1
|
Yu Z, Li J, Wang H, Ping B, Li X, Liu Z, Guo B, Yu Q, Zou Y, Sun Y, Ma F, Zhao T. Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation. HORTICULTURE RESEARCH 2024; 11:uhae118. [PMID: 38919560 PMCID: PMC11197308 DOI: 10.1093/hr/uhae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.
Collapse
Affiliation(s)
- Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Boya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiguang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bocheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Monshi FI, Katsube-Tanaka T. 2S albumin g13 polypeptide, less related to Fag e 2, can be eliminated in common buckwheat (Fagopyrum esculentum Moench) seeds. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100138. [PMID: 36187231 PMCID: PMC9523277 DOI: 10.1016/j.fochms.2022.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
2S albumin (g11, g13, g14, and g28) is an important allergen in common buckwheat. g13 is hydrophobic, scarce, and less related to g14 than g11/g28 is related to g14. g13_null allele homozygote produced no g13 protein in seeds. Insert-like sequence of g13_null allele resided frequently in buckwheat genome. g13_null homozygote lowered allergenicity in common buckwheat.
2S albumin (g11, g13, g14, and g28) is an important allergen in common buckwheat (Fagopyrum esculentum). g13 is hydrophobic, rare in seeds, and may show distinct allergenicity from the others; therefore, we tried to eliminate this protein. Phylogenetic and property distance analyses indicated g13 is less related to g14 (Fag e 2) than g11/g28 is related to g14, particularly in the second domain containing the II and III α-helices. A null allele with a 531 bp insertion in the coding region was found for g13 at an allele frequency of 2 % in natural populations of common buckwheat. The g13_null allele homozygote accumulated no g13 protein. A BLAST search for the 531 bp insertion suggested the insert-like sequence resided frequently in the buckwheat genome, including the self-incompatibility responsible gene ELF3 in Fagopyrum tataricum. The g13_null insert-like sequence could, therefore, help in producing hypoallergenic cultivars, and expand the genetic diversity of buckwheat.
Collapse
|
3
|
Perumal S, James B, Tang L, Kagale S, Robinson SJ, Yang TJ, Parkin IAP. Characterization of B-Genome Specific High Copy hAT MITE Families in Brassica nigra Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:1104. [PMID: 32793262 PMCID: PMC7385995 DOI: 10.3389/fpls.2020.01104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are non-autonomous class II transposons which have been shown to influence genome evolution. Brassica nigra L. (B-genome) is one of three Brassica diploids cultivated primarily as an oil crop, which harbors novel alleles important for breeding. Two new high copy hAT MITE families (BniHAT-1 and BniHAT-2) from the B-genome were characterized and their prevalence assessed in the genomes of the related diploids, rapa L. (A) and Brassica oleracea L. (C). Both novel MITE families were present at high copy numbers in the B-genome with 434 and 331 copies of BniHAT-1 and BniHAT-2, respectively. Yet less than 20 elements were identified in the genome assemblies of the A, and C -genomes, supporting B-genome specific proliferation of these MITE families. Although apparently randomly distributed across the genome, 68 and 70% of the B-genome MITEs were present within 2 kb flanking regions of annotated genes suggesting they might influence gene expression and/or function. In addition, MITE derived microRNAs and transcription factor binding sites suggested a putative role in gene regulation. Age of insertion analysis revealed that the major proliferation of these elements occurred during 2-3 million years ago. Additionally, site-specific polymorphism analyses showed that 44% MITEs were undergoing active amplification into the B-genome. Overall, this study provides a comprehensive analysis of two high copy MITE families, which were specifically amplified in the B-genome, suggesting a potential role in shaping the Brassica B-genome.
Collapse
Affiliation(s)
| | - Brian James
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lily Tang
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
4
|
The Functional Impact of Transposable Elements on the Diversity of Plant Genomes. DIVERSITY 2018. [DOI: 10.3390/d10020018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
|
6
|
Negi P, Rai AN, Suprasanna P. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1448. [PMID: 27777577 PMCID: PMC5056178 DOI: 10.3389/fpls.2016.01448] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/12/2016] [Indexed: 05/02/2023]
Abstract
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Collapse
Affiliation(s)
| | | | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research CentreTrombay, India
| |
Collapse
|
7
|
Abstract
hAT transposons are ancient in their origin and they are widespread across eukaryote kingdoms. They can be present in large numbers in many genomes. However, only a few active forms of these elements have so far been discovered indicating that, like all transposable elements, there is selective pressure to inactivate them. Nonetheless, there have been sufficient numbers of active hAT elements and their transposases characterized that permit an analysis of their structure and function. This review analyzes these and provides a comparison with the several domesticated hAT genes discovered in eukaryote genomes. Active hAT transposons have also been developed as genetic tools and understanding how these may be optimally utilized in new hosts will depend, in part, on understanding the basis of their function in genomes.
