1
|
Cao RB, Chen R, Liao KX, Li H, Xu GB, Jiang XL. Karyotype and LTR-RTs analysis provide insights into oak genomic evolution. BMC Genomics 2024; 25:328. [PMID: 38566015 PMCID: PMC10988972 DOI: 10.1186/s12864-024-10177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.
Collapse
Affiliation(s)
- Rui-Bin Cao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Ran Chen
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Ke-Xin Liao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - He Li
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Gang-Biao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Xiao-Long Jiang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China.
| |
Collapse
|
2
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Kejnovsky E, Jedlicka P. Nucleic acids movement and its relation to genome dynamics of repetitive DNA: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? Bioessays 2022; 44:e2100242. [PMID: 35112737 DOI: 10.1002/bies.202100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Abstract
There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.
Collapse
Affiliation(s)
- Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
4
|
Yañez-Santos AM, Paz RC, Paz-Sepúlveda PB, Urdampilleta JD. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Chromosome Res 2021; 29:261-284. [PMID: 34086192 DOI: 10.1007/s10577-021-09663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
Collapse
Affiliation(s)
- Anahí Mara Yañez-Santos
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Paula Beatriz Paz-Sepúlveda
- Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) - Comisión de Investigaciones Científicas (CIC) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
5
|
Malaviya DR, Roy AK, Kaushal P, Pathak S, Kalendar R. Phenotype study of multifoliolate leaf formation in Trifolium alexandrinum L. PeerJ 2021; 9:e10874. [PMID: 33717683 PMCID: PMC7936568 DOI: 10.7717/peerj.10874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background The genus Trifolium is characterized by typical trifoliolate leaves. Alterations in leaf formats from trifoliolate to multifoliolate, i.e., individual plants bearing trifoliolate, quadrifoliolate, pentafoliolate or more leaflets, were previously reported among many species of the genus. The study is an attempt to develop pure pentafoliolate plants of T. alexandrinum and to understand its genetic control. Methods The experimental material consisted of two populations of T. alexandrinum with multifoliolate leaf expression, i.e.,interspecific hybrid progenies of T. alexandrinum with T. apertum, and T. alexandrinum genotype Penta-1. Penetrance of the multifoliolate trait was observed among multifoliolate and trifoliolate plant progenies. In vitro culture and regeneration of plantlets from the axillary buds from different plant sources was also attempted. Results The inheritance among a large number of plant progenies together with in vitro micro-propagation results did not establish a definite pattern. The multifoliolate leaf formation was of chimeric nature, i.e., more than one leaf format appearing on individual branches. Reversal to normal trifoliolate from multifoliolate was also quite common. Penetrance and expression of multifoliolate leaf formation was higher among the plants raised from multifoliolate plants. Multifoliolate and pure pentafoliolate plants were observed in the progenies of pure trifoliolate plants and vice-versa. There was an apparent increase in the pentafoliolate leaf formation frequency over the years due to targeted selection. A few progenies of the complete pentafoliolate plants in the first year were true breeding in the second year. Frequency of plantlets with multifoliolate leaf formation was also higher in in vitro axillary bud multiplication when the explant bud was excised from the multifoliolate leaf node. Conclusion Number of leaflets being a discrete variable, occurrence of multifoliolate leaves on individual branches, reversal of leaf formats on branches and developing true breeding pentafoliolates were the factors leading to a hypothesis beyond normal Mendelian inheritance. Transposable elements (TEs) involved in leaf development in combination with epigenetics were probably responsible for alterations in the expression of leaflet number. Putative TE’s movement owing to chromosomal rearrangements possibly resulted in homozygous pentafoliolate trait with evolutionary significance. The hypothesis provides a new insight into understanding the genetic control of this trait in T. alexandrinum and may also be useful in other Trifolium species where such observations are reported.
Collapse
Affiliation(s)
- Devendra Ram Malaviya
- ICAR - Indian Institute of Sugarcane Research, Lucknow, India.,ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Ajoy Kumar Roy
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Pankaj Kaushal
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India.,ICAR - National Institute of Biotic Stress Management, Raipur, India
| | - Shalini Pathak
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Uusimaa, Finland.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Aqmola, Kazakhstan
| |
Collapse
|
6
|
Silva JC, Soares FAF, Sattler MC, Clarindo WR. Repetitive sequences and structural chromosome alterations promote intraspecific variations in Zea mays L. karyotype. Sci Rep 2020; 10:8866. [PMID: 32483238 PMCID: PMC7264354 DOI: 10.1038/s41598-020-65779-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
LTR-retrotransposons, knobs and structural chromosome alterations contribute to shape the structure and organization of the Zea mays karyotype. Our initial nuclear DNA content data of Z. mays accessions revealed an intraspecific variation (2 C = 2.00 pg to 2 C = 6.10 pg), suggesting differences in their karyotypes. We aimed to compare the karyotypes of three Z. mays accessions in search of the differences and similarities among them. Karyotype divergences were demonstrated among the accessions, despite their common chromosome number (2n = 20) and ancestral origin. Cytogenomic analyses showed that repetitive sequences and structural chromosome alterations play a significant role in promoting intraspecific nuclear DNA content variation. In addition, heterozygous terminal deletion in chromosome 3 was pointed out as a cause of lower nuclear 2 C value. Besides this, translocation was also observed in the short arm of chromosome 1. Differently, higher 2 C value was associated with the more abundant distribution of LTR-retrotransposons from the family Grande in the karyotype. Moreover, heteromorphism involving the number and position of the 180-bp knob sequence was found among the accessions. Taken together, we provide insights on the pivotal role played by repetitive sequences and structural chromosome alterations in shaping the karyotype of Z. mays.
