1
|
Wang Z, Zhang Z, Shi Q, Liu S, Wu Q, Wang Z, Saiding E, Han J, Zhou J, Wang R, Su X. Comparison of Lactiplantibacillus plantarum isolates from the gut of mice supplemented with different types of nutrients: a genomic and metabolomic study. Front Microbiol 2023; 14:1295058. [PMID: 38033563 PMCID: PMC10684713 DOI: 10.3389/fmicb.2023.1295058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Many studies have focused on the influence of dietary supplements on gut microbiota composition, but limited research have reported their effects on specific bacterial species in the gut. Lactiplantibacillus plantarum is one of the most widely studied probiotics, with a wide range of sources and good environmental adaptability. In this study, in order to elucidate the adaptation strategies of L. plantarum to the gut of mice supplemented with carbohydrates, peptides and minerals, whole genome resequencing and intracellular metabolites detection were performed, and high-frequency mutant genes and differential metabolites were screened. The results suggested different types of dietary supplements do have different effects on L. plantarum from the gut of mice. Additionally, KEGG annotation unveiled that the effects of these dietary supplements on the gene level of L. plantarum primarily pertained to environmental information processing, while the differential metabolites were predominantly associated with metabolism. This study provided new perspectives on the adaptive mechanism of L. plantarum in response to the host's gut environment, suggesting that the diversity of the genome and metabolome of L. plantarum was correlated with dietary supplements. Furthermore, this study offered useful guidance in the effective utilization of dietary supplements.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiuyue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
3
|
DafaAlla TEIM, Abdalla M, El-Arabey AA, Eltayb WA, Mohapatra RK. Botrytis cinerea alcohol dehydrogenase mediates fungal development, environmental adaptation and pathogenicity. J Biomol Struct Dyn 2022; 40:12426-12438. [PMID: 34472419 DOI: 10.1080/07391102.2021.1971112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Botrytis cinerea is an economically critical necrotrophic fungus that infecting many types of plants species. Although the lifestyle adaptations and genetic foundations of several enzymes and metabolites involved in B. cinerea virulence during host plant infection are well studied, the role of B. cinerea alcohol dehydrogenase (ADH) enzymes in these processes is poorly understood. Herein, we identified a significant up-regulation of the transcriptional levels of the BcADH1 gene during the tomato - B. cinerea strain B0510 interaction and at the early stage of infection. Substantially, we used a recent approach for replacement of gene by utilizing homologous recombination to generate knock-out mutants (Δbcadh1) and their effective complementary strains (Δbcadh1/C). A strong difference in the morphology of Δbcadh1 mutants from the wild type (WT) was detected, with respect to the conidiospore, conidial germination, and formation of branches, sporulation and sclerotia. In addition, the Δbcadh1 mutants showed significant differences in their virulence on tomato leaves relative to the WT. Moreover, the Δbcadh1 mutants appeared to have higher sensitivity to oxygen limitation (hypoxia) and reactive oxygen species, and had lost their ability of alcoholic fermentation compared with the WT and complementary strains. These results provide strong evidence for the requirement of the ADH1 gene for fungal development, environmental adaptation and its ability for full pathogenicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tayb Elassma I M DafaAlla
- College of Plant Sciences, Jilin University, Changchun, China.,College of Natural Resources and Environmental Studies, Sinnar University, Sinnar, Sudan
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Wafa Ali Eltayb
- Department biotechnology, Faculty of Science and Technology, Shendi University, Shendi, Sudan
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Keonjhar, India
| |
Collapse
|
4
|
Shah AM, Mohamed H, Fazili ABA, Yang W, Song Y. Investigating the Effect of Alcohol Dehydrogenase Gene Knockout on Lipid Accumulation in Mucor circinelloides WJ11. J Fungi (Basel) 2022; 8:jof8090917. [PMID: 36135642 PMCID: PMC9503276 DOI: 10.3390/jof8090917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucor circinelloides is an oleaginous, dimorphic zygomycete fungus species that produces appreciable levels of ethanol when grown under aerobic conditions in the presence of high glucose, indicating the fungus is a Crabtree-positive microorganism. Engineering efforts to redirect carbon flux from ethanol to lipid biosynthesis may shed light on the critical role of ethanol biosynthesis during aerobic fermentation in M. circinelloides. Therefore, in this study, the alcohol dehydrogenase gene (ADH1) of M. circinelloides WJ11 was deleted, and its effects on growth, lipid production, and fatty acid content were analyzed. Our results showed that knocking out of adh1∆ reduced the ethanol concentration by 85–90% in fermented broth, indicating that this gene is the major source of ethanol production. Parallel to these findings, the lipid and fatty acid content of the mutant was decreased, while less change in the growth of WJ11 was observed. Furthermore, a fermentation study showed the lipid and fatty acid content was restored in the mutant strain when the fermentation media was supplemented with 0.5% external ethanol, indicating the importance of alcohol dehydrogenase and its product on growth and lipid biosynthesis in M. circinelloides. To our knowledge, this is the first study to show a link between alcohol dehydrogenase and lipid production in M. circinelloides.
