NBS-LRR) genes. To identify Rpp3, we designed oligonucleotide primers to amplify Rpp3 candidate (Rpp3C) NBS-LRR genes at this locus from PI 462312, PI 506764, and Wm82 using polymerase chain reaction (PCR). Five Rpp3C genes were identified in both Rpp3-resistant soybean lines, and co-silencing these genes compromised resistance to P. pachyrhizi. Gene expression analysis and sequence comparisons of the Rpp3C genes in PI 462312 and PI 506764 suggest that a single candidate gene, Rpp3C3, is responsible for Rpp3-mediated resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Mandy D Bish
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fort Detrick, MD 21702, U.S.A
| | - Sowmya R Ramachandran
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fort Detrick, MD 21702, U.S.A
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN, U.S.A
| | - Amy Wright
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fort Detrick, MD 21702, U.S.A
| | - Lori M Lincoln
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, U.S.A
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011, U.S.A
- Department of Agronomy, Iowa State University, Ames, IA 50011, U.S.A
| | - Kerry F Pedley
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fort Detrick, MD 21702, U.S.A
| |
Collapse
|
6
|
Cao Y, Mo W, Li Y, Xiong Y, Wang H, Zhang Y, Lin M, Zhang L, Li X. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt. BMC Biol 2024; 22:45. [PMID: 38408951 PMCID: PMC10898138 DOI: 10.1186/s12915-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree. RESULTS Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter's W-box element. CONCLUSIONS This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wanzhen Mo
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yao Xiong
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330224, China.
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, 102209, China.
| |
Collapse
|
7
|
Pidon H, Ruge-Wehling B, Will T, Habekuß A, Wendler N, Oldach K, Maasberg-Prelle A, Korzun V, Stein N. High-resolution mapping of Ryd4 Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:60. [PMID: 38409375 PMCID: PMC10896957 DOI: 10.1007/s00122-024-04542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
KEY MESSAGE We mapped Ryd4Hb in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding. Virus diseases are causing high yield losses in crops worldwide. The Barley yellow dwarf virus (BYDV) complex is responsible for one of the most widespread and economically important viral diseases of cereals. While no gene conferring complete resistance (immunity) has been uncovered in the primary gene pool of barley, sources of resistance were searched and identified in the wild relative Hordeum bulbosum, representing the secondary gene pool of barley. One such locus, Ryd4Hb, has been previously introgressed into barley, and was allocated to chromosome 3H, but is tightly linked to a sublethality factor that prevents the incorporation and utilization of Ryd4Hb in barley varieties. To solve this problem, we fine-mapped Ryd4Hb and separated it from this negative factor. We narrowed the Ryd4Hb locus to a corresponding 66.5 kbp physical interval in the barley 'Morex' reference genome. The region comprises a gene from the nucleotide-binding and leucine-rich repeat immune receptor family, typical of dominant virus resistance genes. The closest homolog to this Ryd4Hb candidate gene is the wheat Sr35 stem rust resistance gene. In addition to the fine mapping, we reduced the interval bearing the sublethality factor to 600 kbp in barley. Aphid feeding experiments demonstrated that Ryd4Hb provides a resistance to BYDV rather than to its vector. The presented results, including the high-throughput molecular markers, will permit a more targeted selection of the resistance in breeding, enabling the use of Ryd4Hb in barley varieties.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Brigitte Ruge-Wehling
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Antje Habekuß
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | | | | | | | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Göttingen, Germany.
| |
Collapse
|
8
|
Zia K, Sadaqat M, Ding B, Fatima K, Albekairi NA, Alshammari A, Tahir ul Qamar M. Comparative genomics and bioinformatics approaches revealed the role of CC-NBS-LRR genes under multiple stresses in passion fruit. Front Genet 2024; 15:1358134. [PMID: 38476402 PMCID: PMC10929019 DOI: 10.3389/fgene.2024.1358134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Passion fruit is widely cultivated in tropical, subtropical regions of the world. The attack of bacterial and fungal diseases, and environmental factors heavily affect the yield and productivity of the passion fruit. The CC-NBS-LRR (CNL) gene family being a subclass of R-genes protects the plant against the attack of pathogens and plays a major role in effector-triggered immunity (ETI). However, no information is available regarding this gene family in passion fruit. To address the underlying problem a total of 25 and 21 CNL genes have been identified in the genome of purple (Passiflora edulis Sims.) and yellow (Passiflora edulis f. flavicarpa) passion fruit respectively. Phylogenetic tree was divided into four groups with PeCNLs present in 3 groups only. Gene structure analysis revealed that number of exons ranged from 1 to 9 with 1 being most common. Most of the PeCNL genes were clustered at the chromosome 3 and underwent strong purifying selection, expanded through segmental (17 gene pairs) and tandem duplications (17 gene pairs). PeCNL genes contained cis-elements involved in plant growth, hormones, and stress response. Transcriptome data indicated that PeCNL3, PeCNL13, and PeCNL14 were found to be differentially expressed under Cucumber mosaic virus and cold stress. Three genes were validated to be multi-stress responsive by applying Random Forest model of machine learning. To comprehend the biological functions of PeCNL proteins, their 3D structure and gene ontology (GO) enrichment analysis were done. Our research analyzed the CNL gene family in passion fruit to understand stress regulation and improve resilience. This study lays the groundwork for future investigations aimed at enhancing the genetic composition of passion fruit to ensure robust growth and productivity in challenging environments.
Collapse
Affiliation(s)
- Komal Zia
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Sadaqat
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Baopeng Ding
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kinza Fatima
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| |
Collapse
|
9
|
Balamurugan A, Mallikarjuna MG, Bansal S, Nayaka SC, Rajashekara H, Chellapilla TS, Prakash G. Genome-wide identification and characterization of NBLRR genes in finger millet (Eleusine coracana L.) and their expression in response to Magnaporthe grisea infection. BMC PLANT BIOLOGY 2024; 24:75. [PMID: 38281915 PMCID: PMC10823742 DOI: 10.1186/s12870-024-04743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The nucleotide binding site leucine rich repeat (NBLRR) genes significantly regulate defences against phytopathogens in plants. The genome-wide identification and analysis of NBLRR genes have been performed in several species. However, the detailed evolution, structure, expression of NBLRRs and functional response to Magnaporthe grisea are unknown in finger millet (Eleusine coracana (L.) Gaertn.). RESULTS The genome-wide scanning of the finger millet genome resulted in 116 NBLRR (EcNBLRRs1-116) encompassing 64 CC-NB-LRR, 47 NB-LRR and 5 CCR-NB-LRR types. The evolutionary studies among the NBLRRs of five Gramineae species, viz., purple false brome (Brachypodium distachyon (L.) P.Beauv.), finger millet (E. coracana), rice (Oryza sativa L.), sorghum (Sorghum bicolor L. (Moench)) and foxtail millet (Setaria italica (L.) P.Beauv.) showed the evolution of NBLRRs in the ancestral lineage of the target species and subsequent divergence through gene-loss events. The purifying selection (Ka/Ks < 1) shaped the expansions of NBLRRs paralogs in finger millet and orthologs among the target Gramineae species. The promoter sequence analysis showed various stress- and phytohormone-responsive cis-acting elements besides growth and development, indicating their potential role in disease defence and regulatory mechanisms. The expression analysis of 22 EcNBLRRs in the genotypes showing contrasting responses to Magnaporthe grisea infection revealed four and five EcNBLRRs in early and late infection stages, respectively. The six of these nine candidate EcNBLRRs proteins, viz., EcNBLRR21, EcNBLRR26, EcNBLRR30, EcNBLRR45, EcNBLRR55 and EcNBLRR76 showed CC, NB and LRR domains, whereas the EcNBLRR23, EcNBLRR32 and EcNBLRR83 showed NB and LRR somains. CONCLUSION The identification and expression analysis of EcNBLRRs showed the role of EcNBLRR genes in assigning blast resistance in finger millet. These results pave the foundation for in-depth and targeted functional analysis of EcNBLRRs through genome editing and transgenic approaches.