Collapse
Affiliation(s)
- Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil.
| | - Fernanda Aparecida Ferrari Soares
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil
| | - Mariana Cansian Sattler
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
7
|
Sultana N, Menzel G, Heitkam T, Kojima KK, Bao W, Serçe S. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes (Basel) 2020; 11:E527. [PMID: 32397417 PMCID: PMC7290377 DOI: 10.3390/genes11050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Bioinformatic and molecular characterization of satellite repeats was performed to understand the impact of their diversification on Vaccinium genome evolution. Satellite repeat diversity was evaluated in four cultivated and wild species, including the diploid species Vaccinium myrtillus and Vaccinium uliginosum, as well as the tetraploid species Vaccinium corymbosum and Vaccinium arctostaphylos. We comparatively characterized six satellite repeat families using in total 76 clones with 180 monomers. We observed that the monomer units of VaccSat1, VaccSat2, VaccSat5, and VaccSat6 showed a higher order repeat (HOR) structure, likely originating from the organization of two adjacent subunits with differing similarity, length and size. Moreover, VaccSat1, VaccSat3, VaccSat6, and VaccSat7 were found to have sequence similarity to parts of transposable elements. We detected satellite-typical tandem organization for VaccSat1 and VaccSat2 in long arrays, while VaccSat5 and VaccSat6 distributed in multiple sites over all chromosomes of tetraploid V. corymbosum, presumably in long arrays. In contrast, very short arrays of VaccSat3 and VaccSat7 are dispersedly distributed over all chromosomes in the same species, likely as internal parts of transposable elements. We provide a comprehensive overview on satellite species specificity in Vaccinium, which are potentially useful as molecular markers to address the taxonomic complexity of the genus, and provide information for genome studies of this genus.
Collapse
Affiliation(s)
- Nusrat Sultana
- Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Kenji K. Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Weidong Bao
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Sedat Serçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey;
| |
Collapse
|
8
|
Vicient CM, Casacuberta JM. Additional ORFs in Plant LTR-Retrotransposons. FRONTIERS IN PLANT SCIENCE 2020; 11:555. [PMID: 32528484 PMCID: PMC7264820 DOI: 10.3389/fpls.2020.00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/14/2020] [Indexed: 05/06/2023]
Abstract
LTR-retrotransposons share a common genomic organization in which the 5' long terminal repeat (LTR) is followed by the gag and pol genes and terminates with the 3' LTR. Although GAG-POL-encoded proteins are considered sufficient to accomplish the LTR-retrotransposon transposition, a number of elements carrying additional open reading frames (aORF) have been described. In some cases, the presence of an aORF can be explained by a phenomenon similar to retrovirus gene transduction, but in these cases the aORFs are present in only one or a few copies. On the contrary, many elements contain aORFs, or derivatives, in all or most of their copies. These aORFs are more frequently located between pol and 3' LTR, and they could be in sense or antisense orientation with respect to gag-pol. Sense aORFs include those encoding for ENV-like proteins, so called because they have some structural and functional similarities with retroviral ENV proteins. Antisense aORFs between pol and 3' LTR are also relatively frequent and, for example, are present in some characterized LTR-retrotransposon families like maize Grande, rice RIRE2, or Silene Retand, although their possible roles have been not yet determined. Here, we discuss the current knowledge about these sense and antisense aORFs in plant LTR-retrotransposons, suggesting their possible origins, evolutionary relevance, and function.
Collapse
|
9
|
Ebrahimzadegan R, Houben A, Mirzaghaderi G. Repetitive DNA landscape in essential A and supernumerary B chromosomes of Festuca pratensis Huds. Sci Rep 2019; 9:19989. [PMID: 31882680 PMCID: PMC6934454 DOI: 10.1038/s41598-019-56383-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we characterized the basic properties of repetitive sequences in essential A and supernumerary B chromosomes of Festuca pratensis Huds. This was performed by comparative analysis of low-pass Illumina sequence reads of B chromosome lacking (-B) and B chromosome containing (+B) individuals of F. pratensis. 61% of the nuclear genome is composed of repetitive sequences. 43.1% of the genome are transposons of which DNA transposons and retrotransposons made up 2.3% and 40.8%, respectively. LTR retrotransposons are the most abundant mobile elements and contribute to 40.7% of the genome and divided into Ty3-gypsy and Ty1-copia super families with 32.97% and 7.78% of the genome, respectively. Eighteen different satellite repeats were identified making up 3.9% of the genome. Five satellite repeats were used as cytological markers for chromosome identification and genome analysis in the genus Festuca. Four satellite repeats were identified on B chromosomes among which Fp-Sat48 and Fp-Sat253 were specific to the B chromosome of F. pratensis.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, 6617715175, Sanandaj, Iran
| | - Andreas Houben
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, 6617715175, Sanandaj, Iran.
| |
Collapse
|
10
|
Zhou HC, Pellerin RJ, Waminal NE, Yang TJ, Kim HH. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 2019; 41:839-847. [PMID: 30903554 DOI: 10.1007/s13258-019-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
11
|
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 2019; 10:1. [PMID: 30622655 PMCID: PMC6317226 DOI: 10.1186/s13100-018-0144-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Nina Hoštáková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| |
Collapse
|
12
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
13
|
Puterova J, Kubat Z, Kejnovsky E, Jesionek W, Cizkova J, Vyskot B, Hobza R. The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons. BMC Genomics 2018; 19:153. [PMID: 29458354 PMCID: PMC5819184 DOI: 10.1186/s12864-018-4547-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background The rise and fall of the Y chromosome was demonstrated in animals but plants often possess the large evolutionarily young Y chromosome that is thought has expanded recently. Break-even points dividing expansion and shrinkage phase of plant Y chromosome evolution are still to be determined. To assess the size dynamics of the Y chromosome, we studied intraspecific genome size variation and genome composition of male and female individuals in a dioecious plant Silene latifolia, a well-established model for sex-chromosomes evolution. Results Our genome size data are the first to demonstrate that regardless of intraspecific genome size variation, Y chromosome has retained its size in S. latifolia. Bioinformatics study of genome composition showed that constancy of Y chromosome size was caused by Y chromosome DNA loss and the female-specific proliferation of recently active dominant retrotransposons. We show that several families of retrotransposons have contributed to genome size variation but not to Y chromosome size change. Conclusions Our results suggest that the large Y chromosome of S. latifolia has slowed down or stopped its expansion. Female-specific proliferation of retrotransposons, enlarging the genome with exception of the Y chromosome, was probably caused by silencing of highly active retrotransposons in males and represents an adaptive mechanism to suppress degenerative processes in the haploid stage. Sex specific silencing of transposons might be widespread in plants but hidden in traditional hermaphroditic model plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-4547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janka Puterova
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 00, Brno, Czech Republic.,Department of Information Systems, Faculty of Information Technology, Brno University of Technology, 61200, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 00, Brno, Czech Republic.