Collapse
Affiliation(s)
- Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abu Bakr Ahmad Fazili
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wu Yang
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Correspondence:
| |
Collapse
|
5
|
Homa M, Ibragimova S, Szebenyi C, Nagy G, Zsindely N, Bodai L, Vágvölgyi C, Nagy G, Papp T. Differential Gene Expression of Mucor lusitanicus under Aerobic and Anaerobic Conditions. J Fungi (Basel) 2022; 8:jof8040404. [PMID: 35448635 PMCID: PMC9031258 DOI: 10.3390/jof8040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mucor lusitanicus and some other members of the fungal order Mucorales display the phenomenon of morphological dimorphism. This means that these fungi aerobically produce filamentous hyphae, developing a coenocytic mycelium, but they grow in a multipolar yeast-like form under anaerobiosis. Revealing the molecular mechanism of the reversible yeast-hyphal transition can be interesting for both the biotechnological application and in the understanding of the pathomechanism of mucormycosis. In the present study, transcriptomic analyses were carried out after cultivating the fungus either aerobically or anaerobically revealing significant changes in gene expression under the two conditions. In total, 539 differentially expressed genes (FDR < 0.05, |log2FC| ≥ 3) were identified, including 190 upregulated and 349 downregulated transcripts. Within the metabolism-related genes, carbohydrate metabolism was proven to be especially affected. Anaerobiosis also affected the transcription of transporters: among the 14 up- and 42 downregulated transporters, several putative sugar transporters were detected. Moreover, a considerable number of transcripts related to amino acid transport and metabolism, lipid transport and metabolism, and energy production and conversion were proven to be downregulated when the culture had been transferred into an anaerobic atmosphere.
Collapse
Affiliation(s)
- Mónika Homa
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (M.H.); (S.I.); (C.S.); (C.V.); (G.N.)
| | - Sandugash Ibragimova
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (M.H.); (S.I.); (C.S.); (C.V.); (G.N.)
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (M.H.); (S.I.); (C.S.); (C.V.); (G.N.)
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (G.N.); (L.B.)
| | - Nóra Zsindely
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary;
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (G.N.); (L.B.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (M.H.); (S.I.); (C.S.); (C.V.); (G.N.)
| | - Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (M.H.); (S.I.); (C.S.); (C.V.); (G.N.)
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (M.H.); (S.I.); (C.S.); (C.V.); (G.N.)
- Correspondence:
| |
Collapse
|
6
|
Effect of Zinc-Calcium on Xylose Consumption by Mucor circinelloides (MN128960): Xylitol and Ethanol Yield Optimization. ENERGIES 2022. [DOI: 10.3390/en15030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Xylose is the second most abundant monomeric sugar on earth. Nevertheless, metabolizing xylose into ethanol is a complex process due to several biochemical reactions. Some microorganisms of the genus Mucor are suitable for this bioprocess. Using metal ions, such as zinc and calcium, allows some fungal species to increase their ethanol yield. In this work, the wild strain Mucor spp. (C1502) was molecularly identified via internal transcribed spacer (ITS) sequencing. Secondly, an optimization using response surface methodology (RSM) with a central composite experimental design (CCD) was carried out. The independent variables (X) were ZnSO4·7H2O (X1, 0.0–1.5 g/L) and CaCl2 (X2, 0.0–2.5 g/L) concentration in the fermentation broth in order to demonstrate the effect of these ions, xylose was used as the only carbon source. The dependent variables (Y) measured were ethanol yield (Y1, g ethanol/g xylose) and xylitol yield (Y2, g xylitol/g xylose). The identified strain, Mucor circinelloides, was given the accession number MN128960 by the NCBI. Once the optimal concentrations of zinc and calcium were calculated, experimental validation was performed, with the highest ethanol and xylitol yields reaching 0.36 g ethanol/g xylose and 0.35 g xylitol/g xylose, respectively. This study demonstrated that increasing the xylitol yield using the effect of the ions, zinc and calcium, increases the ethanol yield. Furthermore, M. circinelloides (C1502) can produce metabolites, such as ethanol and xylitol, from the xylose obtained from hemicellulose biomasses, which can be used as a carbon source at low cost and with great availability.
