1
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
3
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
4
|
Identification and Cloning of a CC-NBS-NBS-LRR Gene as a Candidate of Pm40 by Integrated Analysis of Both the Available Transcriptional Data and Published Linkage Mapping. Int J Mol Sci 2021; 22:ijms221910239. [PMID: 34638580 PMCID: PMC8508864 DOI: 10.3390/ijms221910239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Wheat powdery mildew, caused by the obligate parasite Blumeria graminis f. sp. tritici, severely reduces wheat yields. Identifying durable and effective genes against wheat powdery mildew and further transferring them into wheat cultivars is important for finally controlling this disease in wheat production. Pm40 has been widely used in wheat breeding programs in Southwest China due to the spectrum and potentially durable resistance to powdery mildew. In the present study, a resistance test demonstrated that Pm40 is still effective against the Bgt race E20. We identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data. Two missense mutations were detected at positions 68 and 83 in the CC domain. The results of both cosegregation linkage analysis and qRT-PCR also suggested that TraesCS7B01G164000 was a potential candidate gene of Pm40. This study allowed us to move toward the final successfully clone and apply Pm40 in wheat resistance improvement by gene engineering.
Collapse
|
5
|
Qin J, Mo R, Li H, Ni Z, Sun Q, Liu Z. The Transcriptional and Splicing Changes Caused by Hybridization Can Be Globally Recovered by Genome Doubling during Allopolyploidization. Mol Biol Evol 2021; 38:2513-2519. [PMID: 33585937 PMCID: PMC8136492 DOI: 10.1093/molbev/msab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polyploidization is a major driving force in plant evolution. Allopolyploidization, involving hybridization and genome doubling, can cause extensive transcriptome reprogramming which confers allopolyploids higher evolutionary potential than their diploid progenitors. To date, little is known about the interplay between hybridization and genome doubling in transcriptome reprogramming. Here, we performed genome-wide analyses of transcriptome reprogramming during allopolyploidization in wheat and brassica lineages. Our results indicated that hybridization-induced transcriptional and splicing changes of genes can be largely recovered to parental levels by genome doubling in allopolyploids. As transcriptome reprogramming is an important contributor to heterosis, our finding updates a longstanding theory that heterosis in interspecific hybrids can be permanently fixed through genome doubling. Our results also indicated that much of the transcriptome reprogramming in interspecific hybrids was not caused by the merging of two parental genomes, providing novel insights into the mechanisms underlying both heterosis and hybrid speciation.
Collapse
Affiliation(s)
- Jinxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruirui Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongxia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Giraud D, Lima O, Huteau V, Coriton O, Boutte J, Kovarik A, Leitch AR, Leitch IJ, Aïnouche M, Salmon A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110671. [PMID: 33288000 DOI: 10.1016/j.plantsci.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Virginie Huteau
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Olivier Coriton
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Julien Boutte
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK.
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| |
Collapse
|
7
|
Zagorski D, Hartmann M, Bertrand YJK, Paštová L, Slavíková R, Josefiová J, Fehrer J. Characterization and Dynamics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:591053. [PMID: 33224172 PMCID: PMC7667050 DOI: 10.3389/fpls.2020.591053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
Collapse
|
8
|
Pan Q, Zhu B, Zhang D, Tong C, Ge X, Liu S, Li Z. Gene Expression Changes During the Allo-/Deallopolyploidization Process of Brassica napus. Front Genet 2020; 10:1279. [PMID: 31921314 PMCID: PMC6931035 DOI: 10.3389/fgene.2019.01279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Gene expression changes due to allopolyploidization have been extensively studied in plants over the past few decades. Nearly all these studies focused on comparing the changes before and after genome merger. In this study, we used the uniquely restituted Brassica rapa (RBR, AeAe, 2n = 20) obtained from Brassica napus (AnAnCnCn, 2n = 38) to analyze the gene expression changes and its potential mechanism during the process of allo-/deallopolyploidization. RNA-seq-based transcriptome profiling identified a large number of differentially expressed genes (DEGs) between RBR and natural B. rapa (ArAr), suggesting potential effects of allopolyploidization/domestication of AA component of B. napus at the tetrapolyploid level. Meanwhile, it was revealed that up to 20% of gene expressions were immediately altered when compared with those in the An-subgenome. Interestingly, one fifth of these changes are in fact indicative of the recovery of antecedent gene expression alternations occurring since the origin of B. napus and showed association with homoeologous expression bias between An and Cn subgenomes. Enrichment of distinct gene ontology (GO) categories of the above sets of genes further indicated potential functional cooperation of the An and Cn subgenome of B. napus. Whole genome methylation analysis revealed a small number of DEGs were identified in the differentially methylated regions.