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 00, Brno, Czech Republic
| | - Wojciech Jesionek
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 00, Brno, Czech Republic
| | - Jana Cizkova
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc - Holice, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 00, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 612 00, Brno, Czech Republic. .,Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
14
|
Xu Z, Liu J, Ni W, Peng Z, Guo Y, Ye W, Huang F, Zhang X, Xu P, Guo Q, Shen X, Du J. GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii). DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3084694. [PMID: 28365739 PMCID: PMC5467567 DOI: 10.1093/database/bax013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1, 12 Mutators, 435 PIF-Harbingers, 275 CACTAs and 14 Helitrons. Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii, and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. Database URL: http://www.grtedb.org/
Collapse
Affiliation(s)
- Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, The Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wanchao Ni
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Peng
- Provincial Key Laboratory of Agrobiology, The Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yue Guo
- Provincial Key Laboratory of Agrobiology, The Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, The Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fang Huang
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianggui Zhang
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, The Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
15
|
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes (Basel) 2017; 8:genes8100290. [PMID: 29064432 PMCID: PMC5664140 DOI: 10.3390/genes8100290] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation.
Collapse
|
16
|
Li SF, Wang LJ, Deng CL, Gao WJ. Identification of male-specific AFLP and SCAR markers in the dioecious plant Humulus scandens. Mol Cell Probes 2017; 34:68-70. [PMID: 28552829 DOI: 10.1016/j.mcp.2017.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
In this study, 17 male-specific amplified fragment length polymorphism (AFLP) markers were identified between male and female Humulus scandens plants. BLAST analysis revealed that 7 of the 17 sex-linked sequences were highly similar to retrotransposons. Two stable male-specific sequence-characterized amplified regions (SCAR) markers were developed. These AFLP and SCAR markers are novel molecular probes that can be used efficiently to identify the genetic gender of H. scandens and may provide a basis for further investigations on the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Lian-Jun Wang
- Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, PR China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, PR China.
| |
Collapse
|
17
|
Puterova J, Razumova O, Martinek T, Alexandrov O, Divashuk M, Kubat Z, Hobza R, Karlov G, Kejnovsky E. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes. Genome Biol Evol 2017; 9:197-212. [PMID: 28057732 PMCID: PMC5381607 DOI: 10.1093/gbe/evw303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 01/05/2023] Open
Abstract
Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes.
Collapse
Affiliation(s)
- Janka Puterova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Olga Razumova
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Tomas Martinek
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Oleg Alexandrov
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Mikhail Divashuk
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Gennady Karlov
- Centre for Molecular Biotechnology, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
18
|
Sousa A, Bellot S, Fuchs J, Houben A, Renner SS. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:387-396. [PMID: 27354172 DOI: 10.1111/tpj.13254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/10/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
Few angiosperms have distinct Y chromosomes. Among those that do are Silene latifolia (Caryophyllaceae), Rumex acetosa (Polygonaceae) and Coccinia grandis (Cucurbitaceae), the latter having a male/female difference of 10% of the total genome (female individuals have a 0.85 pg genome, male individuals 0.94 pg), due to a Y chromosome that arose about 3 million years ago. We compared the sequence composition of male and female C. grandis plants and determined the chromosomal distribution of repetitive and organellar DNA with probes developed from 21 types of repetitive DNA, including 16 mobile elements. The size of the Y chromosome is largely due to the accumulation of certain repeats, such as members of the Ty1/copia and Ty3/gypsy superfamilies, an unclassified element and a satellite, but also plastome- and chondriome-derived sequences. An abundant tandem repeat with a unit size of 144 bp stains the centromeres of the X chromosome and the autosomes, but is absent from the Y centromere. Immunostaining with pericentromere-specific markers for anti-histone H3Ser10ph and H2AThr120ph revealed a Y-specific extension of these histone marks. That the Y centromere has a different make-up from all the remaining centromeres raises questions about its spindle attachment, and suggests that centromeric or pericentromeric chromatin might be involved in the suppression of recombination.
Collapse
Affiliation(s)
- Aretuza Sousa
- Department of Biology, University of Munich (LMU), Munich, 80638, Germany
| | - Sidonie Bellot
- Plant Biodiversity Research, Technical University of Munich (TUM), Freising, 85354, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, 06466, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, 06466, Germany
| | - Susanne S Renner
- Department of Biology, University of Munich (LMU), Munich, 80638, Germany
| |
Collapse
|
19
|
Abstract
Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.
Collapse
|
20
|
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 2016; 23:583-96. [PMID: 26293606 DOI: 10.1007/s10577-015-9483-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.
Collapse
Affiliation(s)
| | | | - Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | | | - Eva Šatović
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
21
|
Li SF, Zhang GJ, Zhang XJ, Yuan JH, Deng CL, Gu LF, Gao WJ. DPTEdb, an integrative database of transposable elements in dioecious plants. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw078. [PMID: 27173524 PMCID: PMC4865326 DOI: 10.1093/database/baw078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Dioecious plants usually harbor ‘young’ sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants. Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue-Jin Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Lian-Feng Gu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Kejnovsky E, Trifonov EN. Horizontal transfer - imperative mission of acellular life forms, Acytota. Mob Genet Elements 2016; 6:e1154636. [PMID: 27141324 PMCID: PMC4836480 DOI: 10.1080/2159256x.2016.1154636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 11/02/2022] Open
Abstract
Acytota is a kingdom of life covering satellites, plasmids, transposable elements, viroids and viruses, all outside the conventional tree of life but satisfying most life definitions. This review focuses on some aspects of Acytota, their "genomes" and life styles, the dominance of transposable elements and their evolutionary influence on other life forms in order to vindicate the Acytota as a life kingdom no more polyphyletic than other kingdoms and its members no more parasitic than other life forms.