Collapse
|
7
|
Linkage between Carbon Metabolism, Redox Status and Cellular Physiology in the Yeast Saccharomyces cerevisiae Devoid of SOD1 or SOD2 Gene. Genes (Basel) 2020; 11:genes11070780. [PMID: 32664606 PMCID: PMC7397328 DOI: 10.3390/genes11070780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Saccharomyces cerevisiae yeast cells may generate energy both by fermentation and aerobic respiration, which are dependent on the type and availability of carbon sources. Cells adapt to changes in nutrient availability, which entails the specific costs and benefits of different types of metabolism but also may cause alteration in redox homeostasis, both by changes in reactive oxygen species (ROS) and in cellular reductant molecules contents. In this study, yeast cells devoid of the SOD1 or SOD2 gene and fermentative or respiratory conditions were used to unravel the connection between the type of metabolism and redox status of cells and also how this affects selected parameters of cellular physiology. The performed analysis provides an argument that the source of ROS depends on the type of metabolism and non-mitochondrial sources are an important pool of ROS in yeast cells, especially under fermentative metabolism. There is a strict interconnection between carbon metabolism and redox status, which in turn has an influence on the physiological efficiency of the cells. Furthermore, pyridine nucleotide cofactors play an important role in these relationships.
Collapse
|
8
|
Arf-like proteins (Arl1 and Arl2) are involved in mitochondrial homeostasis in Mucor circinelloides. Fungal Biol 2020; 124:619-628. [DOI: 10.1016/j.funbio.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023]
|
9
|
Alteration of Fermentative Metabolism Enhances Mucor circinelloides Virulence. Infect Immun 2020; 88:IAI.00434-19. [PMID: 31685547 DOI: 10.1128/iai.00434-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
The fungus Mucor circinelloides undergoes yeast-mold dimorphism, a developmental process associated with its capability as a human opportunistic pathogen. Dimorphism is strongly influenced by carbon metabolism, and hence the type of metabolism likely affects fungus virulence. We investigated the role of ethanol metabolism in M. circinelloides virulence. A mutant in the adh1 gene (M5 strain) exhibited higher virulence than the wild-type (R7B) and the complemented (M5/pEUKA-adh1 +) strains, which were nonvirulent when tested in a mouse infection model. Cell-free culture supernatant (SS) from the M5 mutant showed increased toxic effect on nematodes compared to that from R7B and M5/pEUKA-adh1 + strains. The concentration of acetaldehyde excreted by strain M5 in the SS was higher than that from R7B, which correlated with the acute toxic effect on nematodes. Remarkably, strain M5 showed higher resistance to H2O2, resistance to phagocytosis, and invasiveness in mouse tissues and induced an enhanced systemic inflammatory response compared with R7B. The mice infected with strain M5 under disulfiram treatment exhibited only half the life expectancy of those infected with M5 alone, suggesting that acetaldehyde produced by M. circinelloides contributes to the toxic effect in mice. These results demonstrate that the failure in fermentative metabolism, in the step of the production of ethanol in M. circinelloides, contributes to its virulence, inducing a more severe tissue burden and inflammatory response in mice as a consequence of acetaldehyde overproduction.