Collapse
Affiliation(s)
- Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shilpi Bansal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Science and Humanities, SRM Institute of Science and Technology, Modinagar, Uttar Pradesh, 201204, India
| | - S Chandra Nayaka
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Mysore, 570005, India
| | | | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Tahir ul Qamar M, Sadaqat M, Zhu XT, Li H, Huang X, Fatima K, Almutairi MM, Chen LL. Comparative genomics profiling revealed multi-stress responsive roles of the CC-NBS-LRR genes in three mango cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1285547. [PMID: 37965009 PMCID: PMC10642748 DOI: 10.3389/fpls.2023.1285547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
The nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family is the largest group of disease resistance (R) genes in plants and is active in response to viruses, bacteria, and fungi usually involved in effector-triggered immunity (ETI). Pangenome-wide studies allow researchers to analyze the genetic diversity of multiple species or their members simultaneously, providing a comprehensive understanding of the evolutionary relationships and diversity present among them. The draft pan-genome of three Mangifera indica cultivars (Alphonso, Hong Xiang Ya, and Tommy atkins) was constructed and Presence/absence variants (PAVs) were filtered through the ppsPCP pipeline. As a result, 2823 genes and 5907 PAVs from H. Xiang Ya, and 1266 genes and 2098 PAVs from T. atkins were added to the reference genome. For the identification of CC-NBS-LRR (CNL) genes in these mango cultivars, this draft pan-genome study has successfully identified 47, 27, and 36 members in Alphonso, H. Xiang Ya, and T. atkins respectively. The phylogenetic analysis divided MiCNL proteins into four distinct subgroups. All MiCNL genes are unevenly distributed on chromosomes. Both tandem and segmental duplication events played a significant role in the expansion of the CNL gene family. These genes contain cis-elements related to light, stress, hormone, and development. The analysis of protein-protein interactions (PPI) revealed that MiCNL proteins interacted with other defense-responsive proteins. Gene Ontology (GO) analysis indicated that MiCNL genes play a role in defense mechanisms within the organism. The expression level of the identified genes in fruit peel was observed under disease and cold stress which showed that Mi_A_CNL13 and 14 were up-regulated while Mi_A_CNL15, 25, 30, 31, and 40 were down-regulated in disease stress. On the other hand, Mi_A_CNL2, 14, 41, and 45 were up-regulated and Mi_A_CNL47 is down-regulated in cold stress. Subsequently, the Random Forest (RF) classifier was used to assess the multi-stress response of MiCNLs. It was found that Mi_A_CNL14 is a gene that responds to multiple stress conditions. The CNLs have similar protein structures which show that they are involved in the same function. The above findings provide a foundation for a deeper understanding of the functional characteristics of the mango CNL gene family.
Collapse
Affiliation(s)
- Muhammad Tahir ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Liu J, Wang FZ, Li C, Li Y, Li JF. Hidden prevalence of deletion-inversion bi-alleles in CRISPR-mediated deletions of tandemly arrayed genes in plants. Nat Commun 2023; 14:6787. [PMID: 37880225 PMCID: PMC10600118 DOI: 10.1038/s41467-023-42490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Tandemly arrayed genes (TAGs) with functional redundancy and chromosomal linkage constitute 14 ~ 35% in sequenced plant genomes. The multiplex CRISPR system is the tool of choice for creating targeted TAG deletions. Here, we show that up to ~80% of CRISPR-mediated TAG knockout alleles in Arabidopsis and rice are deletion-inversion (delinver) bi-alleles, which are easily misidentified as homozygous deletion alleles by routine PCR-based genotyping. This can lead to misinterpretation of experimental data and production of progenies with genetic heterogeneity in an unnoticed manner. In ~2,650 transgenic events, delinver mutation frequencies are predominantly correlated with deletion frequencies but unrelated to chromosomal locations or deletion sizes. Delinver mutations also occur frequently at genomic non-TAG loci during multiplexed CRISPR editing. Our work raises the alarm about delinver mutations as common unwanted products of targeted TAG deletions in plants and helps prevent false interpretation of plant TAG functions due to this hidden genotype issue.
Collapse
Affiliation(s)
- Jiuer Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yujia Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Ijaz S, Ul Haq I, Razzaq HA, Nasir B, Ali HM, Kaur S. In silico structural-functional characterization of three differentially expressed resistance gene analogs identified in Dalbergia sissoo against dieback disease reveals their role in immune response regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1134806. [PMID: 37908834 PMCID: PMC10613980 DOI: 10.3389/fpls.2023.1134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/19/2023] [Indexed: 11/02/2023]
Abstract
Plant immunity includes enemy recognition, signal transduction, and defensive response against pathogens. We experimented to identify the genes that contribute resistance against dieback disease to Dalbergia sissoo, an economically important timber tree. In this study, we investigated the role of three differentially expressed genes identified in the dieback-induced transcriptome in Dalbergia sissoo. The transcriptome was probed using DOP-rtPCR analysis. The identified RGAs were characterized in silico as the contributors of disease resistance that switch on under dieback stress. Their predicted fingerprints revealed involvement in stress response. Ds-DbRCaG-02-Rga.a, Ds-DbRCaG-04-Rga.b, and Ds-DbRCaG-06-Rga.c showed structural homology with the Transthyretin-52 domain, EAL associated YkuI_C domain, and Src homology-3 domain respectively, which are the attributes of signaling proteins possessing a role in regulating immune responses in plants. Based on in-silico structural and functional characterization, they were predicted to have a role in immune response regulation in D. sissoo.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Hafiza Arooj Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Bukhtawer Nasir
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sukhwinder Kaur
- Department of Plant Pathology, University of California Davis, Davis, CA, United States
| |
Collapse
|
13
|
Alsamman AM, Mousa KH, Nassar AE, Faheem MM, Radwan KH, Adly MH, Hussein A, Istanbuli T, Mokhtar MM, Elakkad TA, Kehel Z, Hamwieh A, Abdelsattar M, El Allali A. Identification, characterization, and validation of NBS-encoding genes in grass pea. Front Genet 2023; 14:1187597. [PMID: 37408775 PMCID: PMC10318170 DOI: 10.3389/fgene.2023.1187597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 μM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mostafa M. Faheem
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Monica H. Adly
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Tamer Ahmed Elakkad
- Department of Genetics and Genetic Engineering, Faculty of Agriculture at Moshtohor, Benha University, Benha, Egypt
- Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
14
|
Genome wide identification and evolutionary analysis of vat like NBS-LRR genes potentially associated with resistance to aphids in cotton. Genetica 2023; 151:119-131. [PMID: 36717534 DOI: 10.1007/s10709-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Nucleotide Binding Site - Leucine Rich Repeat (NBS-LRR) genes play a significant role in plant defense against biotic stresses and are an integral part of signal transduction pathways. Vat gene has been well reported for their role in resistance to Aphis gossypii and viruses transmitted by them. Despite their importance, Vat like NBS-LRR resistance genes have not yet been identified and studied in cotton species. This study report hundreds of orthologous Vat like NBS-LRR genes from the genomes of 18 cotton species through homology searches and the distribution of those identified genes were tend to be clustered on different chromosome. Especially, in a majority of the cases, Vat like genes were located on chromosome number 13 and they all shared two conserved NBS-LRR domains, one disease resistant domain and several repeats of LRR on the investigated cotton Vat like proteins. Gene ontology study on Vat like NBS-LRR genes revealed the molecular functions viz., ADP and protein binding. Phylogenetic analysis also revealed that Vat like sequences of two diploid species, viz., G. arboreum and G. anomalum, were closely related to the sequences of the tetraploids than all other diploids. The Vat like genes of G. aridum and G. schwendimanii were distantly related among diploids and tetraploids species. Various hormones and defense related cis-acting regulatory elements were identified from the 2 kb upstream sequences of the Vat like genes implying their defensive response towards the biotic stresses. Interestingly, G. arboreum and G. trilobum were found to have more regulatory elements than larger genomes of tetraploid cotton species. Thus, the present study provides the evidence for the evolution of Vat like genes in defense mechanisms against aphids infestation in cotton genomes and allows further characterization of candidate genes for developing aphid and aphid transmitted viruses resistant crops through cotton breeding.
Collapse
|
15
|
Khan UM, Rana IA, Shaheen N, Raza Q, Rehman HM, Maqbool R, Khan IA, Atif RM. Comparative phylogenomic insights of KCS and ELO gene families in Brassica species indicate their role in seed development and stress responsiveness. Sci Rep 2023; 13:3577. [PMID: 36864046 PMCID: PMC9981734 DOI: 10.1038/s41598-023-28665-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2023] Open
Abstract
Very long-chain fatty acids (VLCFAs) possess more than twenty carbon atoms and are the major components of seed storage oil, wax, and lipids. FAE (Fatty Acid Elongation) like genes take part in the biosynthesis of VLCFAs, growth regulation, and stress responses, and are further comprised of KCS (Ketoacyl-CoA synthase) and ELO (Elongation Defective Elongase) sub-gene families. The comparative genome-wide analysis and mode of evolution of KCS and ELO gene families have not been investigated in tetraploid Brassica carinata and its diploid progenitors. In this study, 53 KCS genes were identified in B. carinata compared to 32 and 33 KCS genes in B. nigra and B. oleracea respectively, which suggests that polyploidization might has impacted the fatty acid elongation process during Brassica evolution. Polyploidization has also increased the number of ELO genes in B. carinata (17) over its progenitors B. nigra (7) and B. oleracea (6). Based on comparative phylogenetics, KCS, and ELO proteins can be classified into eight and four major groups, respectively. The approximate date of divergence for duplicated KCS and ELO genes varied from 0.03 to 3.20 million years ago (MYA). Gene structure analysis indicated that the maximum number of genes were intron-less and remained conserved during evolution. The neutral type of selection seemed to be predominant in both KCS and ELO genes evolution. String-based protein-protein interaction analysis suggested that bZIP53, a transcription factor might be involved in the activation of transcription of ELO/KCS genes. The presence of biotic and abiotic stress-related cis-regulatory elements in the promoter region suggests that both KCS and ELO genes might also play their role in stress tolerance. The expression analysis of both gene family members reflect their preferential seed-specific expression, especially during the mature embryo development stage. Furthermore, some KCS and ELO genes were found to be specifically expressed under heat stress, phosphorus starvation, and Xanthomonas campestris infection. The current study provides a basis to understand the evolution of both KCS and ELO genes in fatty acid elongation and their role in stress tolerance.