Collapse
Affiliation(s)
- Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic , Brno, Czech Republic
| | - Edward N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel , Haifa, Israel
| |
Collapse
|
23
|
Li SF, Zhang GJ, Yuan JH, Deng CL, Gao WJ. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes. PLANTA 2016; 243:1083-95. [PMID: 26919983 DOI: 10.1007/s00425-016-2485-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/07/2016] [Indexed: 05/03/2023]
Abstract
The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
24
|
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Mol Biol Evol 2015; 32:1197-207. [PMID: 25605791 PMCID: PMC4408406 DOI: 10.1093/molbev/msv008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Alexander Blinov
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
25
|
Soukupova M, Nevrtalova E, Cížková J, Vogel I, Cegan R, Hobza R, Vyskot B. The X chromosome is necessary for somatic development in the dioecious Silene latifolia: cytogenetic and molecular evidence and sequencing of a haploid genome. Cytogenet Genome Res 2014; 143:96-103. [PMID: 24993893 DOI: 10.1159/000363431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Silene latifolia (or white campion) possesses a well-established sex determination system with a dominant Y chromosome in males (the mammalian type). The heteromorphic sex chromosomes X and Y in S. latifolia largely stopped recombination; thus, we can expect a gradual genetic degeneration of the Y chromosome. It is well proven that neither diploid nor polyploid S. latifolia sporophytes can survive without at least one X, so the only life stage possessing the Y as the sole sex chromosome is the male gametophyte (pollen tube), while the female gametophyte seems to be X-dependent. Previous studies on anther-derived plants of this species showed that the obtained plants (largely haploid or dihaploid) were phenotypically and cytologically female. In this paper, we provide molecular evidence for the inviability of plants lacking the X chromosome. Using sex-specific PCR primers, we show that all plantlets and plants derived from anther cultures are female. In studying anther-derived diploid females by sequencing of X-linked markers, we demonstrate that these plants are really homozygous dihaploids. A haploid regenerant plant was sequenced (8× genome coverage) using Illumina technology. Genome data are disposable in the EMBL database as a standard for full genome and X chromosome assembly in this model species. Homozygous dihaploids were back-crossed with males to yield a progeny useful for the study of the evolution of the Y chromosome.
Collapse
Affiliation(s)
- Magda Soukupova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
26
|
Kralova T, Cegan R, Kubat Z, Vrana J, Vyskot B, Vogel I, Kejnovsky E, Hobza R. Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia. Cytogenet Genome Res 2014; 143:87-95. [PMID: 24751661 DOI: 10.1159/000362142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Silene latifolia is a dioecious plant species with chromosomal sex determination. Although the evolution of sex chromosomes in S. latifolia has been the subject of numerous studies, a global view of X chromosome structure in this species is still missing. Here, we combine X chromosome microdissection and BAC library screening to isolate new X chromosome-linked sequences. Out of 8 identified BAC clones, only BAC 86M14 showed an X-preferential signal after FISH experiments. Further analysis revealed the existence of the Athila retroelement which is enriched in the X chromosome and nearly absent in the Y chromosome. Based on previous data, the Athila retroelement belongs to the CL3 group of most repetitive sequences in the S. latifolia genome. Structural, transcriptomics and phylogenetic analyses revealed that Athila CL3 represents an old clade in the Athila lineage. We propose a mechanism responsible for Athila CL3 distribution in the S. latifolia genome.
Collapse
Affiliation(s)
- Tereza Kralova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, Cegan R, Hobza R, Vyskot B, Kejnovsky E. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. THE NEW PHYTOLOGIST 2014; 202:662-678. [PMID: 24456522 DOI: 10.1111/nph.12669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed.
Collapse
Affiliation(s)
- Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Ivan Vogel
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Tomas Cermak
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc, 77200, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
28
|
Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 2013; 4:493-501. [PMID: 23794032 DOI: 10.1007/s13238-013-3037-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), particularly, long terminal repeat retrotransposons (LTR-RTs), are the most abundant DNA components in all plant species that have been investigated, and are largely responsible for plant genome size variation. Although plant genomes have experienced periodic proliferation and/or recent burst of LTR-retrotransposons, the majority of LTR-RTs are inactivated by DNA methylation and small RNA-mediated silencing mechanisms, and/or were deleted/truncated by unequal homologous recombination and illegitimate recombination, as suppression mechanisms that counteract genome expansion caused by LTR-RT amplification. LTR-RT DNA is generally enriched in pericentromeric regions of the host genomes, which appears to be the outcomes of preferential insertions of LTR-RTs in these regions and low effectiveness of selection that purges LTR-RT DNA from these regions relative to chromosomal arms. Potential functions of various TEs in their host genomes remain blurry; nevertheless, LTR-RTs have been recognized to play important roles in maintaining chromatin structures and centromere functions and regulation of gene expressions in their host genomes.
Collapse
|
29
|
Comparative analysis of a plant pseudoautosomal region (PAR) in Silene latifolia with the corresponding S. vulgaris autosome. BMC Genomics 2012; 13:226. [PMID: 22681719 PMCID: PMC3431222 DOI: 10.1186/1471-2164-13-226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The sex chromosomes of Silene latifolia are heteromorphic as in mammals, with females being homogametic (XX) and males heterogametic (XY). While recombination occurs along the entire X chromosome in females, recombination between the X and Y chromosomes in males is restricted to the pseudoautosomal region (PAR). In the few mammals so far studied, PARs are often characterized by elevated recombination and mutation rates and high GC content compared with the rest of the genome. However, PARs have not been studied in plants until now. In this paper we report the construction of a BAC library for S. latifolia and the first analysis of a > 100 kb fragment of a S. latifolia PAR that we compare to the homologous autosomal region in the closely related gynodioecious species S. vulgaris. Results Six new sex-linked genes were identified in the S. latifolia PAR, together with numerous transposable elements. The same genes were found on the S. vulgaris autosomal segment, with no enlargement of the predicted coding sequences in S. latifolia. Intergenic regions were on average 1.6 times longer in S. latifolia than in S. vulgaris, mainly as a consequence of the insertion of transposable elements. The GC content did not differ significantly between the PAR region in S. latifolia and the corresponding autosomal region in S. vulgaris. Conclusions Our results demonstrate the usefulness of the BAC library developed here for the analysis of plant sex chromosomes and indicate that the PAR in the evolutionarily young S. latifolia sex chromosomes has diverged from the corresponding autosomal region in the gynodioecious S. vulgaris mainly with respect to the insertion of transposable elements. Gene order between the PAR and autosomal region investigated is conserved, and the PAR does not have the high GC content observed in evolutionarily much older mammalian sex chromosomes.