Collapse
|
10
|
Patiño-Medina JA, Reyes-Mares NY, Valle-Maldonado MI, Jácome-Galarza IE, Pérez-Arques C, Nuñez-Anita RE, Campos-García J, Anaya-Martínez V, Ortiz-Alvarado R, Ramírez-Díaz MI, Chan Lee S, Garre V, Meza-Carmen V. Heterotrimeric G-alpha subunits Gpa11 and Gpa12 define a transduction pathway that control spore size and virulence in Mucor circinelloides. PLoS One 2019; 14:e0226682. [PMID: 31887194 PMCID: PMC6936849 DOI: 10.1371/journal.pone.0226682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mucor circinelloides is one of the causal agents of mucormycosis, an emerging and high mortality rate fungal infection produced by asexual spores (sporangiospores) of fungi that belong to the order Mucorales. M. circinelloides has served as a model genetic system to understand the virulence mechanism of this infection. Although the G-protein signaling cascade plays crucial roles in virulence in many pathogenic fungi, its roles in Mucorales are yet to be elucidated. Previous study found that sporangiospore size and calcineurin are related to the virulence in Mucor, in which larger spores are more virulent in an animal mucormycosis model and loss of a calcineurin A catalytic subunit CnaA results in larger spore production and virulent phenotype. The M. circinelloides genome is known to harbor twelve gpa (gpa1 to gpa12) encoding G-protein alpha subunits and the transcripts of the gpa11 and gpa12 comprise nearly 72% of all twelve gpa genes transcript in spores. In this study we demonstrated that loss of function of Gpa11 and Gpa12 led to larger spore size associated with reduced activation of the calcineurin pathway. Interestingly, we found lower levels of the cnaA mRNAs in sporangiospores from the Δgpa12 and double Δgpa11/Δgpa12 mutant strains compared to wild-type and the ΔcnaA mutant had significantly lower gpa11 and gpa12 mRNA levels compared to wild-type. However, in contrast to the high virulence showed by the large spores of ΔcnaA, the spores from Δgpa11/Δgpa12 were avirulent and produced lower tissue invasion and cellular damage, suggesting that the gpa11 and gpa12 define a signal pathway with two branches. One of the branches controls spore size through regulation of calcineurin pathway, whereas virulences is controlled by an independent pathway. This virulence-related regulatory pathway could control the expression of genes involved in cellular responses important for virulence, since sporangiospores of Δgpa11/Δgpa12 were less resistant to oxidative stress and phagocytosis by macrophages than the ΔcnaA and wild-type strains. The characterization of this pathway could contribute to decipher the signals and mechanism used by Mucorales to produce mucormycosis.
Collapse
Affiliation(s)
- J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Nancy Y. Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Marco I. Valle-Maldonado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Irvin E. Jácome-Galarza
- Departamento de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de Michoacán, Morelia, Michoacán, México
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, España
| | - Rosa E. Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás Hidalgo, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Verónica Anaya-Martínez
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Naucalpan de Juarez, Estado de México, México
| | - Rafael Ortiz-Alvarado
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, México
| | - Martha I. Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
| | - Soo Chan Lee
- Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, España
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México
- * E-mail:
| |
Collapse
|
11
|
Alcohol dehydrogenase 1 participates in the Crabtree effect and connects fermentative and oxidative metabolism in the Zygomycete Mucor circinelloides. J Microbiol 2019; 57:606-617. [DOI: 10.1007/s12275-019-8680-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
|
12
|
Zhang E, Cao Y, Xia Y. Ethanol Dehydrogenase I Contributes to Growth and Sporulation Under Low Oxygen Condition via Detoxification of Acetaldehyde in Metarhizium acridum. Front Microbiol 2018; 9:1932. [PMID: 30186258 PMCID: PMC6110892 DOI: 10.3389/fmicb.2018.01932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
The entomopathogenic fungi encounter hypoxic conditions in both nature and artificial culture. Alcohol dehydrogenases (ADHs) are a group of oxidoreductases that occur in many organisms. Here we demonstrate that an alcohol dehydrogenase I, MaADH1, in the locust-specific fungal pathogen, Metarhizium acridum, functions in acetaldehyde detoxification mechanism under hypoxic conditions in growth and sporulation. The MaADH1 was highly expressed in sporulation stage under hypoxic conditions. Compared with a wild-type strain, the ΔMaADH1 mutant showed inhibited growth and sporulation under hypoxic conditions, but no impairment under normal conditions. Under hypoxic conditions, ΔMaADH1 mutant produced significant decreased alcohol, but significant increased acetaldehyde compared to wild type. M. acridum was sensitive to exogenous acetaldehyde, exhibiting an inhibited growth and sporulation with acetaldehyde added in the medium. MaADH1 did not affect virulence. Our results indicated that the MaADH1 was critical to growth and sporulation under hypoxic stress by detoxification of acetaldehyde in M. acridum.