Collapse
Affiliation(s)
- Qi Pan
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dawei Zhang
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Mhiri C, Parisod C, Daniel J, Petit M, Lim KY, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA. Parental transposable element loads influence their dynamics in young Nicotiana hybrids and allotetraploids. THE NEW PHYTOLOGIST 2019; 221:1619-1633. [PMID: 30220091 DOI: 10.1111/nph.15484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 05/29/2023]
Abstract
The genomic shock hypothesis suggests that allopolyploidy is associated with genome changes driven by transposable elements, as a response to imbalances between parental insertion loads. To explore this hypothesis, we compared three allotetraploids, Nicotiana arentsii, N. rustica and N. tabacum, which arose over comparable time frames from hybridisation between increasingly divergent diploid species. We used sequence-specific amplification polymorphism (SSAP) to compare the dynamics of six transposable elements in these allopolyploids, their diploid progenitors and in corresponding synthetic hybrids. We show that element-specific dynamics in young Nicotiana allopolyploids reflect their dynamics in diploid progenitors. Transposable element mobilisation is not concomitant with immediate genome merger, but occurs within the first generations of allopolyploid formation. In natural allopolyploids, such mobilisations correlate with imbalances in the repeat profile of the parental species, which increases with their genetic divergence. Other restructuring leading to locus loss is immediate, nonrandom and targeted at specific subgenomes, independently of cross orientation. The correlation between transposable element mobilisation in allopolyploids and quantitative imbalances in parental transposable element loads supports the genome shock hypothesis proposed by McClintock.
Collapse
Affiliation(s)
- Corinne Mhiri
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Christian Parisod
- Ecological Genomics, Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Julien Daniel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Maud Petit
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - K Yoong Lim
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Marie-Angèle Grandbastien
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
10
|
Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants. Int J Mol Sci 2018; 19:ijms19123758. [PMID: 30486351 PMCID: PMC6320998 DOI: 10.3390/ijms19123758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Hybridization has been routinely practiced in agriculture to enhance the crop yield. Principally, it can cause hybrid vigor where hybrid plants display increased size, biomass, fertility, and resistance to diseases, when compared to their parents. During hybridization, hybrid offspring receive a genomic shock due to mixing of distant parental genomes, which triggers a myriad of genomic rearrangements, e.g., transpositions, genome size changes, chromosomal rearrangements, and other effects on the chromatin. Recently, it has been reported that, besides genomic rearrangements, hybridization can also alter the somatic mutation rates in plants. In this review, we provide in-depth insights about hybridization triggered genomic rearrangements and somatic mutations in plants.
Collapse
|
11
|
Qi X, Wang H, Song A, Jiang J, Chen S, Chen F. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense× Tanacetum vulgare hybrid and allopolyploid (Asteraceae). HORTICULTURE RESEARCH 2018; 5:5. [PMID: 29423235 PMCID: PMC5802763 DOI: 10.1038/s41438-017-0003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 05/05/2023]
Abstract
Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense×T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.
Collapse
Affiliation(s)
- Xiangyu Qi
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Haibin Wang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Aiping Song
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Jiafu Jiang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Sumei Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Fadi Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| |
Collapse
|
12
|
Bothe H, Słomka A. Divergent biology of facultative heavy metal plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:45-61. [PMID: 29028613 DOI: 10.1016/j.jplph.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/04/2023]
Abstract
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Cracow, Poland.