Collapse
|
30
|
Steinbauerová V, Neumann P, Novák P, Macas J. A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica 2012; 139:1543-55. [PMID: 22544262 DOI: 10.1007/s10709-012-9654-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/16/2012] [Indexed: 01/21/2023]
Abstract
Long terminal repeat (LTR) retrotransposons make up substantial parts of most higher plant genomes where they accumulate due to their replicative mode of transposition. Although the transposition is facilitated by proteins encoded within the gag-pol region which is common to all autonomous elements, some LTR retrotransposons were found to potentially carry an additional protein coding capacity represented by extra open reading frames located upstream or downstream of gag-pol. In this study, we performed a comprehensive in silico survey and comparative analysis of these extra open reading frames (ORFs) in the group of Ty3/gypsy LTR retrotransposons as the first step towards our understanding of their origin and function. We found that extra ORFs occur in all three major lineages of plant Ty3/gypsy elements, being the most frequent in the Tat lineage where most (77 %) of identified elements contained extra ORFs. This lineage was also characterized by the highest diversity of extra ORF arrangement (position and orientation) within the elements. On the other hand, all of these ORFs could be classified into only two broad groups based on their mutual similarities or the presence of short conserved motifs in their inferred protein sequences. In the Athila lineage, the extra ORFs were confined to the element 3' regions but they displayed much higher sequence diversity compared to those found in Tat. In the lineage of Chromoviruses the extra ORFs were relatively rare, occurring only in 5' regions of a group of elements present in a single plant family (Poaceae). In all three lineages, most extra ORFs lacked sequence similarities to characterized gene sequences or functional protein domains, except for two Athila-like elements with similarities to LOGL4 gene and part of the Chromoviruses extra ORFs that displayed partial similarity to histone H3 gene. Thus, in these cases the extra ORFs most likely originated by transduction or recombination of cellular gene sequences. In addition, the protein domain which is otherwise associated with DNA transposons have been detected in part of the Tat-like extra ORFs, pointing to their origin from an insertion event of a mobile element.
Collapse
Affiliation(s)
- Veronika Steinbauerová
- Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
31
|
Mogil LS, Slowikowski K, Laten HM. Computational and experimental analyses of retrotransposon-associated minisatellite DNAs in the soybean genome. BMC Bioinformatics 2012; 13 Suppl 2:S13. [PMID: 22536864 PMCID: PMC3305785 DOI: 10.1186/1471-2105-13-s2-s13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Retrotransposons are mobile DNA elements that spread through genomes via the action of element-encoded reverse transcriptases. They are ubiquitous constituents of most eukaryotic genomes, especially those of higher plants. The pericentromeric regions of soybean (Glycine max) chromosomes contain >3,200 intact copies of the Gmr9/GmOgre retrotransposon. Between the 3' end of the coding region and the long terminal repeat, this retrotransposon family contains a polymorphic minisatellite region composed of five distinct, interleaved minisatellite families. To better understand the possible role and origin of retrotransposon-associated minisatellites, a computational project to map and physically characterize all members of these families in the G. max genome, irrespective of their association with Gmr9, was undertaken. METHODS A computational pipeline was developed to map and analyze the organization and distribution of five Gmr9-associated minisatellites throughout the soybean genome. Polymerase chain reaction amplifications were used to experimentally assess the computational outputs. RESULTS A total of 63,841 copies of Gmr9-associated minisatellites were recovered from the assembled G. max genome. Ninety percent were associated with Gmr9, an additional 9% with other annotated retrotransposons, and 1% with uncharacterized repetitive DNAs. Monomers were tandemly interleaved and repeated up to 149 times per locus. CONCLUSIONS The computational pipeline enabled a fast, accurate, and detailed characterization of known minisatellites in a large, downloaded DNA database, and PCR amplification supported the general organization of these arrays.
Collapse
Affiliation(s)
- Lauren S Mogil
- Program in Bioinformatics Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660 USA
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660 USA
- Present address: Department of Biochemistry and Molecular Biology, Mayo Graduate School, Rochester, MN 55905 USA
| | - Kamil Slowikowski
- Program in Bioinformatics Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660 USA
| | - Howard M Laten
- Program in Bioinformatics Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660 USA
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660 USA
| |
Collapse
|
32
|
Cegan R, Vyskot B, Kejnovsky E, Kubat Z, Blavet H, Šafář J, Doležel J, Blavet N, Hobza R. Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris. PLoS One 2012; 7:e31898. [PMID: 22393373 PMCID: PMC3290532 DOI: 10.1371/journal.pone.0031898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/16/2012] [Indexed: 01/25/2023] Open
Abstract
Background Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood. Methodology/Principal Findings We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family. Conclusions/Significance Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.
Collapse
Affiliation(s)
- Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
- Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Hana Blavet
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Nicolas Blavet
- Institute of Integrative Biology, Plant Ecological Genetics, ETH Zurich, Zurich, Switzerland
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
- * E-mail:
| |
Collapse
|
33
|
Muszewska A, Hoffman-Sommer M, Grynberg M. LTR retrotransposons in fungi. PLoS One 2011; 6:e29425. [PMID: 22242120 PMCID: PMC3248453 DOI: 10.1371/journal.pone.0029425] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 11/28/2011] [Indexed: 01/17/2023] Open
Abstract
Transposable elements with long terminal direct repeats (LTR TEs) are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (<50 elements), others demonstrate huge expansions (>8000 elements). The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
34
|
Zhao M, Zhou JY, Li ZD, Song WW, Gong T, Tan H. Boty-like retrotransposons in the filamentous fungus Botrytis cinerea contain the additional antisense gene brtn. Virology 2011; 417:248-52. [PMID: 21802103 DOI: 10.1016/j.virol.2011.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/15/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022]
Abstract
Long-terminal repeat (LTR) retrotransposons typically contain gag, pol, or gag-pol, and in some case env genes. In this work, we used data mining of the Botrytis cinerea genomic sequence and a molecular approach to identify Boty-like LTR retrotransposons in B. cinerea containing an antisense gene (brtn) between pol and the 3'-LTR. Reverse transcriptase PCR (RT-PCR) revealed that some brtn-like genes could be expressed, at least in B. cinerea T4. We conducted BLAST comparisons and conserved-domain analysis, but the function of putative BRTN is presently unknown. Boty-like LTR retrotransposons in Sclerotinia sclerotiorum, called ScscLRET and containing brtn homologs at positions similar to brtn, were detected by homology searches and data mining of the S. sclerotiorum 1980 genomic sequence. Thus, this study demonstrated that some fungal LTR retrotransposons contain additional antisense genes.