Collapse
Affiliation(s)
- Erhao Zhang
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
13
|
Patiño-Medina JA, Maldonado-Herrera G, Pérez-Arques C, Alejandre-Castañeda V, Reyes-Mares NY, Valle-Maldonado MI, Campos-García J, Ortiz-Alvarado R, Jácome-Galarza IE, Ramírez-Díaz MI, Garre V, Meza-Carmen V. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet 2017; 64:853-869. [DOI: 10.1007/s00294-017-0798-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
|
14
|
Callejas-Negrete OA, Torres-Guzmán JC, Padilla-Guerrero IE, Esquivel-Naranjo U, Padilla-Ballesteros MF, García-Tapia A, Schrank A, Salazar-Solís E, Gutiérrez-Corona F, González-Hernández GA. The Adh1 gene of the fungus Metarhizium anisopliae is expressed during insect colonization and required for full virulence. Microbiol Res 2015; 172:57-67. [DOI: 10.1016/j.micres.2014.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
|
15
|
Valle-Maldonado MI, Jácome-Galarza IE, Gutiérrez-Corona F, Ramírez-Díaz MI, Campos-García J, Meza-Carmen V. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides. Mol Biol Rep 2014; 42:705-11. [PMID: 25391770 DOI: 10.1007/s11033-014-3818-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Abstract
Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.
Collapse
Affiliation(s)
- Marco I Valle-Maldonado
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nícolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | | | | | | | | | | |
Collapse
|
16
|
Naumenko D, Snitka V, Serviene E, Bruzaite I, Snopok B. In vivo characterization of protein uptake by yeast cell envelope: single cell AFM imaging and μ-tip-enhanced Raman scattering study. Analyst 2013; 138:5371-83. [DOI: 10.1039/c3an00362k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Carvalho M, Martins I, Medeiros J, Tavares S, Planchon S, Renaut J, Núñez O, Gallart-Ayala H, Galceran M, Hursthouse A, Silva Pereira C. The response of Mucor plumbeus to pentachlorophenol: A toxicoproteomics study. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Lennartsson PR, Ylitervo P, Larsson C, Edebo L, Taherzadeh MJ. Growth tolerance of Zygomycetes Mucor indicus in orange peel hydrolysate without detoxification. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Takano M, Hoshino K. Direct ethanol production from rice straw by coculture with two high-performing fungi. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Corrales Escobosa AR, Rangel Porras RA, Meza Carmen V, Gonzalez Hernandez GA, Torres Guzman JC, Wrobel K, Wrobel K, Roncero MIG, Gutierrez Corona JF. Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genet Biol 2011; 48:886-95. [PMID: 21704720 DOI: 10.1016/j.fgb.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
An alcohol dehydrogenase gene, adh1, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that adh1 is highly expressed in mycelia grown in potato dextrose liquid medium (PDB) under hypoxic conditions, as compared to mycelia grown under aerobic conditions. One spontaneous allyl alcohol-resistant (Ally(R)) mutant exhibited insertion of an incomplete F.oxysporum transposable element, while another mutant contained a short (13 nucleotide) deletion, in both cases interrupting the coding region of the adh1 gene. These mutations caused deficiency in Adh activity due to loss of the main constitutive isoform of Adh1, as well as alteration of different physiological parameters related to carbon and energy metabolism, including the ability to use ethanol as a carbon source under aerobic conditions; impaired growth under hypoxic conditions with glucose as the carbon source; and diminished production of ethanol in glucose-containing medium. Interestingly, the adh1 mutations resulted in a significant delay in fungal disease development in tomato plants. Complementation with the wild-type adh1 allele repaired all defects caused by mutation, indicating that the product of the adh1 gene has dual enzymatic functions (fermentative and oxidative), depending on culture conditions, and is also required for full fungal virulence.
Collapse
Affiliation(s)
- Alma Rosa Corrales Escobosa
- Departamento de Biología y, DCNyE, Universidad de Guanajuato. Noria Alta s/n, Guanajuato, México 36000, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mysyakina IS, Funtikova NS. Metabolic characteristics and lipid composition of yeastlike cells and mycelium of Mucor circinelloides var. lusitanicus INMI grown at a high glucose content in the medium. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708040048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|