| |
Collapse
|
13
|
Zhu W, Hu B, Becker C, Doğan ES, Berendzen KW, Weigel D, Liu C. Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol 2017; 18:157. [PMID: 28830561 PMCID: PMC5568265 DOI: 10.1186/s13059-017-1281-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The merging of two diverged genomes can result in hybrid offspring that phenotypically differ greatly from both parents. In plants, interspecific hybridization plays important roles in evolution and speciation. In addition, many agricultural and horticultural species are derived from interspecific hybridization. However, the detailed mechanisms responsible for non-additive phenotypic novelty in hybrids remain elusive. RESULTS In an interspecific hybrid between Arabidopsis thaliana and A. lyrata, the vast majority of genes that become upregulated or downregulated relative to the parents originate from A. thaliana. Among all differentially expressed A. thaliana genes, the majority is downregulated in the hybrid. To understand why parental origin affects gene expression in this system, we compare chromatin packing patterns and epigenomic landscapes in the hybrid and parents. We find that the chromatin of A. thaliana, but not that of A. lyrata, becomes more compact in the hybrid. Parental patterns of DNA methylation and H3K27me3 deposition are mostly unaltered in the hybrid, with the exception of higher CHH DNA methylation in transposon-rich regions. However, A. thaliana genes enriched for the H3K27me3 mark are particularly likely to differ in expression between the hybrid and parent. CONCLUSIONS It has long been suspected that genome-scale properties cause the differential responses of genes from one or the other parent to hybridization. Our work links global chromatin compactness and H3K27me3 histone modification to global differences in gene expression in an interspecific Arabidopsis hybrid.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Bo Hu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.,Present Address: Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
| | - Ezgi Süheyla Doğan
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Kenneth Wayne Berendzen
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.
| | - Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany. .,Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany.
| |
Collapse
|
14
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
15
|
Wu Y, Chen D, Zhu S, Zhang L, Li L. A New Sythetic Hybrid (A1D5) between Gossypium herbaceum and G. raimondii and Its Morphological, Cytogenetic, Molecular Characterization. PLoS One 2017; 12:e0169833. [PMID: 28187145 PMCID: PMC5302248 DOI: 10.1371/journal.pone.0169833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022] Open
Abstract
The diploid species G. herbaceum (A1) and G. raimondii (D5) are the progenitors of allotetraploid cotton, respectively. However, hybrids between G. herbaceum and G. raimondii haven’t been reported. In the present study, hybridization between G. herbaceum and G. raimondii was explored. Morphological, cytogenetic and molecular analyses were used to assess the hybridity. The interspecific hybrid plants were successfully obtained. Most of the morphological characteristics of the hybrids were intermediate between G. herbaceum and G. raimondii. However, the color of glands, anther cases, pollen and corolla, and the state of bracteoles in hybrids were associated with the G. herbaceum. The color of staminal columns and filaments in hybrids were associated with G. raimondii. Cytogenetic analysis confirmed abnormal meiotic behavior existed in hybrids. The hybrids couldn’t produce boll-set. Simple sequence repeat results found that besides the fragments inherited from the two parents, some novel bands were amplified in hybrids, indicating that potential mutations and chromosomal recombination occurred between parental genomes during hybridization. These results may provide some novel insights in speciation, genome interaction, and evolution of the tetraploid cotton species.
Collapse
Affiliation(s)
- Yuxiang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Di Chen
- Cotton Research Institute of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Shuijin Zhu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| | - Lufei Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lingjiao Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
16
|
Dinh Thi VH, Coriton O, Le Clainche I, Arnaud D, Gordon SP, Linc G, Catalan P, Hasterok R, Vogel JP, Jahier J, Chalhoub B. Recreating Stable Brachypodium hybridum Allotetraploids by Uniting the Divergent Genomes of B. distachyon and B. stacei. PLoS One 2016; 11:e0167171. [PMID: 27936041 PMCID: PMC5147888 DOI: 10.1371/journal.pone.0167171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022] Open
Abstract
Brachypodium hybridum (2n = 30) is a natural allopolyploid with highly divergent sub-genomes derived from two extant diploid species, B. distachyon (2n = 10) and B. stacei (2n = 20) that differ in chromosome evolution and number. We created synthetic B. hybridum allotetraploids by hybridizing various lines of B. distachyon and B. stacei. The initial amphihaploid F1 interspecific hybrids were obtained at low frequencies when B. distachyon was used as the maternal parent (0.15% or 0.245% depending on the line used) and were sterile. No hybrids were obtained from reciprocal crosses or when autotetraploids of the parental species were crossed. Colchicine treatment was used to double the genome of the F1 amphihaploid lines leading to allotetraploids. The genome-doubled F1 plants produced a few S1 (first selfed generation) seeds after self-pollination. S1 plants from one parental combination (Bd3-1×Bsta5) were fertile and gave rise to further generations whereas those of another parental combination (Bd21×ABR114) were sterile, illustrating the importance of the parental lineages crossed. The synthetic allotetraploids were stable and resembled the natural B. hybridum at the phenotypic, cytogenetic and genomic levels. The successful creation of synthetic B. hybridum offers the possibility to study changes in genome structure and regulation at the earliest stages of allopolyploid formation in comparison with the parental species and natural B. hybridum.