Collapse
|
8
|
Wei L, Cao X. The effect of transposable elements on phenotypic variation: insights from plants to humans. SCIENCE CHINA-LIFE SCIENCES 2016; 59:24-37. [PMID: 26753674 DOI: 10.1007/s11427-015-4993-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.
Collapse
Affiliation(s)
- Liya Wei
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Wang H, Wang H. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. TRENDS IN PLANT SCIENCE 2015; 20:453-61. [PMID: 25956482 DOI: 10.1016/j.tplants.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 05/03/2023]
Abstract
FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), initially identified as crucial components of phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis thaliana, are the founding members of the FAR1-related sequence (FRS) family of transcription factors present in most angiosperms. These proteins share extensive similarity with the Mutator-like transposases, indicative of their evolutionary history of 'molecular domestication'. Here we review emerging multifaceted roles of FHY3/FAR1 in diverse developmental and physiological processes, including UV-B signaling, circadian clock entrainment, flowering, chloroplast biogenesis, chlorophyll biosynthesis, programmed cell death, reactive oxygen species (ROS) homeostasis, abscisic acid (ABA) signaling, and branching. The domestication of FHY3/FAR1 may enable angiosperms to better integrate various endogenous and exogenous signals for coordinated regulation of growth and development, thus enhancing their fitness and adaptation.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Hoen DR, Bureau TE. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol 2015; 32:1487-506. [PMID: 25713212 DOI: 10.1093/molbev/msv042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex eukaryotes contain millions of transposable elements (TEs), comprising large fractions of their nuclear genomes. TEs consist of structural, regulatory, and coding sequences that are ordinarily associated with transposition, but that occasionally confer on the organism a selective advantage and may thereby become exapted. Exapted transposable element genes (ETEs) are known to play critical roles in diverse systems, from vertebrate adaptive immunity to plant development. Yet despite their evident importance, most ETEs have been identified fortuitously and few systematic searches have been conducted, suggesting that additional ETEs may await discovery. To explore this possibility, we develop a comprehensive systematic approach to searching for ETEs. We use TE-specific conserved domains to identify with high precision genes derived from TEs and screen them for signatures of exaptation based on their similarities to reference sets of known ETEs, conventional (non-TE) genes, and TE genes across diverse genetic attributes including repetitiveness, conservation of genomic location and sequence, and levels of expression and repressive small RNAs. Applying this approach in the model plant Arabidopsis thaliana, we discover a surprisingly large number of novel high confidence ETEs. Intriguingly, unlike known plant ETEs, several of the novel ETE families form tandemly arrayed gene clusters, whereas others are relatively young. Our results not only identify novel TE-derived genes that may have practical applications but also challenge the notion that TE exaptation is merely a relic of ancient life, instead suggesting that it may continue to fundamentally drive evolution.
Collapse
Affiliation(s)
- Douglas R Hoen
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Thomas E Bureau
- Department of Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
11
|
Bloomfield JA, Rose TJ, King GJ. Sustainable harvest: managing plasticity for resilient crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:517-33. [PMID: 24891039 PMCID: PMC4207195 DOI: 10.1111/pbi.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Justin A Bloomfield
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|
12
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
13
|
Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics 2014; 13:276-95. [PMID: 24681749 DOI: 10.1093/bfgp/elu002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.