Collapse
Affiliation(s)
- Ming Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Blavet N, Charif D, Oger-Desfeux C, Marais GAB, Widmer A. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database. BMC Genomics 2011; 12:376. [PMID: 21791039 PMCID: PMC3157477 DOI: 10.1186/1471-2164-12-376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/26/2011] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. RESULTS A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. CONCLUSION The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms.
Collapse
Affiliation(s)
- Nicolas Blavet
- Institute of Integrative Biology (IBZ), ETH Zurich, Universitaetstrasse 16, Zürich, 8092, Switzerland
| | - Delphine Charif
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, F-69622 cedex, France
| | - Christine Oger-Desfeux
- DTAMB/PRABI, IFR41, Université Lyon 1, Bâtiment Gregor Mendel, Villeurbanne, F-69622 cedex, France
| | - Gabriel AB Marais
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, F-69622 cedex, France
| | - Alex Widmer
- Institute of Integrative Biology (IBZ), ETH Zurich, Universitaetstrasse 16, Zürich, 8092, Switzerland
| |
Collapse
|
36
|
Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2011; 2:4. [PMID: 21371312 PMCID: PMC3059260 DOI: 10.1186/1759-8753-2-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/03/2011] [Indexed: 12/12/2022] Open
Abstract
Background The centromeric and pericentromeric regions of plant chromosomes are colonized by Ty3/gypsy retrotransposons, which, on the basis of their reverse transcriptase sequences, form the chromovirus CRM clade. Despite their potential importance for centromere evolution and function, they have remained poorly characterized. In this work, we aimed to carry out a comprehensive survey of CRM clade elements with an emphasis on their diversity, structure, chromosomal distribution and transcriptional activity. Results We have surveyed a set of 190 CRM elements belonging to 81 different retrotransposon families, derived from 33 host species and falling into 12 plant families. The sequences at the C-terminus of their integrases were unexpectedly heterogeneous, despite the understanding that they are responsible for targeting to the centromere. This variation allowed the division of the CRM clade into the three groups A, B and C, and the members of each differed considerably with respect to their chromosomal distribution. The differences in chromosomal distribution coincided with variation in the integrase C-terminus sequences possessing a putative targeting domain (PTD). A majority of the group A elements possess the CR motif and are concentrated in the centromeric region, while members of group C have the type II chromodomain and are dispersed throughout the genome. Although representatives of the group B lack a PTD of any type, they appeared to be localized preferentially in the centromeres of tested species. All tested elements were found to be transcriptionally active. Conclusions Comprehensive analysis of the CRM clade elements showed that genuinely centromeric retrotransposons represent only a fraction of the CRM clade (group A). These centromeric retrotransposons represent an active component of centromeres of a wide range of angiosperm species, implying that they play an important role in plant centromere evolution. In addition, their transcriptional activity is consistent with the notion that the transcription of centromeric retrotransposons has a role in normal centromere function.
Collapse
|
37
|
Dynamic gene order on the Silene latifolia Y chromosome. Chromosoma 2011; 120:287-96. [PMID: 21327830 DOI: 10.1007/s00412-011-0311-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/13/2011] [Accepted: 01/22/2011] [Indexed: 01/28/2023]
Abstract
Dioecious Silene latifolia evolved heteromorphic sex chromosomes within the last ten million years, making it a species of choice for studies of the early stages of sex chromosome evolution in plants. About a dozen genes have been isolated from its sex chromosomes and basic genetic and deletion maps exist for the X and Y chromosomes. However, discrepancies between Y chromosome maps led to the proposal that individual Y chromosomes may differ in gene order. Here, we use an alternative approach, with fluorescence in situ hybridization (FISH), to locate individual genes on S. latifolia sex chromosomes. We demonstrate that gene order on the Y chromosome differs between plants from two populations. We suggest that dynamic gene order may be a general property of Y chromosomes in species with XY systems, in view of recent work demonstrating that the gene order on the Y chromosomes of humans and chimpanzees are dramatically different.
Collapse
|
38
|
Ishii K, Amanai Y, Kazama Y, Ikeda M, Kamada H, Kawano S. Analysis of BAC clones containing homologous sequences on the end of the Xq arm and on chromosome 7 in the dioecious plant Silene latifolia. Genome 2010; 53:311-20. [PMID: 20616862 DOI: 10.1139/g10-008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silene latifolia is a model dioecious plant with morphologically distinguishable XY sex chromosomes. The end of the Xq arm is quite different from that of the Yp arm, although both are located at opposite ends of their respective chromosomes relative to a pseudo-autosomal region. The Xq arm does not seem to originate from the same autosome as the Yp arm. Bacterial artificial chromosome clone #15B12 has an insert containing a 130-kb stretch in which a 313-bp satellite DNA is repeated 420 times. PCR with a single primer revealed that this 130-kb stretch consists of three reversals of the orientation of the satellite DNA. A non-long terminal repeat retroelement and two sequences that share homology with an Oryza sativa RING zinc finger and a putative Arabidopsis thaliana protein, respectively, were found in the sequences that flank the satellite DNA. Fluorescence in situ hybridization carried out using this low-copy region of #15B12 as a probe confirmed that these sequences originated from the X chromosome and that homologous sequences exist at the end of chromosome 7. The region distal to DD44X on the Xq arm is postulated to have recombined with a region containing satellite DNA on chromosome 7 during the process of sex chromosome evolution.