Collapse
Affiliation(s)
- Vinh Ha Dinh Thi
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
| | - Olivier Coriton
- Unité Mixte de Recherches INRA, Agrocampus Rennes—Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Isabelle Le Clainche
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
| | - Dominique Arnaud
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
| | - Sean P. Gordon
- DOE Joint Genome Institute, Walnut Creek, United States of America
| | - Gabriella Linc
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences,Martonvásár, Brunszvik u 2, Hungary
| | - Pilar Catalan
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Tomsk, Russia
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia,Katowice, Poland
| | - John P. Vogel
- DOE Joint Genome Institute, Walnut Creek, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, United States of America
| | - Joseph Jahier
- Unité Mixte de Recherches INRA, Agrocampus Rennes—Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Boulos Chalhoub
- Organization and evolution of complex genomes, Institut National de la Recherche agronomique, Université d’Evry Val d’Essonne, Evry, France
- Institute of System and Synthetic Biology, Genopole, Centre National de la Recherche Scientifique, Université d’Evry Val d’Essonne, Université Paris-Saclay, Evry, France
- * E-mail:
| |
Collapse
|
17
|
Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum. Mol Genet Genomics 2016; 291:1871-83. [PMID: 27295958 DOI: 10.1007/s00438-016-1225-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes and their mobility impacts genome structure and function in myriad ways. Because of their abundance, activity, and repetitive nature, the characterization and analysis of TEs remain challenging, particularly from short-read sequencing projects. To overcome this difficulty, we have developed a method that estimates TE copy number from short-read sequences. To test the accuracy of our method, we first performed an in silico analysis of the reference Sorghum bicolor genome, using both reference-based and de novo approaches. The resulting TE copy number estimates were strikingly similar to the annotated numbers. We then tested our method on real short-read data by estimating TE copy numbers in several accessions of S. bicolor and its close relative S. propinquum. Both methods effectively identify and rank similar TE families from highest to lowest abundance. We found that de novo characterization was effective at capturing qualitative variation, but underestimated the abundance of some TE families, specifically families of more ancient origin. Also, interspecific reference-based mapping of S. propinquum reads to the S. bicolor database failed to fully describe TE content in S. propinquum, indicative of recent TE activity leading to changes in the respective repetitive landscapes over very short evolutionary timescales. We conclude that reference-based analyses are best suited for within-species comparisons, while de novo approaches are more reliable for evolutionarily distant comparisons.
Collapse
|
18
|
Gautam M, Dang Y, Ge X, Shao Y, Li Z. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus. FRONTIERS IN PLANT SCIENCE 2016; 7:438. [PMID: 27148282 PMCID: PMC4828432 DOI: 10.3389/fpls.2016.00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/21/2016] [Indexed: 05/24/2023]
Abstract
Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.
Collapse
Affiliation(s)
- Mayank Gautam
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanwei Dang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of EducationWuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
19
|
Gu AX, Zhao JJ, Li LM, Wang YH, Zhao YJ, Hua F, Xu YC, Shen SX. Analyses of phenotype and ARGOS and ASY1 expression in a ploidy Chinese cabbage series derived from one haploid. BREEDING SCIENCE 2016; 66:161-8. [PMID: 27162487 PMCID: PMC4784993 DOI: 10.1270/jsbbs.66.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/28/2015] [Indexed: 05/20/2023]
Abstract
The aim of this research was to improve our understanding of how ploidy level influences phenotype and gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Haploid plants (2n = 10) was induced by 0.2% colchicine to produce diploid (2n = 20) and tetraploid plants (2n = 40). The aneuploid (2n = 24) was also obtained by hybridization between diploid plants as the female and tetraploid plants. The ploidy levels of all plants were identified through chromosome counts and flow cytometry. Leaves and petals became larger as the ploidy level increased from haploid to diploid, and from aneuploid to tetraploid. Similarly, expression of ARGOS was regulated by genome size, increasing in parallel with the level of ploidy. Among the four ploidy types, expression was stronger in the floral buds than in the leaves. Expression by ASY1 also differed according to ploidy level, being highest in diploid plants, followed in order by tetraploids. Expression was similar between haploids and aneuploids at two stages-prior to and after meiosis-but was higher in the haploids during meiosis. When buds were compared within the same ploidy type at different stages, ASY1 expression was obviously higher during meiosis than either before or after. Our study demonstrated the generation and phenotype of a ploidy Chinese cabbage series derived from one haploid. Expression of genes ARGOS and ASY1 were modulated by genome size in this ploidy series, and the regulated patterns of the two genes was different.