Collapse
Affiliation(s)
- Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Qasim Raza
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwana Maqbool
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
16
|
Jiang Z, Zhao M, Qin H, Li S, Yang X. Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar. FRONTIERS IN PLANT SCIENCE 2023; 14:1091567. [PMID: 36890898 PMCID: PMC9986449 DOI: 10.3389/fpls.2023.1091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION During plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are of great importance to understand and utilize them. METHODS In this study, we identified the NBS-LRR genes of 23 representative species at whole genome level, and researches on NBS-LRR genes of four monocotyledonous grass species, Saccharum spontaneum, Saccharum officinarum, Sorghum bicolor and Miscanthus sinensis, were focused. RESULTS AND DISCUSSION We found that whole genome duplication, gene expansion, and allele loss could be factors affecting the number of NBS-LRR genes in the species, and whole genome duplication is likely to be the main cause of the number of NBS-LRR genes in sugarcane. Meanwhile, we also found a progressive trend of positive selection on NBS-LRR genes. These studies further elucidated the evolutionary pattern of NBS-LRR genes in plants. Transcriptome data from multiple sugarcane diseases revealed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum in modern sugarcane cultivars, and the proportion was significantly higher than the expected. This finding reveals that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars. In addition, we observed allelespecific expression of seven NBS-LRR genes under leaf scald, and 125 NBS-LRR genes responding to multiple diseases were identified. Finally, we built a plant NBS-LRR gene database to facilitate subsequent analysis and use of NBSLRR genes obtained here. In conclusion, this study complemented and completed the research of plant NBS-LRR genes, and discussed how NBS-LRR genes responding to sugarcane diseases, which provided a guide and genetic resources for further research and utilization of NBS-LRR genes.
Collapse
Affiliation(s)
- Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Mengyu Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hongzhen Qin
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Yan G, Zhang M, Guan W, Zhang F, Dai W, Yuan L, Gao G, Xu K, Chen B, Li L, Wu X. Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L. Int J Mol Sci 2023; 24:ijms24032130. [PMID: 36768459 PMCID: PMC9916435 DOI: 10.3390/ijms24032130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Rapeseed (Brassica napus L.) is not only one of the most important oil crops in the world, but it is also an important vegetable crop with a high value nutrients and metabolites. However, rapeseed is often severely damaged by adverse stresses, such as low temperature, pathogen infection and so on. Glyoxalase I (GLYI) and glyoxalase II (GLYII) are two enzymes responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione, which plays crucial roles in stress tolerance in plants. Considering the important roles of glyoxalases, the GLY gene families have been analyzed in higher plans, such as rice, soybean and Chinese cabbage; however, little is known about the presence, distribution, localizations and expression of glyoxalase genes in rapeseed, a young allotetraploid. In this study, a total of 35 BnaGLYI and 30 BnaGLYII genes were identified in the B. napus genome and were clustered into six and eight subfamilies, respectively. The classification, chromosomal distribution, gene structure and conserved motif were identified or predicted. BnaGLYI and BnaGLYII proteins were mainly localized in chloroplast and cytoplasm. By using publicly available RNA-seq data and a quantitative real-time PCR analysis (qRT-PCR), the expression profiling of these genes of different tissues was demonstrated in different developmental stages as well as under stresses. The results indicated that their expression profiles varied among different tissues. Some members are highly expressed in specific tissues, BnaGLYI11 and BnaGLYI27 expressed in flowers and germinating seed. At the same time, the two genes were significantly up-regulated under heat, cold and freezing stresses. Notably, a number of BnaGLY genes showed responses to Plasmodiophora brassicae infection. Overexpression of BnGLYI11 gene in Arabidopsis thaliana seedlings confirmed that this gene conferred freezing tolerance. This study provides insight of the BnaGLYI and BnaGLYII gene families in allotetraploid B. napus and their roles in stress resistance, and important information and gene resources for developing stress resistant vegetable and rapeseed oil.
Collapse
|
18
|
Xie Y, Liu B, Gao K, Zhao Y, Li W, Deng L, Zhou Z, Liu Q. Comprehensive Analysis and Functional Verification of the Pinus massoniana NBS-LRR Gene Family Involved in the Resistance to Bursaphelenchus xylophilus. Int J Mol Sci 2023; 24:1812. [PMID: 36768136 PMCID: PMC9915305 DOI: 10.3390/ijms24031812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.
Collapse
Affiliation(s)
- Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Faculty of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenhua Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Lili Deng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| |
Collapse
|
19
|
Han Z, Li F, Qiao W, Zheng X, Cheng Y, Zhang L, Huang J, Wang Y, Lou D, Xing M, Fan W, Nie Y, Guo W, Wang S, Liu Z, Yang Q. Global whole-genome comparison and analysis to classify subpopulations and identify resistance genes in weedy rice relevant for improving crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1089445. [PMID: 36704170 PMCID: PMC9872009 DOI: 10.3389/fpls.2022.1089445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Common weedy rice plants are important genetic resources for modern breeding programs because they are the closest relatives to rice cultivars and their genomes contain elite genes. Determining the utility and copy numbers of WRKY and nucleotide-binding site (NBS) resistance-related genes may help to clarify their variation patterns and lead to crop improvements. In this study, the weedy rice line LM8 was examined at the whole-genome level. To identify the Oryza sativa japonica subpopulation that LM8 belongs to, the single nucleotide polymorphisms (SNPs) of 180 cultivated and 23 weedy rice varieties were used to construct a phylogenetic tree and a principal component analysis and STRUCTURE analysis were performed. The results indicated that LM8 with admixture components from japonica (GJ) and indica (XI) belonged to GJ-admixture (GJ-adm), with more than 60% of its genetic background derived from XI-2 (22.98%), GJ-tropical (22.86%), and GJ-subtropical (17.76%). Less than 9% of its genetic background was introgressed from weedy rice. Our results also suggested LM8 may have originated in a subtropical or tropical geographic region. Moreover, the comparisons with Nipponbare (NIP) and Shuhui498 (R498) revealed many specific structure variations (SVs) in the LM8 genome and fewer SVs between LM8 and NIP than between LM8 and R498. Next, 96 WRKY and 464 NBS genes were identified and mapped on LM8 chromosomes to eliminate redundancies. Three WRKY genes (ORUFILM02g002693, ORUFILM05g002725, and ORUFILM05g001757) in group III and one RNL [including the resistance to powdery mildew 8 (RPW8) domain, NBS, and leucine rich repeats (LRRs)] type NBS gene (ORUFILM12g000772) were detected in LM8. Among the NBS genes, the RPW8 domain was detected only in ORUFILM12g000772. This gene may improve plant resistance to pathogens as previously reported. Its classification and potential utility imply LM8 should be considered as a germplasm resource relevant for rice breeding programs.
Collapse
Affiliation(s)
- Zhenyun Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- International Rice Research Institute, Metro Manila, Philippines
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danjing Lou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiya Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yamin Nie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
20
|
Tong C, Zhang Y, Shi F. Genome-wide identification and analysis of the NLR gene family in Medicago ruthenica. Front Genet 2023; 13:1088763. [PMID: 36704335 PMCID: PMC9871256 DOI: 10.3389/fgene.2022.1088763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Medicago ruthenica, important forage in the legume family, possesses high nutritional value and carries abundant tolerance genes. This study used whole-genome data of M. ruthenica to perform a genome-wide analysis of the nucleotide-binding site-leucine-rich repeat receptor (NLR) gene family, which is the largest family of plant disease resistance genes (R genes). A total of 338 NLR genes were identified in the M. ruthenica genome, including 160 typical genes that contained 80 coiled-coil (CC)-NBS-LRR (CNL) genes, 76 toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) genes, four resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL) subclass genes, and 178 atypical NLR genes encoding proteins without at least one important domain. Among its eight chromosomes, M. ruthenica chromosomes 3 and 8 contained most of the NLR genes. More than 40% of all NLR genes were located on these two chromosomes, mainly in multigene clusters. The NLR proteins of M. ruthenica had six highly conserved motifs: P-loop, GLPL, RNBS-D, kinase-2, RNBS-C, and MHDV. Phylogenetic analysis revealed that the NLR genes of M. ruthenica formed three deeply separated clades according to the N-terminal domain of the proteins encoded by these genes. Gene duplication and syntenic analysis suggested four gene duplication types in the NLR genes of M. ruthenica, namely, tandem, proximal, dispersed, and segmental duplicates, which involved 189, 49, 59, and 41 genes, respectively. A total of 41 segmental duplication genes formed 23 NLR gene pairs located on syntenic chromosomal blocks mainly between chromosomes 6 and 7. In addition, syntenic analysis between M. truncatula and M. ruthenica revealed 193 gene pairs located on syntenic chromosomal blocks of the two species. The expression analysis of M. ruthenica NLR genes showed that 303 (89.6%) of the NLR genes were expressed in different varieties. Overall, this study described the full NLR profile of the M. ruthenica genome to provide an important resource for mining disease-resistant genes and disease-resistant breeding.