Collapse
Affiliation(s)
- Kotaro Ishii
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Cegan R, Marais GAB, Kubekova H, Blavet N, Widmer A, Vyskot B, Doležel J, Šafář J, Hobza R. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC PLANT BIOLOGY 2010; 10:180. [PMID: 20718967 PMCID: PMC3095310 DOI: 10.1186/1471-2229-10-180] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/18/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND The evolution of sex chromosomes is often accompanied by gene or chromosome rearrangements. Recently, the gene AP3 was characterized in the dioecious plant species Silene latifolia. It was suggested that this gene had been transferred from an autosome to the Y chromosome. RESULTS In the present study we provide evidence for the existence of an X linked copy of the AP3 gene. We further show that the Y copy is probably located in a chromosomal region where recombination restriction occurred during the first steps of sex chromosome evolution. A comparison of X and Y copies did not reveal any clear signs of degenerative processes in exon regions. Instead, both X and Y copies show evidence for relaxed selection compared to the autosomal orthologues in S. vulgaris and S. conica. We further found that promoter sequences differ significantly. Comparison of the genic region of AP3 between the X and Y alleles and the corresponding autosomal copies in the gynodioecious species S. vulgaris revealed a massive accumulation of retrotransposons within one intron of the Y copy of AP3. Analysis of the genomic distribution of these repetitive elements does not indicate that these elements played an important role in the size increase characteristic of the Y chromosome. However, in silico expression analysis shows biased expression of individual domains of the identified retroelements in male plants. CONCLUSIONS We characterized the structure and evolution of AP3, a sex linked gene with copies on the X and Y chromosomes in the dioecious plant S. latifolia. These copies showed complementary expression patterns and relaxed evolution at protein level compared to autosomal orthologues, which suggests subfunctionalization. One intron of the Y-linked allele was invaded by retrotransposons that display sex-specific expression patterns that are similar to the expression pattern of the corresponding allele, which suggests that these transposable elements may have influenced evolution of expression patterns of the Y copy. These data could help researchers decipher the role of transposable elements in degenerative processes during sex chromosome evolution.
Collapse
Affiliation(s)
- Radim Cegan
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
- Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Gabriel AB Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS University Lyon 1, Bat. Gregor Mendel, 16 rue Raphaël Dubois, 69622, Villeurbanne Cedex, France
| | - Hana Kubekova
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| | - Nicolas Blavet
- Institute of Integrative Biology, Plant Ecological Genetics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, Plant Ecological Genetics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Boris Vyskot
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| | - Jaroslav Doležel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i. Sokolovska 6, 772-00, Olomouc, Czech Republic
| | - Jan Šafář
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i. Sokolovska 6, 772-00, Olomouc, Czech Republic
| | - Roman Hobza
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| |
Collapse
|
40
|
Du J, Tian Z, Bowen NJ, Schmutz J, Shoemaker RC, Ma J. Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR Swapping in soybean. THE PLANT CELL 2010; 22:48-61. [PMID: 20081112 PMCID: PMC2828711 DOI: 10.1105/tpc.109.068775] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/11/2009] [Accepted: 10/23/2009] [Indexed: 05/02/2023]
Abstract
Long terminal repeat (LTR) retrotransposons, the most abundant genomic components in flowering plants, are classifiable into autonomous and nonautonomous elements based on their structural completeness and transposition capacity. It has been proposed that selection is the major force for maintaining sequence (e.g., LTR) conservation between nonautonomous elements and their autonomous counterparts. Here, we report the structural, evolutionary, and expression characterization of a giant retrovirus-like soybean (Glycine max) LTR retrotransposon family, SNARE. This family contains two autonomous subfamilies, SARE(A) and SARE(B), that appear to have evolved independently since the soybean genome tetraploidization event approximately 13 million years ago, and a nonautonomous subfamily, SNRE, that originated from SARE(A). Unexpectedly, a subset of the SNRE elements, which amplified from a single founding SNRE element within the last approximately 3 million years, have been dramatically homogenized with either SARE(A) or SARE(B) primarily in the LTR regions and bifurcated into distinct subgroups corresponding to the two autonomous subfamilies. We uncovered evidence of region-specific swapping of nonautonomous elements with autonomous elements that primarily generated various nonautonomous recombinants with LTR sequences from autonomous elements of different evolutionary lineages, thus revealing a molecular mechanism for the enhancement of preexisting partnership and the establishment of new partnership between autonomous and nonautonomous elements.
Collapse
Affiliation(s)
- Jianchang Du
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Nathan J. Bowen
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - Randy C. Shoemaker
- U.S. Department of Agriculture–Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Ames, Iowa 50011
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
41
|
Macas J, Koblízková A, Navrátilová A, Neumann P. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 2009; 448:198-206. [PMID: 19563868 DOI: 10.1016/j.gene.2009.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/15/2022]
Abstract
The repetitive sequence PisTR-A has an unusual organization in the pea (Pisum sativum) genome, being present both as short dispersed repeats as well as long arrays of tandemly arranged satellite DNA. Cloning, sequencing and FISH analysis of both PisTR-A variants revealed that the former occurs in the genome embedded within the sequence of Ty3/gypsy-like Ogre elements, whereas the latter forms homogenized arrays of satellite repeats at several genomic loci. The Ogre elements carry the PisTR-A sequences in their 3' untranslated region (UTR) separating the gag-pol region from the 3' LTR. This region was found to be highly variable among pea Ogre elements, and includes a number of other tandem repeats along with or instead of PisTR-A. Bioinformatic analysis of LTR-retrotransposons mined from available plant genomic sequence data revealed that the frequent occurrence of variable tandem repeats within 3' UTRs is a typical feature of the Tat lineage of plant retrotransposons. Comparison of these repeats to known plant satellite sequences uncovered two other instances of satellites with sequence similarity to a Tat-like retrotransposon 3' UTR regions. These observations suggest that some retrotransposons may significantly contribute to satellite DNA evolution by generating a library of short repeat arrays that can subsequently be dispersed through the genome and eventually further amplified and homogenized into novel satellite repeats.
Collapse
Affiliation(s)
- Jirí Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, CZ-37005, Czech Republic.
| | | | | | | |
Collapse
|
42
|
A shotgun approach to discovering and reconstructing consensus retrotransposons ex novo from dense contigs of short sequences derived from Genbank Genome Survey Sequence database records. Gene 2009; 448:168-73. [DOI: 10.1016/j.gene.2009.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/12/2009] [Accepted: 06/19/2009] [Indexed: 01/19/2023]
|
43
|
The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity (Edinb) 2009; 102:533-41. [PMID: 19277056 DOI: 10.1038/hdy.2009.17] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic genomes contain a large proportion of repetitive DNA sequences, mostly transposable elements (TEs) and tandem repeats. These repetitive sequences often colonize specific chromosomal (Y or W chromosomes, B chromosomes) or subchromosomal (telomeres, centromeres) niches. Sex chromosomes, especially non-recombining regions of the Y chromosome, are subject to different evolutionary forces compared with autosomes. In non-recombining regions of the Y chromosome repetitive DNA sequences are accumulated, representing a dominant and early process forming the Y chromosome, probably before genes start to degenerate. Here we review the occurrence and role of repetitive DNA in Y chromosome evolution in various species with a focus on dioecious plants. We also discuss the potential link between recombination and transposition in shaping genomes.