Collapse
Affiliation(s)
- Ai Xia Gu
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Jian Jun Zhao
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Li Min Li
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Yan Hua Wang
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Yu Jing Zhao
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Fan Hua
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Yuan Chao Xu
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| | - Shu Xing Shen
- College of Horticulture, Agricultural University of Hebei,
No. 289, Lingyusi Road, Baoding 071001,
China
| |
Collapse
|
20
|
Paz RC, Rendina González AP, Ferrer MS, Masuelli RW. Short-term hybridisation activates Tnt1 and Tto1 Copia retrotransposons in wild tuber-bearing Solanum species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:860-869. [PMID: 25556397 DOI: 10.1111/plb.12301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Interspecific hybridisation in tuber-bearing species of Solanum is a common phenomenon and represents an important source of variability, crucial for adaptation and speciation of potato species. In this regard, the effects of interspecific hybridisation on retrotransposon families present in the genomes, and their consequent effects on generation of genetic variability in wild tuber-bearing Solanum species, are poorly characterised. The aim of this study was to analyse the activity of retrotransposons in inter- and intraspecific hybrids between S. kurtzianum and S. microdontum, obtained by controlled crosses, and the effects on morphological, genetic and epigenetic variability. For genetic and epigenetic analysis, S-SAP (sequence-specific amplification polymorphism) and TMD (transposon methylation display) techniques were used, respectively, with specific primers for Tnt1 and Tto1 retrotransposon families (Order LTR, Superfamily Copia). The results indicate that at morphological level, interspecific hybrid genotypes differ from their parental species, whereas derived intraspecific hybrids do not. In both cases, we observed significant reductions in pollen grain viability, and a negative correlation with Tnt1 mobility. Both retrotransposons, Tto1 and Tnt1, were mobilised in the genotypes analysed, with mobility ranging from 0 to 7.8%. Furthermore, at the epigenetic level, demethylation was detected in the vicinity of Tnt1 and Tto1 in the hybrids compared with the parental genotypes. These patterns were positively correlated with the activity of the retrotransposons. The results suggest a possible mechanism through which hybridisation events generate genetic variability in tuber-bearing species of Solanum through retrotranposon activation.
Collapse
Affiliation(s)
- R C Paz
- Dpto. de Biología, Grupo INTERBIODES (Biological Interactions of Desert), CIGEOBIO (FCEFyN, UNSJ/CONICET), Rivadavia, San Juan, Argentina
| | - A P Rendina González
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - M S Ferrer
- Laboratorio de Biología Molecular, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - R W Masuelli
- Laboratorio de Biología Molecular, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), La Consulta, San Carlos, Mendoza, Argentina
| |
Collapse
|
21
|
Fan G, Wang L, Deng M, Niu S, Zhao Z, Xu E, Cao X, Zhang X. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing. Mol Genet Genomics 2015; 290:1627-38. [PMID: 25773315 DOI: 10.1007/s00438-015-1023-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/01/2015] [Indexed: 11/30/2022]
Abstract
Timber properties of autotetraploid Paulownia tomentosa are heritable with whole genome duplication, but the molecular mechanisms for the predominant characteristics remain unclear. To illuminate the genetic basis, high-throughput sequencing technology was used to identify the related unigenes. 2677 unigenes were found to be significantly differentially expressed in autotetraploid P. tomentosa. In total, 30 photosynthesis-related, 21 transcription factor-related, and 22 lignin-related differentially expressed unigenes were detected, and the roles of the peroxidase in lignin biosynthesis, MYB DNA-binding proteins, and WRKY proteins associated with the regulation of relevant hormones are extensively discussed. The results provide transcriptome data that may bring a new perspective to explain the polyploidy mechanism in the long growth cycle of plants and offer some help to the future Paulownia breeding.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan, China,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F. Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. FRONTIERS IN PLANT SCIENCE 2014; 5:738. [PMID: 25566305 PMCID: PMC4273617 DOI: 10.3389/fpls.2014.00738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/04/2014] [Indexed: 05/19/2023]