Collapse
Affiliation(s)
- Chunyan Tong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Yutong Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China,*Correspondence: Fengling Shi,
| |
Collapse
|
21
|
Zhang X, Wang F, Yang N, Chen N, Hu Y, Peng X, Shen S. Bioinformatics analysis and function prediction of NBS-LRR gene family in Broussonetia papyrifera. Biotechnol Lett 2023; 45:13-31. [PMID: 36357714 DOI: 10.1007/s10529-022-03318-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Most of the currently available disease resistance (R) genes have NBS (nucleotide-binding site) and LRR (leucine-rich-repeat) domain which belongs to the NBS-LRR gene family. The whole genome sequencing of Broussonetia papyrifera provides an important bioinformatics database for the study of the NBS-LRR gene family. In this study, 328 NBS-LRR family genes were identified and classified in B. papyrifera according to different classification schemes, where there are 92 N types, 47 CN type, 54 CNL type, 29 NL types, 55 TN type, and 51 TNL type. Subsequently, we conducted bioinformatics analysis of the NBS-LRR gene family. Classification, motif analysis of protein sequences, and phylogenetic tree studies of the NBS-LRR genes in B. papyrifera provide important basis for the functional study of NBS-LRR family genes. Additionally, we performed structural analysis of the chromosomal location, physicochemical properties, and sequences identified by genetic characterization. In addition, through the analysis of GO enrichment, it was found that NBS-LRR genes were involved in defense responses and were significantly enriched in biological stimulation, immune response, and abiotic stress. In addition, we found that Bp06g0955 was the most sensitive to low temperature and encoded the RPM1 protein by analyzing the low temperature transcriptome data of B. papyrifera. Quantitative results of gene expression after 48 h of Fusarium infection showed that Bp01g3293 increased 14 times after infection, which encodes RPM1 protein. The potential of NBS-LRR gene responsive to biotic and abiotic stresses can be exploited to improve the resistance of B. papyrifera.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengfeng Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Nianhui Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
22
|
Chen SH, Martino AM, Luo Z, Schwessinger B, Jones A, Tolessa T, Bragg JG, Tobias PA, Edwards RJ. A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes. Gigascience 2022; 12:giad102. [PMID: 38096477 PMCID: PMC10720953 DOI: 10.1093/gigascience/giad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Melaleuca quinquenervia (broad-leaved paperbark) is a coastal wetland tree species that serves as a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. While extensively cultivated for its ornamental value, it has also become invasive in regions like Florida, USA. Long-lived trees face diverse pest and pathogen pressures, and plant stress responses rely on immune receptors encoded by the nucleotide-binding leucine-rich repeat (NLR) gene family. However, the comprehensive annotation of NLR encoding genes has been challenging due to their clustering arrangement on chromosomes and highly repetitive domain structure; expansion of the NLR gene family is driven largely by tandem duplication. Additionally, the allelic diversity of the NLR gene family remains largely unexplored in outcrossing tree species, as many genomes are presented in their haploid, collapsed state. RESULTS We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and described the allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, distinct clustering patterns, and differences in the types and numbers of novel integrated domains. CONCLUSIONS The high-quality M. quinquenervia genome assembly establishes a new framework for functional and evolutionary studies of this significant tree species. Our findings suggest that maintaining allelic diversity within the NLR gene family is crucial for enabling responses to environmental stress, particularly in long-lived plants.
Collapse
Affiliation(s)
- Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
| | - Alyssa M Martino
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Zhenyan Luo
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Tamene Tolessa
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
- School of Environment and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington NSW 2052, Australia
| | - Peri A Tobias
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Minderoo OceanOmics Centre at UWA, UWA Oceans Institute, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
23
|
Chelliah A, Arumugam C, Suthanthiram B, Raman T, Subbaraya U. Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp. Funct Integr Genomics 2022; 23:7. [PMID: 36538175 DOI: 10.1007/s10142-022-00925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Banana is an important food crop that is susceptible to a wide range of pests and diseases that can reduce yield and quality. The primary objective of banana breeding programs is to increase disease resistance, which requires the identification of resistance (R) genes. Despite the fact that resistant sources have been identified in bananas, the genes, particularly the nucleotide-binding site (NBS) family, which play an important role in protecting plants against pathogens, have received little attention. As a result, this study included a thorough examination of the NBS disease resistance gene family's classification, phylogenetic analysis, genome organization, evolution, cis-elements, differential expression, regulation by microRNAs, and protein-protein interaction. A total of 116 and 43 putative NBS genes from M. acuminata and M. balbisiana, respectively, were identified and characterized, and were classified into seven sub-families. Structural analysis of NBS genes revealed the presence of signal peptides, their sub-cellular localization, molecular weight and pI. Eight commonly conserved motifs were found, and NBS genes were unevenly distributed across multiple chromosomes, with the majority of NBS genes being located in chr3 and chr1 of the A and B genomes, respectively. Tandem duplication occurrences have helped bananas' NBS genes spread throughout evolution. Transcriptome analysis of NBS genes revealed significant differences in expression between resistant and susceptible cultivars of fusarium wilt, eumusae leaf spot, root lesion nematode, and drought, implying that they can be used as candidate resistant genes. Ninety miRNAs were discovered to have targets in 104 NBS genes from the A genome, providing important insights into NBS gene expression regulation. Overall, this study offers a valuable genomic resource and understanding of the function and evolution of NBS genes in relation to rapidly evolving pathogens, as well as providing breeders with selection targets for fast-tracking breeding of banana varieties with more durable resistance to pathogens.
Collapse
Affiliation(s)
- Anuradha Chelliah
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India.
| | - Chandrasekar Arumugam
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Backiyarani Suthanthiram
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Thangavelu Raman
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Uma Subbaraya
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| |
Collapse
|
24
|
Ercolano MR, D’Esposito D, Andolfo G, Frusciante L. Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1007288. [PMID: 36388554 PMCID: PMC9647133 DOI: 10.3389/fpls.2022.1007288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A sophisticated innate immune system based on diverse pathogen receptor genes (PRGs) evolved in the history of plant life. To reconstruct the direction and magnitude of evolutionary trajectories of a given gene family, it is critical to detect the ancestral signatures. The rearrangement of functional domains made up the diversification found in PRG repertoires. Structural rearrangement of ancient domains mediated the NB-LRR evolutionary path from an initial set of modular proteins. Events such as domain acquisition, sequence modification and temporary or stable associations are prominent among rapidly evolving innate immune receptors. Over time PRGs are continuously shaped by different forces to find their optimal arrangement along the genome. The immune system is controlled by a robust regulatory system that works at different scales. It is important to understand how the PRG interaction network can be adjusted to meet specific needs. The high plasticity of the innate immune system is based on a sophisticated functional architecture and multi-level control. Due to the complexity of interacting with diverse pathogens, multiple defense lines have been organized into interconnected groups. Genomic architecture, gene expression regulation and functional arrangement of PRGs allow the deployment of an appropriate innate immunity response.
Collapse
|
25
|
Anuradha C, Chandrasekar A, Backiyarani S, Uma S. MusaRgeneDB: an online comprehensive database for disease resistance genes in Musa spp. 3 Biotech 2022; 12:222. [PMID: 35971335 PMCID: PMC9374869 DOI: 10.1007/s13205-022-03285-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Banana is one of the major food crops and its production is subject to many pests and diseases. Banana breeding exploits wild relatives and progenitor species for the introgression of resistant genes (R) into cultivated varieties to overcome these hurdles. With advances in sequencing technologies, whole-genome sequences are available for many Musa spp. and many of them are potential donors of disease resistance genes. Considering their potential role, R genes from these species were explored to develop an user-friendly open-access database that will be useful for studying and implementing disease resistance in bananas. MusaRgene database is complemented with complete details of 3598 R genes identified from eight Musa spp. and rice, Arabidopsis, sorghum along with its classification and separate modules on its expression under various stresses in resistant and susceptible cultivars and corresponding SSRs are also provided. This database can be regarded as the primary resource of information on R genes from bananas and their relatives. R genes from other allele mining studies are also incorporated which will enable the identification of its homolog in related Musa spp. MusaRgene database will aid in the identification of genes and markers associated, cloning of full-length R genes, and genetic transformation or gene editing of the R genes in susceptible cultivars. Multiple R genes can also be identified for pyramiding the genes to increase the level of resistance and durability. Overall, this database will facilitate the understanding of defense mechanisms in bananas against biotic or abiotic stresses leading to the development of promising disease-resistant varieties.
Collapse
Affiliation(s)
- Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Subbaraya Uma
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
26
|
Chen K, Shi Z, Zhang S, Wang Y, Xia X, Jiang Y, Gull S, Chen L, Guo H, Wu T, Zhang H, Liu J, Kong W. Methylation and Expression of Rice NLR Genes after Low Temperature Stress. Gene 2022; 845:146830. [PMID: 35995119 DOI: 10.1016/j.gene.2022.146830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are included in most plant disease resistance proteins. Some NLR proteins have been revealed to be induced by the invasion of plant pathogens. DNA methylation is required for adaption to adversity and proper regulation of gene expression in plants. Low temperature stress (LTS) is a restriction factor in rice growth, development and production. Here, we report the methylation and expression of NLR genes in two rice cultivars, i.e., 9311 (an indica rice cultivar sensitive to LTS), and P427 (a japonica cultivar, tolerant to LTS), after LTS. We found that the rice NLR genes were heavily methylated within CG sites at room temperature and low temperature in 9311 and P427, and many rice NLR genes showed DNA methylation alteration after LTS. A great number of rice NLR genes were observed to be responsive to LTS at the transcriptional level. Our observation suggests that the alteration of expression of rice NLR genes was similar but their change in DNA methylation was dynamic between the two rice cultivars after LTS. We identified that more P427 NLR genes reacted to LTS than those of 9311 at the methylation and transcriptional level. The results in this study will be useful for further understanding the transcriptional regulation and potential functions of rice NLR genes.