Collapse
|
14
|
Abstract
For decades, transposable elements have been known to produce a wide variety of changes in plant gene expression and function. This has led to the idea that transposable element activity has played a key part in adaptive plant evolution. This Review describes the kinds of changes that transposable elements can cause, discusses evidence that those changes have contributed to plant evolution and suggests future strategies for determining the extent to which these changes have in fact contributed to plant adaptation and evolution. Recent advances in genomics and phenomics for a range of plant species, particularly crops, have begun to allow the systematic assessment of these questions.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
15
|
Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 2013; 69:1-15. [DOI: 10.1016/j.plasmid.2012.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/30/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022]
|
16
|
Ladevèze V, Chaminade N, Lemeunier F, Periquet G, Aulard S. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila. Genetica 2012; 140:375-92. [DOI: 10.1007/s10709-012-9687-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/10/2012] [Indexed: 11/30/2022]
|
17
|
Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002931. [PMID: 22969437 PMCID: PMC3435246 DOI: 10.1371/journal.pgen.1002931] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023] Open
Abstract
The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG), identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes. The genomes of complex organisms are mostly made up not of ordinary genes but of transposable elements. Transposable elements have been called “selfish DNA” because they normally persist by copying themselves, not by helping the organism to survive or reproduce. Yet transposable elements can help organisms to evolve; for instance, transposable element genes sometimes acquire new functions that do benefit the organism. Because they are difficult to distinguish from transposable elements, little is known about these “domesticated genes.” Although studies have attempted to identify them computationally, the predictions have not been verified experimentally. Here, we examine some of the first domesticated genes to be predicted computationally, the MUSTANG family of plant genes. We show that the predictions were correct: MUSTANGs are, like ordinary genes, functional. MUSTANG mutations result in serious defects in how plants grow, flower, and reproduce. Since they are present only in flowering plants, MUSTANG probably originated when flowers first evolved, perhaps taking on a key role. This study is important both because it shows that MUSTANG is critical to plant fitness and because, in the future, a similar approach can be used to find additional domesticated genes and to better understand how transposable elements contribute to evolution.
Collapse
Affiliation(s)
| | | | | | | | - Thomas E. Bureau
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
18
|
Diversification of hAT transposase paralogues in the sugarcane genome. Mol Genet Genomics 2012; 287:205-19. [PMID: 22228195 PMCID: PMC3285750 DOI: 10.1007/s00438-011-0670-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/18/2011] [Indexed: 12/22/2022]
Abstract
Transposons are abundant components of eukaryotic genomes, and play important role in genome evolution. The knowledge about these elements should contribute to the understanding of their impact on the host genomes. The hAT transposon superfamily is one of the best characterized superfamilies in diverse organisms, nevertheless, a detailed study of these elements was never carried in sugarcane. To address this question we analyzed 32 cDNAs similar to that of hAT superfamily of transposons previously identified in the sugarcane transcriptome. Our results revealed that these hAT-like transposases cluster in one highly homogeneous and other more heterogeneous lineage. We present evidences that support the hypothesis that the highly homogeneous group is a domesticated transposase while the remainder of the lineages are composed of transposon units. The first is common to grasses, clusters significantly with domesticated transposases from Arabidopsis, rice and sorghum and is expressed in different tissues of two sugarcane cultivars analyzed. In contrast, the more heterogeneous group represents at least two transposon lineages. We recovered five genomic versions of one lineage, characterizing a novel transposon family with conserved DDE motif, named SChAT. These results indicate the presence of at least three distinct lineages of hAT-like transposase paralogues in sugarcane genome, including a novel transposon family described in Saccharum and a domesticated transposase. Taken together, these findings permit to follow the diversification of some hAT transposase paralogues in sugarcane, aggregating knowledge about the co-evolution of transposons and their host genomes.
Collapse
|
19
|
|
20
|
Roulin A, Chaparro C, Piégu B, Jackson S, Panaud O. Paleogenomic analysis of the short arm of chromosome 3 reveals the history of the African and Asian progenitors of cultivated rices. Genome Biol Evol 2010; 2:132-9. [PMID: 20333229 PMCID: PMC2839358 DOI: 10.1093/gbe/evq005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2010] [Indexed: 11/12/2022] Open
Abstract
Rice is one of the most important crops, feeding more than half of the world population. There are two cultivated species, the African rice Oryza glaberrima and the Asian rice O. sativa. Although the African species is gradually replaced by O. sativa in most of African rice agrosystems, this species represents an important reservoir of genes of agronomical interest. Their exploitation for the development of modern African rice varieties requires a good understanding of the genetic relationships between the two cultivated species. We took advantage of the recent availability of the sequence of the chromosome 3 short arm of O. glaberrima to estimate the date of radiation between O. glaberrima and O. sativa lineages, using all the long terminal repeat (LTR)-retrotransposons as paleogenomic markers. We first demonstrated that in two distinct lineages, LTR-retrotransposons mutate at the same rate. Based on LTR-retrotransposons shared by both species in orthologous position, we then estimated that O. glaberrima and O. sativa progenitors diverged 1.2 Ma. This constitutes one of the first studies using such a large sample of transposable elements to reconstruct the phylogeny of species. Given the number of genome sequencing projects, there is no doubt that such approach will allow to resolve phylogenetic incongruities. The application of this method to other plant genomes will also facilitate further understanding of evolution of LTR-retrotransposons and eventually of the whole genome in divergent plant lineages.