Abstract
Chrysanthemum is one of important ornamental species in the world. Its highly heterozygous state complicates molecular analysis, so it is of interest to derive haploid forms. A total of 2579 non-fertilized chrysanthemum ovules pollinated by Argyranthemum frutescens were cultured in vitro to isolate haploid progeny. One single regenerant emerged from each of three of the 105 calli produced. Chromosome counts and microsatellite fingerprinting showed that only one of the regenerants was a true haploid. Nine doubled haploid derivatives were subsequently generated by colchicine treatment of 80 in vitro cultured haploid nodal segments. Morphological screening showed that the haploid plant was shorter than the doubled haploids, and developed smaller leaves, flowers, and stomata. An in vitro pollen germination test showed that few of the haploid's pollen were able to germinate and those which did so were abnormal. Both the haploid and the doubled haploids produced yellow flowers, whereas those of the maternal parental cultivar were mauve. Methylation-sensitive amplification polymorphism (MSAP) profiling was further used to detect alterations in cytosine methylation caused by the haploidization and/or the chromosome doubling processes. While 52.2% of the resulting amplified fragments were cytosine methylated in the maternal parent's genome, the corresponding proportions for the haploid's and doubled haploids' genomes were, respectively, 47.0 and 51.7%, demonstrating a reduction in global cytosine methylation caused by haploidization and a partial recovery following chromosome doubling.
Collapse
Affiliation(s)
- Haibin Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & EquipmentNanjing, China
| | - Bin Dong
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & EquipmentNanjing, China
| |
Collapse
|
23
|
Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 2014; 1320:16-34. [PMID: 24903334 DOI: 10.1111/nyas.12466] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.
Collapse
|
24
|
|
25
|
Harbert RS, Brown AHD, Doyle JJ. Climate niche modeling in the perennial Glycine (Leguminosae) allopolyploid complex. AMERICAN JOURNAL OF BOTANY 2014; 101:710-721. [PMID: 24699543 DOI: 10.3732/ajb.1300417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PREMISE OF STUDY Polyploid plants, when compared with diploids, show similar molecular, morphological, physiological, and ecological tendencies across unrelated groups, but the degree to which these form "rules" of polyploid evolution are unclear. The Glycine (Leguminosae) allopolyploid complex affords the opportunity to test whether polyploidy in similar genetic backgrounds produces similar effects on geographical range or climatic space. METHODS We used information on locality presence of four closely related Glycine allopolyploid species and their diploid progenitors to build models of the potentially available Australian ranges based on climate using Maxent3.3.3k. Principal coordinate analysis was used to characterize the multidimensional climate space occupied by each species. KEY RESULTS Each of the four Glycine allopolyploids showed intermediacy in potential geographical space and in ecological space, relative to its diploid progenitors. The four allopolyploids did not have consistently larger ranges than their progenitors, though all four occupied a portion of climate niche space not available to its progenitors. The polyploids also differed in their exploitation of potentially available geographical range. Australian ranges and environmental space did not correlate with greater colonizing ability in these polyploids. CONCLUSIONS The four Glycine allopolyploids do not show many common range- or climate-related features, other than intermediacy. Thus, despite their similar genetic and evolutionary backgrounds, polyploidy has not produced convergent ecological effects.
Collapse
Affiliation(s)
- Robert S Harbert
- Cornell University, Department of Plant Biology, 412 Mann Library, Cornell University, Ithaca, New York 14853 USA
| | | | | |
Collapse
|
26
|
Yaish MW, Peng M, Rothstein SJ. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Methods Mol Biol 2014; 1062:285-98. [PMID: 24057373 DOI: 10.1007/978-1-62703-580-4_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.
Collapse
Affiliation(s)
- Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | | |
Collapse
|
27
|
Ge XH, Ding L, Li ZY. Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. PLANT CELL REPORTS 2013; 32:1661-73. [PMID: 23864197 DOI: 10.1007/s00299-013-1475-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/05/2023]
Abstract
Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.