Collapse
Affiliation(s)
- Kun Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zuqi Shi
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shengwei Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yanxin Wang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Xia
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yan Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sadia Gull
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lin Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hui Guo
- Rice Research Institute, Guizhou Provincial Academy of Agriculture Sciences, Guiyang, 550006, China
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Jinglan Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
27
|
A TIR-NBS-LRR Gene MdTNL1 Regulates Resistance to Glomerella Leaf Spot in Apple. Int J Mol Sci 2022; 23:ijms23116323. [PMID: 35683002 PMCID: PMC9181576 DOI: 10.3390/ijms23116323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/18/2022] Open
Abstract
Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is one of the most devastating apple diseases. Our previous study reported that the GLS resistance locus was defined on the chromosome 15 region. Here, we further found a single-nucleotide polymorphism (SNP) site (SNP7309212) in the GLS resistance that was able to distinguish resistant cultivars (lines) from susceptible ones. On the basis of the SNP site, we cloned a TNL gene from the GLS resistant locus and named it MdTNL1 (NCBI Accession Number: ON402514). This gene contains a toll/interleukin-1 receptor transmembrane domain (TIR), nucleotide-binding sites (NBS), and leucine-rich repeat (LRR) domain. Subcellular location indicated that MdTNL1 was expressed in the nucleus and cell membrane. Ectopic overexpression of MdTNL1 in Nicotiana benthamiana caused cell death. We further demonstrated allelic polymorphisms in MdTNL1. It is noteworthy that NBS and LRR domains of the MdTNL1 protein serve as the repository for generating allelic diversity. Quantitative real-time PCR (qRT-PCR) assay revealed that MdTNL1 was highly expressed in resistant apple cultivar ‘Fuji’ after inoculation with C. fructicola, whereas susceptible cultivar ‘Golden Delicious’ exhibited low expression after inoculation. Over-expression of MdTNL1-1 in susceptible apple fruits and leaves improved disease resistance, while in ‘Orin’ calli, silencing the MdTNL1-1 gene conversely decreased GLS resistance. In conclusion, we identified a GLS associated with SNP7309212 and demonstrated that a TIR-NBS-LRR gene MdTNL1-1 positively regulates GLS resistance in apple.
Collapse
|
28
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.). Open Life Sci 2022; 17:497-511. [PMID: 35647293 PMCID: PMC9102303 DOI: 10.1515/biol-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| |
Collapse
|
29
|
Zhang W, Yuan Q, Wu Y, Zhang J, Nie J. Genome-Wide Identification and Characterization of the CC-NBS-LRR Gene Family in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23095048. [PMID: 35563438 PMCID: PMC9099878 DOI: 10.3390/ijms23095048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The NBS-LRR (NLR) gene family plays a pivotal role in regulating disease defense response in plants. Cucumber is one of the most important vegetable crops in the world, and various plant diseases, including powdery mildew (PM), cause severe losses in both cucumber productivity and quality annually. To characterize and understand the role of the CC-NBS-LRR(CNL) family of genes in disease defense response in cucumber plants, we performed bioinformatical analysis to characterize these genes systematically. We identified 33 members of the CNL gene family in cucumber plants, and they are distributed on each chromosome with chromosome 4 harboring the largest cluster of five different genes. The corresponding CNL family member varies in the number of amino acids and exons, molecular weight, theoretical isoelectric point (pI) and subcellular localization. Cis-acting element analysis of the CNL genes reveals the presence of multiple phytohormone, abiotic and biotic responsive elements in their promoters, suggesting that these genes might be responsive to plant hormones and stress. Phylogenetic and synteny analysis indicated that the CNL proteins are conserved evolutionarily in different plant species, and they can be divided into four subfamilies based on their conserved domains. MEME analysis and multiple sequence alignment showed that conserved motifs exist in the sequence of CNLs. Further DNA sequence analysis suggests that CsCNL genes might be subject to the regulation of different miRNAs upon PM infection. By mining available RNA-seq data followed by real-time quantitative PCR (qRT-PCR) analysis, we characterized expression patterns of the CNL genes, and found that those genes exhibit a temporospatial expression pattern, and their expression is also responsive to PM infection, ethylene, salicylic acid, and methyl jasmonate treatment in cucumber plants. Finally, the CNL genes targeted by miRNAs were predicted in cucumber plants. Our results in this study provided some basic information for further study of the functions of the CNL gene family in cucumber plants.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Qi Yuan
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Yiduo Wu
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jing Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
30
|
Li M, Wang F, Ma J, Liu H, Ye H, Zhao P, Wang J. Comprehensive Evolutionary Analysis of CPP Genes in Brassica napus L. and Its Two Diploid Progenitors Revealing the Potential Molecular Basis of Allopolyploid Adaptive Advantage Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:873071. [PMID: 35548281 PMCID: PMC9085292 DOI: 10.3389/fpls.2022.873071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Allopolyploids exist widely in nature and have strong environmental adaptability. The typical allopolyploid Brassica napus L. is a widely cultivated crop, but whether it is superior to its diploid progenitors in abiotic stress resistance and the key genes that may be involved are not fully understood. Cystein-rich polycomb-like protein (CPP) genes encode critical transcription factors involved in the response of abiotic stress, including salt stress. To explore the potential molecular basis of allopolyploid adaptation to salt stress, we comprehensively analyzed the characteristics and salt stress response of the CPP genes in B. napus and its two diploid progenitors in this study. We found some molecular basis that might be associated with the adaptability of B. napus, including the expansion of the CPP gene family, the acquisition of introns by some BnCPPs, and abundant cis-acting elements upstream of BnCPPs. We found two duplication modes (whole genome duplication and transposed duplication) might be the main reasons for the expansion of CPP gene family in B. napus during allopolyploidization. CPP gene expression levels and several physiological indexes were changed in B. napus and its diploid progenitors after salt stress, suggesting that CPP genes might play important roles in the response of salt stress. We found that some BnCPPs might undergo new functionalization or subfunctionalization, and some BnCPPs also show biased expression, which might contribute to the adaptation of B. napus under saline environment. Compared with diploid progenitors, B. napus showed stronger physiological responses, and BnCPP gene expression also showed higher changes after salt stress, indicating that the allopolyploid B. napus had an adaptive advantage under salt stress. This study could provide evidence for the adaptability of polyploid and provide important clues for the study of the molecular mechanism of salt stress resistance in B. napus.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
32
|
Pendergast TH, Qi P, Odeny DA, Dida MM, Devos KM. A high-density linkage map of finger millet provides QTL for blast resistance and other agronomic traits. THE PLANT GENOME 2022; 15:e20175. [PMID: 34904374 DOI: 10.1002/tpg2.20175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Finger millet [Eleusine coracana (L.) Gaertn.] is a critical subsistence crop in eastern Africa and southern Asia but has few genomic resources and modern breeding programs. To aid in the understanding of finger millet genomic organization and genes underlying disease resistance and agronomically important traits, we generated a F2:3 population from a cross between E. coracana (L.) Gaertn. subsp. coracana accession ACC 100007 and E. coracana (L.) Gaertn. subsp. africana , accession GBK 030647. Phenotypic data on morphology, yield, and blast (Magnaporthe oryzae) resistance traits were taken on a subset of the F2:3 population in a Kenyan field trial. The F2:3 population was genotyped via genotyping-by-sequencing (GBS) and the UGbS-Flex pipeline was used for sequence alignment, nucleotide polymorphism calling, and genetic map construction. An 18-linkage-group genetic map consisting of 5,422 markers was generated that enabled comparative genomic analyses with rice (Oryza sativa L.), foxtail millet [Setaria italica (L.) P. Beauv.], and sorghum [Sorghum bicolor (L.) Moench]. Notably, we identified conserved acrocentric homoeologous chromosomes (4A and 4B in finger millet) across all species. Significant quantitative trait loci (QTL) were discovered for flowering date, plant height, panicle number, and blast incidence and severity. Sixteen putative candidate genes that may underlie trait variation were identified. Seven LEUCINE-RICH REPEAT-CONTAINING PROTEIN genes, with homology to nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance proteins, were found on three chromosomes under blast resistance QTL. This high-marker-density genetic map provides an important tool for plant breeding programs and identifies genomic regions and genes of critical interest for agronomic traits and blast resistance.