Collapse
Affiliation(s)
- Anne Roulin
- Laboratoire Génome et Développement des Plantes, Unite Mixte de Recherche Centre National de la Recherche Scientifique/Institut de Recherche pour le Developpement/Universite de Perpignan Via Domitia, Université de Perpignan, Perpignan, Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome. Mol Genet Genomics 2010; 283:255-71. [PMID: 20127492 DOI: 10.1007/s00438-009-0509-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/24/2009] [Indexed: 01/30/2023]
Abstract
Retrotransposons constitute a major proportion of the Triticeae genomes. Genome-scale studies have revealed their role in evolution affecting both genome structure and function and their potential for the development of novel markers. In this study, family members of an LTR copia retrotransposon which mediated the duplication of the gene encoding the high molecular weight glutenin subunit Bx7 in cultivar Glenlea were characterized. This novel element was named Sasanda_EU157184-1 (TREP3516). High density filters of the Glenlea hexaploid wheat BAC library were screened with a Sasanda long terminal repeat (LTR)-specific probe and approximately 1,075 positive clones representing an estimated copy number of 347 elements per haploid genome were identified. The 242 BAC clones with the strongest hybridization signal were selected. To maximize isolation of complete elements, this subset of clones was screened with a reverse transcriptase (RT) domain probe and DNA was isolated from the 133 clones that produced a strong hybridization signal. Left (5') and right (3') LTRs as well as the RT domains were PCR amplified and sequencing was carried out on the final subset of 121 clones. Evolutionary relationships were inferred from a data set consisting of 100 RT, 102 5' LTR and 100 3' LTR sequences representing 233, 451 and 495 informative sites for comparison, respectively. Neighbour-joining tree indicated that the element is at least 1.8 million years old and has evolved into a minimum of five sub-families. The insertion times of the 89 complete elements were estimated based on the divergence between their LTRs. Corroborating the inference from the RT domain, analysis of the LTR domains also indicated bursts of amplification from 2.6 million years ago (MYA) to now, except for one member dated to 4.6 +/- 0.7 MYA, which corresponds to the interval of divergence of Triticum and Aegilops (3 MYA) and divergence of Triticum and Rye (7 MYA). In 44 elements, the 5' and 3' LTRs were identical indicating recent transposition activity. The element can be used to develop retrotransposon-based markers such as sequence-specific amplified polymorphism, retrotransposon microsatellite amplified polymorphism and inter-retrotransposon amplified polymorphism, all of which are well suited for genotyping studies.
Collapse
|
22
|
Roulin A, Piegu B, Fortune PM, Sabot F, D'Hont A, Manicacci D, Panaud O. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae. BMC Evol Biol 2009; 9:58. [PMID: 19291296 PMCID: PMC2664808 DOI: 10.1186/1471-2148-9-58] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/16/2009] [Indexed: 02/04/2023] Open
Abstract
Background Horizontal transfers (HTs) refer to the transmission of genetic material between phylogenetically distant species. Although most of the cases of HTs described so far concern genes, there is increasing evidence that some involve transposable elements (TEs) in Eukaryotes. The availability of the full genome sequence of two cereal species, (i.e. rice and Sorghum), as well as the partial genome sequence of maize, provides the opportunity to carry out genome-wide searches for TE-HTs in Poaceae. Results We have identified an LTR-retrotransposon, that we named Route66, with more than 95% sequence identity between rice and Sorghum. Using a combination of in silico and molecular approaches, we are able to present a substantial phylogenetic evidence that Route66 has been transferred horizontally between Panicoideae and several species of the genus Oryza. In addition, we show that it has remained active after these transfers. Conclusion This study constitutes a new case of HTs for an LTR-retrotransposon and we strongly believe that this mechanism could play a major role in the life cycle of transposable elements. We therefore propose to integrate classe I elements into the previous model of transposable element evolution through horizontal transfers.