Collapse
Affiliation(s)
- Xian-Hong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | |
Collapse
|
28
|
Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae). BMC Genet 2013; 14:75. [PMID: 24001221 PMCID: PMC3766241 DOI: 10.1186/1471-2156-14-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/27/2013] [Indexed: 01/28/2023] Open
Abstract
Background Natural polyploidy has played an important role during the speciation and evolution of vertebrates, including anurans, with more than 55 described cases. The species of the Phyllomedusa burmeisteri group are mostly characterized by having 26 chromosomes, but a karyotype with 52 chromosomes was described in P. tetraploidea. This species was found in sintopy with P. distincta in two localities of São Paulo State (Brazil), where triploid animals also occur, as consequence of natural hybridisation. We analyse the chromosomes of P. distincta, P. tetraploidea, and their triploid hybrids, to enlighten the origin of polyploidy and to obtain some evidence on diploidisation of tetraploid karyotype. Results Phyllomedusa distincta was 2n = 2x = 26, whereas P. tetraploidea was 2n = 4x = 52, and the hybrid individuals was 2n = 3x = 39. In meiotic phases, bivalents were observed in the diploid males, whereas both bivalents and tetravalents were observed in the tetraploid males. Univalents, bivalents or trivalents; metaphase II cells carrying variable number of chromosomes; and spermatids were detected in the testis preparations of the triploid males, indicating that the triploids were not completely sterile. In natural and experimental conditions, the triploids cross with the parental species, producing abnormal egg clutches and tadpoles with malformations. The embryos and tadpoles exhibited intraindividual karyotype variability and all of the metaphases contained abnormal constitutions. Multiple NORs, detected by Ag-impregnation and FISH with an rDNA probe, were observed on chromosome 1 in the three karyotypic forms; and, additionally, on chromosome 9 in the diploids, mostly on chromosome 8 in the tetraploids, and on both chromosome 8 and 9 in the triploids. Nevertheless, NOR-bearing chromosome 9 was detected in the tetraploids, and chromosome 9 carried active or inactive NORs in the triploids. C-banding, base-specific fluorochrome stainings with CMA3 and DAPI, FISH with a telomeric probe, and BrdU incorporation in DNA showed nearly equivalent patterns in the karyotypes of P. distincta, P. tetraploidea, and the triploid hybrids. Conclusions All the used cytogenetic techniques have provided strong evidence that the process of diploidisation, an essential step for stabilising the selective advantages produced by polyploidisation, is under way in distinct quartets of the tetraploid karyotype.
Collapse
|
29
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
30
|
Tayalé A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 2013; 140:79-96. [PMID: 23751271 DOI: 10.1159/000351318] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The last decade highlighted polyploidy as a rampant evolutionary process that triggers drastic genome reorganization, but much remains to be understood about their causes and consequences in both autopolyploids and allopolyploids. Here, we provide an overview of the current knowledge on the pathways leading to different types of polyploids and patterns of polyploidy-induced genome restructuring and functional changes in plants. Available evidence leads to a tentative 'diverge, merge and diverge' model supporting polyploid speciation and stressing patterns of divergence between diploid progenitors as a suitable predictor of polyploid genome reorganization. The merging of genomes at the origin of a polyploid lineage may indeed reveal different kinds of incompatibilities (chromosomal, genic and transposable elements) that have accumulated in diverging progenitors and reduce the fitness of nascent polyploids. Accordingly, successful polyploids have to overcome these incompatibilities through non-Mendelian mechanisms, fostering polyploid genome reorganization in association with the establishment of new lineages. See also sister article focusing on animals by Collares-Pereira et al., in this themed issue.