Collapse
|
44
|
Preferential epigenetic suppression of the autonomous MusD over the nonautonomous ETn mouse retrotransposons. Mol Cell Biol 2009; 29:2456-68. [PMID: 19273603 DOI: 10.1128/mcb.01383-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonautonomous retrotransposon subfamilies are often amplified in preference to their coding-competent relatives. However, the mechanisms responsible for such replicative success are poorly understood. Here, we demonstrate that the autonomous MusD long terminal repeat (LTR) retrotransposons are subject to greater epigenetic silencing than their nonautonomous cousins, the early transposons (ETns), which are expressed at a 170-fold-higher level than MusD in mouse embryonic stem (ES) cells. We show that, in ES cells, 5' LTRs and the downstream region of MusD elements are more heavily methylated and are associated with less-activating and more-repressive histone modifications than the highly similar ETnII sequences. The internal region of MusD likely contributes to their silencing, as transgenes with MusD, compared to those with ETnII sequences, show reduced reporter gene expression and a higher level of repressive histone marks. Genomic distribution patterns of MusD and ETn elements are consistent with stronger selection against MusD elements within introns, suggesting that MusD-associated silencing marks can negatively impact genes. We propose a model in which nonautonomous retrotransposons may gain transcriptional and retrotranspositional advantages over their coding-competent counterparts by elimination of the CpG-rich retroviral sequence targeting the autonomous subfamilies for silencing.
Collapse
|
45
|
Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 2008; 16:961-76. [DOI: 10.1007/s10577-008-1254-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
46
|
Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Monéger F, Hobza R, Widmer A, Charlesworth D. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 2008; 18:545-9. [PMID: 18394889 DOI: 10.1016/j.cub.2008.03.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/26/2022]
Abstract
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.
Collapse
Affiliation(s)
- Gabriel A B Marais
- Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 2008; 51:350-6. [PMID: 18438438 DOI: 10.1139/g08-024] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dioecious plant Silene latifolia possesses evolutionarily young sex chromosomes, and so serves as a model system to study the early stages of sex chromosome evolution. Sex chromosomes often differ distinctly from autosomes in both their structure and their patterns of evolution. The S. latifolia Y chromosome is particularly unique owing to its large size, which contrasts with the size of smaller, degenerate mammalian Y chromosomes. It is thought that the suppression of recombination on the S. latifolia Y chromosome could have resulted in the accumulation of repetitive sequences that account for its large size. Here we used fluorescence in situ hybridization (FISH) to study the chromosomal distribution of various microsatellites in S. latifolia including all possible mono-, di-, and tri-nucleotides. Our results demonstrate that a majority of microsatellites are accumulated on the q arm of the Y chromosome, which stopped recombining relatively recently and has had less time to accumulate repetitive DNA sequences compared with the p arm. Based on these results we can speculate that microsatellites have accumulated in regions that predate the genome expansion, supporting the view that the accumulation of repetitive DNA sequences occurred prior to, not because of, the degeneration of genes.
Collapse
Affiliation(s)
- Zdenek Kubat
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
48
|
Jamilena M, Mariotti B, Manzano S. Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 2008; 120:255-64. [PMID: 18504355 DOI: 10.1159/000121075] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2007] [Indexed: 11/19/2022] Open
Abstract
Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes of S. latifolia and R. acetosa, will reveal the degenerative changes that the Y-linked gene functions have experienced during sex chromosome evolution.
Collapse
Affiliation(s)
- M Jamilena
- Departamento de Biología Aplicada, Area de Genética, Escuela Politécnica Superior, Universidad de Almería, Almería, Spain.
| | | | | |
Collapse
|
49
|
Minder AM, Widmer A. A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 2008; 17:1552-63. [PMID: 18321255 DOI: 10.1111/j.1365-294x.2008.03709.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the nature of species boundaries between closely related plant species and about the extent of introgression as a consequence of hybridization upon secondary contact. To address these topics we analyzed genome-wide differentiation between two closely related Silene species, Silene latifolia and S. dioica, and assessed the strength of introgression in sympatry. More than 300 AFLP markers were genotyped in three allopatric and three sympatric populations of each species. Outlier analyses were performed separately for sympatric and allopatric populations. Both positive and negative outlier loci were found, indicating that divergent and balancing selection, respectively, have shaped patterns of divergence between the two species. Sympatric populations of the two species were found to be less differentiated genetically than allopatric populations, indicating that hybridization has led to gene introgression. We conclude that differentiation between S. latifolia and S. dioica has been shaped by a combination of introgression and selection. These results challenge the view that species differentiation is a genome-wide phenomenon, and instead support the idea that genomes can be porous and that species differentiation has a genic basis.
Collapse
Affiliation(s)
- A M Minder
- ETH Zurich, Plant Ecological Genetics, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zurich, Switzerland
| | | |
Collapse
|
50
|
Abstract
We combine data from published marker genotyping of three sets of S. latifolia Y chromosome deletion mutants with changed sex phenotypes and add genotypes for several new genic markers to refine the deletion map of the Y chromosome and compare it with the X chromosome genetic map. We conclude that the Y chromosome of this species has been derived through multiple rearrangements of the ancestral gene arrangement and that none of the rearrangements so far detected was involved in stopping X-Y recombination. Different Y genotypes may also differ in their gene content and possibly arrangements, suggesting that mapping the Y-linked sex-determining genes will be difficult, even if many further genic markers are obtained. Even in determining the map of Y chromosome markers to discover all the rearrangements, physical mapping by FISH or other experiments will be essential. Future deletion mapping work should ensure that markers are studied in the parents of deletion mutants and should probably include additional deletions that were not ascertained by causing mutant sex phenotypes.
Collapse
|