Collapse
Affiliation(s)
- Anne Roulin
- Laboratoire Génome et Développement des Plantes, UMR CNRS/IRD/UPVD, Université de Perpignan, 52, avenue Paul Alduy, 66860 Perpignan, cedex, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Benjak A, Forneck A, Casacuberta JM. Genome-wide analysis of the "cut-and-paste" transposons of grapevine. PLoS One 2008; 3:e3107. [PMID: 18769592 PMCID: PMC2528002 DOI: 10.1371/journal.pone.0003107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/10/2008] [Indexed: 01/30/2023] Open
Abstract
Background The grapevine is a widely cultivated crop and a high number of different varieties have been selected since its domestication in the Neolithic period. Although sexual crossing has been a major driver of grapevine evolution, its vegetative propagation enhanced the impact of somatic mutations and has been important for grapevine diversity. Transposable elements are known to be major contributors to genome variability and, in particular, to somatic mutations. Thus, transposable elements have probably played a major role in grapevine domestication and evolution. The recent publication of the complete grapevine genome opens the possibility for an in deep analysis of its transposon content. Principal Findings We present here a detailed analysis of the “cut-and-paste” class II transposons present in the genome of grapevine. We characterized 1160 potentially complete grapevine transposons as well as 2086 defective copies. We report on the structure of each element, their potentiality to encode a functional transposase, and the existence of matching ESTs that could suggest their transcription. Conclusions Our results show that these elements have transduplicated and amplified cellular sequences and some of them have been domesticated and probably fulfill cellular functions. In addition, we provide evidences that the mobility of these elements has contributed to the genomic variability of this species.
Collapse
Affiliation(s)
- Andrej Benjak
- Departament de Genètica Molecular Vegetal, Centre de Recerca en Agrigenòmica (CRAG), Barcelona, Spain
- Institute of Horticulture and Viticulture, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Astrid Forneck
- Institute of Horticulture and Viticulture, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Josep M. Casacuberta
- Departament de Genètica Molecular Vegetal, Centre de Recerca en Agrigenòmica (CRAG), Barcelona, Spain
- * E-mail:
| |
Collapse
|
24
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
25
|
Abstract
The control and coordination of eukaryotic gene expression rely on transcriptional and post-transcriptional regulatory networks. Although progress has been made in mapping the components and deciphering the function of these networks, the mechanisms by which such intricate circuits originate and evolve remain poorly understood. Here I revisit and expand earlier models and propose that genomic repeats, and in particular transposable elements, have been a rich source of material for the assembly and tinkering of eukaryotic gene regulatory systems.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, Life Science Building, BOX 19498, University of Texas, Arlington, Texas 76019, USA.
| |
Collapse
|
26
|
Dooner HK, Weil CF. Give-and-take: interactions between DNA transposons and their host plant genomes. Curr Opin Genet Dev 2007; 17:486-92. [PMID: 17919898 DOI: 10.1016/j.gde.2007.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 07/31/2007] [Accepted: 08/27/2007] [Indexed: 12/18/2022]
Abstract
Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.
Collapse
Affiliation(s)
- Hugo K Dooner
- Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA.
| | | |
Collapse
|
27
|
Roccaro M, Li Y, Sommer H, Saedler H. ROSINA (RSI) is part of a CACTA transposable element, TamRSI, and links flower development to transposon activity. Mol Genet Genomics 2007; 278:243-54. [PMID: 17588178 DOI: 10.1007/s00438-007-0245-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/02/2007] [Indexed: 01/09/2023]
Abstract
ROSINA (RSI) was isolated as a DNA binding factor able to bind to the CArG-box present in the promoter of the MADS-box gene DEFICIENS of Antirrhinum majus. The mosaic nature of RSI and its multi-copy presence in the A. majus genome indicated that RSI could be a part of a mobile genetic element. Here we show that RSI is a part of a CACTA transposable element system of A. majus, named TamRSI, which has evolved and is still evolving within the terminal inverted repeats (TIRs) of this CACTA transposon. Interestingly, RSI is always found in opposite orientation with respect to the transcription of a second gene present within the CACTA transposon, which encodes a putative TRANSPOSASE (TNP). This structural configuration has not yet been described for any member of the CACTA transposons superfamily. Internal deletion derivatives of the TamRSI produce aberrant RSI transcripts (RSI-ATs) that carry parts of the RSI RNA fused to parts of the TNP RNA. In addition, an intriguing seed phenotype shown by RNAi transgenic lines generated to silence RSI, relate TamRSI to epigenetic mechanisms and associate the control of flower development to transposon activity.
Collapse
Affiliation(s)
- Mario Roccaro
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linne'-Weg 10, 50829 Koeln, Germany.
| | | | | | | |
Collapse
|
28
|
Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T. Mapped Ds/T-DNA launch pads for functional genomics in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:811-26. [PMID: 16889649 DOI: 10.1111/j.1365-313x.2006.02831.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.
Collapse
Affiliation(s)
- Tiehan Zhao
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|