Collapse
Affiliation(s)
- Thomas H Pendergast
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Peng Qi
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics-Eastern and Southern Africa, Nairobi, Kenya
| | - Mathews M Dida
- Dep. of Applied Sciences, Maseno Univ., Private Bag-40105, Maseno, Kenya
| | - Katrien M Devos
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
33
|
Gu BJ, Tong YK, Wang YY, Zhang ML, Ma GJ, Wu XQ, Zhang JF, Xu F, Li J, Ren F. Genome-wide evolution and expression analysis of the MYB-CC gene family in Brassica spp. PeerJ 2022; 10:e12882. [PMID: 35237467 PMCID: PMC8884064 DOI: 10.7717/peerj.12882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
The MYB-CC family is a subtype within the MYB superfamily. This family contains an MYB domain and a predicted coiled-coil (CC) domain. Several MYB-CC transcription factors are involved in the plant's adaptability to low phosphate (Pi) stress. We identified 30, 34, and 55 MYB-CC genes in Brassica rapa, Brassica oleracea, and Brassica napus, respectively. The MYB-CC genes were divided into nine groups based on phylogenetic analysis. The analysis of the chromosome distribution and gene structure revealed that most MYB-CC genes retained the same relative position on the chromosomes and had similar gene structures during allotetraploidy. Evolutionary analysis showed that the ancestral whole-genome triplication (WGT) and the recent allopolyploidy are critical for the expansion of the MYB-CC gene family. The expression patterns of MYB-CC genes were found to be diverse in different tissues of the three Brassica species. Furthermore, the gene expression analysis under low Pi stress revealed that MYB-CC genes may be related to low Pi stress responses. These results may increase our understanding of MYB-CC gene family diversification and provide the basis for further analysis of the specific functions of MYB-CC genes in Brassica species.
Collapse
Affiliation(s)
- Bin-Jie Gu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yi-Kai Tong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - You-Yi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Mei-Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Guang-Jing Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Qin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jian-Feng Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Fan Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Si Z, Wang L, Qiao Y, Roychowdhury R, Ji Z, Zhang K, Han J. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species. FRONTIERS IN PLANT SCIENCE 2022; 13:960723. [PMID: 36061812 PMCID: PMC9434374 DOI: 10.3389/fpls.2022.960723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 05/14/2023]
Abstract
The nucleotide-binding site (NBS)-encoding gene is a major type of resistance (R) gene, and its diverse evolutionary patterns were analyzed in different angiosperm lineages. Until now, no comparative studies have been done on the NBS encoding genes in Ipomoea species. In this study, various numbers of NBS-encoding genes were identified across the whole genome of sweet potato (Ipomoea batatas) (#889), Ipomoea trifida (#554), Ipomoea triloba (#571), and Ipomoea nil (#757). Gene analysis showed that the CN-type and N-type were more common than the other types of NBS-encoding genes. The phylogenetic analysis revealed that the NBS-encoding genes formed three monophyletic clades: CNL, TNL, and RNL, which were distinguished by amino acid motifs. The distribution of the NBS-encoding genes among the chromosomes was non-random and uneven; 83.13, 76.71, 90.37, and 86.39% of the genes occurred in clusters in sweet potato, I. trifida, I. triloba, and I. nil, respectively. The duplication pattern analysis reveals the presence of higher segmentally duplicated genes in sweet potatoes than tandemly duplicated ones. The opposite trend was found for the other three species. A total of 201 NBS-encoding orthologous genes were found to form synteny gene pairs between any two of the four Ipomea species, suggesting that each of the synteny gene pairs was derived from a common ancestor. The gene expression patterns were acquired by analyzing using the published datasets. To explore the candidate resistant genes in sweet potato, transcriptome analysis has been carried out using two resistant (JK20 and JK274) and susceptible cultivars (Tengfei and Santiandao) of sweet potato for stem nematodes and Ceratocystis fimbriata pathogen, respectively. A total of 11 differentially expressed genes (DEGs) were found in Tengfei and JK20 for stem nematodes and 19 DEGs in Santiandao and JK274 for C. fimbriata. Moreover, six DEGs were further selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. The results may provide new insights into the evolution of NBS-encoding genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- *Correspondence: Zengzhi Si,
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)–Volcani Center, Rishon LeZion, Israel
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
35
|
Zhang X, Liu T, Wang J, Wang P, Qiu Y, Zhao W, Pang S, Li X, Wang H, Song J, Zhang W, Yang W, Sun Y, Li X. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. MOLECULAR PLANT 2021; 14:2032-2055. [PMID: 34384905 DOI: 10.1016/j.molp.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 08/05/2021] [Indexed: 05/22/2023]
Abstract
Post-polyploid diploidization associated with descending dysploidy and interspecific introgression drives plant genome evolution by unclear mechanisms. Raphanus is an economically and ecologically important Brassiceae genus and model system for studying post-polyploidization genome evolution and introgression. Here, we report the de novo sequence assemblies for 11 genomes covering most of the typical sub-species and varieties of domesticated, wild and weedy radishes from East Asia, South Asia, Europe, and America. Divergence among the species, sub-species, and South/East Asian types coincided with Quaternary glaciations. A genus-level pan-genome was constructed with family-based, locus-based, and graph-based methods, and whole-genome comparisons revealed genetic variations ranging from single-nucleotide polymorphisms (SNPs) to inversions and translocations of whole ancestral karyotype (AK) blocks. Extensive gene flow occurred between wild, weedy, and domesticated radishes. High frequencies of genome reshuffling, biased retention, and large-fragment translocation have shaped the genomic diversity. Most variety-specific gene-rich blocks showed large structural variations. Extensive translocation and tandem duplication of dispensable genes were revealed in two large rearrangement-rich islands. Disease resistance genes mostly resided on specific and dispensable loci. Variations causing the loss of function of enzymes modulating gibberellin deactivation were identified and could play an important role in phenotype divergence and adaptive evolution. This study provides new insights into the genomic evolution underlying post-polyploid diploidization and lays the foundation for genetic improvement of radish crops, biological control of weeds, and protection of wild species' germplasms.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| | - Jinglei Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Pang
- Berry Genomics Corporation, Beijing 100015, China
| | - Xiaoman Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenlin Zhang
- Berry Genomics Corporation, Beijing 100015, China
| | - Wenlong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyan Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
36
|
Wang W, Liu N, Gao C, Rui L, Jiang Q, Chen S, Zhang Q, Zhong G, Tang D. The truncated TNL receptor TN2-mediated immune responses require ADR1 function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:672-689. [PMID: 34396631 DOI: 10.1111/tpj.15463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR-NBS2 (TN2), a truncated intracellular nucleotide-binding and leucine-rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2-activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1-3 were independent of the full-length NLR SOC3 and its closest homolog SOC3-LIKE 1 (SOC3-L1). Additionally, knocking out SOC3-L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1-2 (chs1-2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1-3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1-3. Furthermore, overexpression of TN2 also led to ADR1-dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2-triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuling Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
37
|
Yu X, Zhong S, Yang H, Chen C, Chen W, Yang H, Guan J, Fu P, Tan F, Ren T, Shen J, Zhang M, Luo P. Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. FRONTIERS IN PLANT SCIENCE 2021; 12:758559. [PMID: 34777439 PMCID: PMC8585750 DOI: 10.3389/fpls.2021.758559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 05/26/2023]
Abstract
Akebia trifoliata is an important multiuse perennial plant that often suffers attacks from various pathogens due to its long growth cycle, seriously affecting its commercial value. The absence of research on the resistance (R) genes of A. trifoliata has greatly limited progress in the breeding of resistant varieties. Genes encoding proteins containing nucleotide binding sites (NBSs) and C-terminal leucine-rich repeats (LRRs), the largest family of plant resistance (R) genes, are vital for plant disease resistance. A comprehensive genome-wide analysis showed that there were only 73 NBS genes in the A. trifoliata genome, including three main subfamilies (50 coiled coil (CC)-NBS-LRR (CNL), 19 Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) and four resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) genes). Additionally, 64 mapped NBS candidates were unevenly distributed on 14 chromosomes, most of which were assigned to the chromosome ends; 41 of these genes were located in clusters, and the remaining 23 genes were singletons. Both the CNLs and TNLs were further divided into four subgroups, and the CNLs had fewer exons than the TNLs. Structurally, all eight previously reported conserved motifs were identified in the NBS domains, and both their order and their amino acid sequences exhibited high conservation. Evolutionarily, tandem and dispersed duplications were shown to be the two main forces responsible for NBS expansion, producing 33 and 29 genes, respectively. A transcriptome analysis of three fruit tissues at four developmental stages showed that NBS genes were generally expressed at low levels, while a few of these genes showed relatively high expression during later development in rind tissues. Overall, this research is the first to identify and characterize A. trifoliata NBS genes and is valuable for both the development of new resistant cultivars and the study of molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Xiaojiao Yu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Hao Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Ju Guan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peng Fu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Tianheng Ren
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Gottin C, Dievart A, Summo M, Droc G, Périn C, Ranwez V, Chantret N. A new comprehensive annotation of leucine-rich repeat-containing receptors in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:492-508. [PMID: 34382706 PMCID: PMC9292849 DOI: 10.1111/tpj.15456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Oryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR). Using lrrprofiler, a pipeline that we developed to annotate and classify these proteins, we compared three publicly available annotations of the rice Nipponbare reference genome. The extended discrepancies that we observed for LRR-CR gene models led us to perform an in-depth manual curation of their annotations while paying special attention to nonsense mutations. We then transferred this manually curated annotation to Kitaake, a cultivar that is closely related to Nipponbare, using an optimized strategy. Here, we discuss the breakthrough achieved by manual curation when comparing genomes and, in addition to 'functional' and 'structural' annotations, we propose that the community adopts this approach, which we call 'comprehensive' annotation. The resulting data are crucial for further studies on the natural variability and evolution of LRR-CR genes in order to promote their use in breeding future resilient varieties.
Collapse
Affiliation(s)
- Céline Gottin
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Anne Dievart
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Marilyne Summo
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Gaëtan Droc
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Christophe Périn
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Vincent Ranwez
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| | - Nathalie Chantret
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
39
|
Yang D, Li S, Xiao Y, Lu L, Zheng Z, Tang D, Cui H. Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. PLANT, CELL & ENVIRONMENT 2021; 44:3103-3121. [PMID: 33993496 DOI: 10.1111/pce.14098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/04/2021] [Indexed: 05/05/2023]
Abstract
Rice blast disease caused by the filamentous Ascomycetous fungus Magnaporthe oryzae is a major threat to rice production worldwide. The mechanisms underlying rice resistance to M. oryzae, such as transcriptional reprogramming and signalling networks, remain elusive. In this study, we carried out an in-depth comparative transcriptome study on the susceptible and resistant rice cultivars in response to M. oryzae. Our analysis highlighted that rapid, high-amplitude transcriptional reprogramming was important for rice defence against blast fungus. Ribosome- and protein translation-related genes were significantly enriched among differentially expressed genes (DEGs) at 12 hpi in both cultivars, indicating that the protein translation machinery is regulated in the activation of immunity in rice. Furthermore, we identified a core set of genes that are involved in the rice response to both biotic and abiotic stress. More importantly, among the core genes, we demonstrated that the metallothionein OsMT1a and OsMT1b genes positively regulated rice resistance while a peroxidase gene Perox4 negatively regulated rice resistance to M. oryzae. Our study provides novel insight into transcriptional reprogramming and serves as a valuable resource for functional studies on rice immune signalling components in resistance to blast disease.
Collapse
Affiliation(s)
- Dewei Yang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueping Xiao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zichao Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haitao Cui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
40
|
Komaei Koma G, Şekerli M, Snelling JW, Mehlenbacher SA. New Sources of Eastern Filbert Blight Resistance and Simple Sequence Repeat Markers on Linkage Group 6 in Hazelnut ( Corylus avellana L.). FRONTIERS IN PLANT SCIENCE 2021; 12:684122. [PMID: 34194458 PMCID: PMC8238048 DOI: 10.3389/fpls.2021.684122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Commercial production of hazelnut (Corylus avellana) in Oregon's Willamette Valley is threatened by eastern filbert blight (EFB), a serious canker disease caused by the pyrenomycete Anisogramma anomala (Peck) E. Müller. The fungus also prevents the establishment of hazelnut orchards in eastern North America. Genetic resistance is considered the most effective way to control the disease. A high level of EFB resistance was first discovered in 'Gasaway'. This resistance is conferred by a dominant allele at a single locus on linkage group 6 (LG6). Resistance from several additional sources has been assigned to the same chromosomal region. In this study, new simple sequence repeat (SSR) markers were developed for the resistance region on LG6 and new sources of resistance were investigated. Forty-two new SSR markers were developed from four contigs in the genome sequence of 'Jefferson' hazelnut, characterized, and nine of them were placed on LG6 of the genetic map. Accessions representing 12 new sources of EFB resistance were crossed with susceptible selections resulting in 18 seedling populations. Segregation ratios in the seedling populations fit the expected 1:1 ratio for 10 sources, while one source showed an excess of resistant seedlings and another showed an excess of susceptible seedlings. Based on correlation of disease response and scores of SSR markers in the 'Gasaway' resistance region in the seedlings, eight resistance sources were assigned to LG6. Linkage maps were constructed for each progeny using SSR markers. The LG6 resistance sources include two selections (#23 and #26) from the Russian Research Institute of Forestry and Mechanization near Moscow, four selections from southern Russia, one selection (OSU 1185.126) from Crimea, one selection (OSU 533.129) from Michigan, Corylus heterophylla 'Ogyoo' from the South Korea, and the interspecific hybrid 'Estrella #1'. These new LG6 resistance sources and SSR markers should be useful in breeding new cultivars, including the pyramiding of resistance genes. For the other four resistance sources (Moscow #37, hybrid selection OSU 401.014, C. americana 'Winkler' and C. americana OSU 366.060), SSR marker scores on linkage groups 6, 7 and 2 were not correlated with disease response and merit further investigation.
Collapse
|
41
|
Wang Z, Huang J, Nie L, Hu Y, Zhang N, Guo Q, Guo J, Du B, Zhu L, He G, Chen R. Molecular and functional analysis of a brown planthopper resistance protein with two nucleotide-binding site domains. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2657-2671. [PMID: 33345280 DOI: 10.1093/jxb/eraa586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/15/2020] [Indexed: 05/26/2023]
Abstract
The brown planthopper (Nilaparvata lugens Stål, BPH) resistance gene BPH9 encodes an unusual coiled-coil (CC) nucleotide-binding leucine-rich repeat (LRR) protein with two nucleotide-binding site (NBS) domains. To understand how this CC-NBS-NBS-LRR (CNNL) protein regulates defense signaling and BPH resistance, we dissected each domain's functions. The CC domain of BPH9 self-associated and was sufficient to induce cell death. The region of 97-115 residues in the CC domain is crucial for self-association and activation. NBS2, which contains a complete set of NBS function motifs and inhibits CC domain activation, rather than NBS1, acts as a molecular switch to regulate the activity of BPH9. We demonstrated that the CC domain, the NBS domain, and the LRR domain of BPH9 associate with each other and themselves in planta. Further domain swapping experiments revealed that the CC domains of BPH9 and susceptible alleles were similarly competent to induce resistance and the hypersensitive response, while the LRR domain of BPH9 confers resistance specificity to BPH. These findings provide new insights into the regulatory mechanisms governing the activity of CNNL proteins.
Collapse
Affiliation(s)
- Zhizheng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yinxia Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ning Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qin Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Pande A, Mun BG, Lee DS, Khan M, Lee GM, Hussain A, Yun BW. NO Network for Plant-Microbe Communication Underground: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:658679. [PMID: 33815456 PMCID: PMC8010196 DOI: 10.3389/fpls.2021.658679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 05/30/2023]
Abstract
Mechanisms governing plant-microbe interaction in the rhizosphere attracted a lot of investigative attention in the last decade. The rhizosphere is not simply a source of nutrients and support for the plants; it is rather an ecosystem teeming with diverse flora and fauna including different groups of microbes that are useful as well as harmful for the plants. Plant-microbe interaction occurs via a highly complex communication network that involves sophisticated machinery for the recognition of friend and foe at both sides. On the other hand, nitric oxide (NO) is a key, signaling molecule involved in plant development and defense. Studies on legume-rhizobia symbiosis suggest the involvement of NO during recognition, root hair curling, development of infection threads, nodule development, and nodule senescence. A similar role of NO is also suggested in the case of plant interaction with the mycorrhizal fungi. Another, insight into the plant-microbe interaction in the rhizosphere comes from the recognition of pathogen-associated molecular patterns (PAMPs)/microbe-associated molecular patterns (MAMPs) by the host plant and thereby NO-mediated activation of the defense signaling cascade. Thus, NO plays a major role in mediating the communication between plants and microbes in the rhizosphere. Interestingly, reports suggesting the role of silicon in increasing the number of nodules, enhancing nitrogen fixation, and also the combined effect of silicon and NO may indicate a possibility of their interaction in mediating microbial communication underground. However, the exact role of NO in mediating plant-microbe interaction remains elusive. Therefore, understanding the role of NO in underground plant physiology is very important, especially in relation to the plant's interaction with the rhizospheric microbiome. This will help devise new strategies for protection against phytopathogens and enhancing plant productivity by promoting symbiotic interaction. This review focuses on the role of NO in plant-microbe communication underground.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
43
|
Zhang Y, Edwards D, Batley J. Comparison and evolutionary analysis of Brassica nucleotide binding site leucine rich repeat (NLR) genes and importance for disease resistance breeding. THE PLANT GENOME 2021; 14:e20060. [PMID: 33179454 DOI: 10.1002/tpg2.20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The Brassica genus contains many agriculturally significant oilseed and vegetable crops, however the crop yield is threatened by a range of fungal and bacterial pathogens. Nucleotide Binding Site Leucine Rich Repeat (NLR) genes play important roles in plant innate immunity. The evolution of NLR genes is influenced by genomic processes and pathogen selection. At the whole genome level, whole genome duplications (WGDs) generate abundant gene copies, most of which are lost during genome fractionation. At sub-genomic levels, some retained copies undergo duplication forming clusters which facilitate rapid evolution through recombination. The number, distribution and genetic variations of the NLR genes vary among Brassica species and within populations suggesting differential selection pressure exerted by pathogen populations throughout the evolutionary history. A study of the evolution of disease resistance genes in agriculturally important plants such as Brassicas helps gain insights into their function and inform the identification of resistance genes for breeding of resistant lines.
Collapse
Affiliation(s)
- Yueqi Zhang
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
44
|
Yang H, Bayer PE, Tirnaz S, Edwards D, Batley J. Genome-Wide Identification and Evolution of Receptor-Like Kinases (RLKs) and Receptor like Proteins (RLPs) in Brassica juncea. BIOLOGY 2020; 10:biology10010017. [PMID: 33396674 PMCID: PMC7823396 DOI: 10.3390/biology10010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Brassica juncea, an allotetraploid species, is an important germplasm resource for canola improvement, due to its many beneficial agronomic traits, such as heat and drought tolerance and blackleg resistance. Receptor-like kinase (RLK) and receptor-like protein (RLP) genes are two types of resistance gene analogues (RGA) that play important roles in plant innate immunity, stress response and various development processes. In this study, genome wide analysis of RLKs and RLPs is performed in B. juncea. In total, 493 RLKs (LysM-RLKs and LRR-RLKs) and 228 RLPs (LysM-RLPs and LRR-RLPs) are identified in the genome of B. juncea, using RGAugury. Only 13.54% RLKs and 11.79% RLPs are observed to be grouped within gene clusters. The majority of RLKs (90.17%) and RLPs (52.83%) are identified as duplicates, indicating that gene duplications significantly contribute to the expansion of RLK and RLP families. Comparative analysis between B. juncea and its progenitor species, B. rapa and B. nigra, indicate that 83.62% RLKs and 41.98% RLPs are conserved in B. juncea, and RLPs are likely to have a faster evolution than RLKs. This study provides a valuable resource for the identification and characterisation of candidate RLK and RLP genes.
Collapse
Affiliation(s)
- Hua Yang
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; (H.Y.); (P.E.B.); (S.T.); (D.E.)
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD 4067, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; (H.Y.); (P.E.B.); (S.T.); (D.E.)
| | - Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; (H.Y.); (P.E.B.); (S.T.); (D.E.)
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; (H.Y.); (P.E.B.); (S.T.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; (H.Y.); (P.E.B.); (S.T.); (D.E.)
- Correspondence: ; Tel.: +61-8-6488-5929
| |
Collapse
|
45
|
Abstract
The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, was used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.
Collapse
|
46
|
Identification and Analysis of NBS-LRR Genes in Actinidia chinensis Genome. PLANTS 2020; 9:plants9101350. [PMID: 33065969 PMCID: PMC7601643 DOI: 10.3390/plants9101350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the most important disease resistance genes in plants. The genome sequence of kiwifruit (Actinidia chinensis) provides resources for the characterization of NBS-LRR genes and identification of new R-genes in kiwifruit. In the present study, we identified 100 NBS-LRR genes in the kiwifruit genome and they were grouped into six distinct classes based on their domain architecture. Of the 100 genes, 79 are truncated non-regular NBS-LRR genes. Except for 37 NBS-LRR genes with no location information, the remaining 63 genes are distributed unevenly across 18 kiwifruit chromosomes and 38.01% of them are present in clusters. Seventeen families of cis-acting elements were identified in the promoters of the NBS-LRR genes, including AP2, NAC, ERF and MYB. Pseudomonas syringae pv. actinidiae (pathogen of the kiwifruit bacterial canker) infection induced differential expressions of 16 detected NBS-LRR genes and three of them are involved in plant immunity responses. Our study provides insight of the NBS-LRR genes in kiwifruit and a resource for the identification of new R-genes in the fruit.
Collapse
|
47
|
Islam MR, Hossain MR, Jesse DMI, Jung HJ, Kim HT, Park JI, Nou IS. Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance. BMC Genet 2020; 21:80. [PMID: 32698865 PMCID: PMC7376666 DOI: 10.1186/s12863-020-00885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Background Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB. Results We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. Conclusion We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.,Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
48
|
Ren S, Sun M, Yan H, Wu B, Jing T, Huang L, Zeng B. Identification and Distribution of NBS-Encoding Resistance Genes of Dactylis glomerata L. and Its Expression Under Abiotic and Biotic Stress. Biochem Genet 2020; 58:824-847. [PMID: 32506157 DOI: 10.1007/s10528-020-09977-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
Orchardgrass (Dactylis glomerata L.) is drought resistant and tolerant to barren landscapes, making it one of the most important forages for animal husbandry, as well as ecological restoration of rocky landscapes that are undergoing desertification. However, orchardgrass is susceptible to rust, which can significantly reduce its yield and quality. Therefore, understanding the genes that underlie resistance against rust in orchardgrass is critical. The evolution, cloning of plant disease resistance genes, and the analysis of pathogenic bacteria induced expression patterns are important contents in the study of interaction between microorganisms and plants. Genes with nucleotide binding site (NBS) structure are disease-resistant genes ubiquitous in plants and play an important role in plant attacks against various pathogens. Using sequence analysis and re-annotation, we identified 413 NBS resistance genes in orchardgrass. Similar to previous studies, NBS resistance genes containing TIR (toll/interleukin-1 receptor) domain were not found in orchardgrass. The NBS resistance genes can be divided into four types: NBS (up to 264 homologous genes, accounting for 64% of the total number of NBS genes in orchardgrass), NBS-LRR, CC-NBS, and CC-NBS-LRR (minimum of 26 homologous genes, only 6% of the total number of NBS genes in orchardgrass). These 413 NBS resistance genes were unevenly distributed across seven chromosomes where chromosome 5 had up to 99 NBS resistance genes. There were 224 (54%) NBS resistance genes expressed in different tissues (roots, stems, leaves, flowers, and spikes), and we did not detect expression for 45 genes (11%). The remaining 145 (35%) were expressed in some tissues. And we found that 11 NBS resistance genes were differentially expressed under waterlogging stress, 5 NBS resistance genes were differentially expressed under waterlogging and drought stress, and 1 NBS resistance was is differentially expressed under waterlogging and heat stress. Most importantly, we found that 65 NBS resistance genes were significantly expressed in different control groups. On the 7th day of inoculation, 23 NBS resistance genes were differentially expressed in high resistance materials alone, of which 7 NBS resistance genes regulate the "plant-pathogen interaction" pathway by encoding RPM1. At the same time, 2 NBS resistance genes that were differentially expressed in the high resistance material after inoculation were also differentially expressed in abiotic stress. In summary, the NBS resistance gene plays a crucial role in the resistance of orchardgrass to rust.
Collapse
Affiliation(s)
- Shuping Ren
- College of Animal Science, Southwest University, Rongchang Campus, Chongqing, 402460, China
| | - Min Sun
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haidong Yan
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bingchao Wu
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingting Jing
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bing Zeng
- College of Animal Science, Southwest University, Rongchang Campus, Chongqing, 402460, China.
| |
Collapse
|
49
|
Zhao Y, Liu Y, Zhang Z, Cao Y, Yu H, Ma W, Zhang B, Wang R, Gao J, Wang L. Fine mapping of the major anthracnose resistance QTL AnR GO5 in Capsicum chinense 'PBC932'. BMC PLANT BIOLOGY 2020; 20:189. [PMID: 32357837 PMCID: PMC7195712 DOI: 10.1186/s12870-019-2115-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/01/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Colletotrichum species are the causal agents of anthracnose, a major disease affecting the yield and quality of pepper (Capsicum spp.). Colletotrichum scovillei is widespread in China, has strong pathogenicity and drug resistance, and causes anthracnose disease in pepper fruits that severely reduces production. Previously, an anti-anthracnose locus AnRGO5 was mapped to the P5 chromosome on the basis of analyses of fruit at the green mature stage. The aim of this study was to narrow down the interval of this locus and identify the gene responsible for conferring resistance. RESULTS On the basis of results of re-sequencing of Capsicum chinense 'PBC932' and C. annuum '77013', we developed Kompetitive allele-specific PCR (KASPar) markers and insertion-deletion (InDel) markers linked to AnRGO5 at the green mature fruit stage and used them to construct a genetic linkage map (42 markers, 24.4 cM in length). Using data obtained in phenotypic and genotypic analyses of BC4S1, BC4S2, and BC4S3 populations, AnRGO5 was located between the markers P5in-2266-404 and P5in-2268-978 within a physical distance of 164 kb. This region contained five genes, including CA05g17730. CA05g17730 encodes 'R1C-3-like' putative late blight resistance protein homologs. The transcript level of CA05g17730 differed between 'PBC932' and '77013'. The structure of the CA05g17730 gene also differed between 'PBC932' and '77013'. CONCLUSIONS We narrowed down the QTL interval to a region containing five genes. These results will be useful for further research on the mechanisms of resistance to anthracnose, and for marker assisted selection for anthracnose-resistant capsicum lines.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
- College of Forestry and Horticulture, Xinjiang Agricultural University, 467 Xinjiang, Urumqi, 830052 People’s Republic of China
| | - Yiwei Liu
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yacong Cao
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Hailong Yu
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Wenwen Ma
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Baoxi Zhang
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Risheng Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, No 174, East University Road, Nanning, Guangxi 530007 People’s Republic of China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, 467 Xinjiang, Urumqi, 830052 People’s Republic of China
| | - Lihao Wang
- Key Laboratory of Vegetable Genetics and Physiology of the China Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
50
|
Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:969-982. [PMID: 31553100 PMCID: PMC7061875 DOI: 10.1111/pbi.13262] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor-bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R-genes harbour more SNPs than variable genes. More nucleotide binding site-leucine-rich repeat (NBS-LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics-based improvement and improved disease resistance.
Collapse
Affiliation(s)
- Aria Dolatabadian
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Bhavna Hurgobin
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|