Collapse
Affiliation(s)
- A Tayalé
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
31
|
Rowe HC, Rieseberg LH. Genome-scale transcriptional analyses of first-generation interspecific sunflower hybrids reveals broad regulatory compatibility. BMC Genomics 2013; 14:342. [PMID: 23701699 PMCID: PMC3679827 DOI: 10.1186/1471-2164-14-342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 12/26/2022] Open
Abstract
Background Interspecific hybridization creates individuals harboring diverged genomes. The interaction of these genomes can generate successful evolutionary novelty or disadvantageous genomic conflict. Annual sunflowers Helianthus annuus and H. petiolaris have a rich history of hybridization in natural populations. Although first-generation hybrids generally have low fertility, hybrid swarms that include later generation and fully fertile backcross plants have been identified, as well as at least three independently-originated stable hybrid taxa. We examine patterns of transcript accumulation in the earliest stages of hybridization of these species via analyses of transcriptome sequences from laboratory-derived F1 offspring of an inbred H. annuus cultivar and a wild H. petiolaris accession. Results While nearly 14% of the reference transcriptome showed significant accumulation differences between parental accessions, total F1 transcript levels showed little evidence of dominance, as midparent transcript levels were highly predictive of transcript accumulation in F1 plants. Allelic bias in F1 transcript accumulation was detected in 20% of transcripts containing sufficient polymorphism to distinguish parental alleles; however the magnitude of these biases were generally smaller than differences among parental accessions. Conclusions While analyses of allelic bias suggest that cis regulatory differences between H. annuus and H. petiolaris are common, their effect on transcript levels may be more subtle than trans-acting regulatory differences. Overall, these analyses found little evidence of regulatory incompatibility or dominance interactions between parental genomes within F1 hybrid individuals, although it is unclear whether this is a legacy or an enabler of introgression between species.
Collapse
Affiliation(s)
- Heather C Rowe
- Botany Department, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
32
|
Sarilar V, Palacios PM, Rousselet A, Ridel C, Falque M, Eber F, Chèvre AM, Joets J, Brabant P, Alix K. Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids. THE NEW PHYTOLOGIST 2013; 198:593-604. [PMID: 23384044 DOI: 10.1111/nph.12156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/19/2012] [Indexed: 05/02/2023]
Abstract
The role played by whole-genome duplication (WGD) in evolution and adaptation is particularly well illustrated in allopolyploids, where WGD is concomitant with interspecific hybridization. This 'Genome Shock', usually accompanied by structural and functional modifications, has been associated with the activation of transposable elements (TEs). However, the impact of allopolyploidy on TEs has been studied in only a few polyploid species, and not in Brassica, which has been marked by recurrent polyploidy events. Here, we developed sequence-specific amplification polymorphism (SSAP) markers for three contrasting TEs, and compared profiles between resynthesized Brassica napus allotetraploids and their diploid Brassica progenitors. To evaluate restructuring at TE insertion sites, we scored changes in SSAP profiles and analysed a large set of differentially amplified SSAP bands. No massive structural changes associated with the three TEs surveyed were detected. However, several transposition events, specific to the youngest TE originating from the B. oleracea genome, were identified. Our study supports the hypothesis that TE responses to allopolyploidy are highly specific. The changes observed in SSAP profiles lead us to hypothesize that they may partly result from changes in DNA methylation, questioning the role of epigenetics during the formation of a new allopolyploid genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- CNRS, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Paulina Martinez Palacios
- Université Paris-Sud, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Agnès Rousselet
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Céline Ridel
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Matthieu Falque
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Frédérique Eber
- INRA, UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu Cedex, France
| | | | - Johann Joets
- INRA, UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Philippe Brabant
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| | - Karine Alix
- AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
- UMR 0320/8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
33
|
Zhang X, Ge X, Shao Y, Sun G, Li Z. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. PLoS One 2013; 8:e56346. [PMID: 23468861 PMCID: PMC3585313 DOI: 10.1371/journal.pone.0056346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023] Open
Abstract
Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.
Collapse
Affiliation(s)
- Xueli Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of Education, Wuhan, People’s Republic of China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, Canada
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
34
|
Yaakov B, Kashkush K. Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. PLANT MOLECULAR BIOLOGY 2012; 80:419-27. [PMID: 22933118 DOI: 10.1007/s11103-012-9957-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/16/2012] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they can account for up to 90 % of the genome, such as in wheat. The relationship between TEs and their hosts and the role of TEs in organismal biology are poorly understood. In this study, we have applied next generation sequencing, together with a transposon display technique in order to test whether a Stowaway-like MITE, termed Minos, transposes following allopolyploidization events in wheat. We have generated a 454-pyrosequencing database of Minos-specific amplicons (transposon display products) from a newly formed wheat allohexaploid and its parental lines and retrieved hundreds of novel MITE insertions in the allohexaploid. Clear mobilization of Minos was also seen by site-specific PCR analysis and sequence validation. In addition, using real-time qPCR analysis we observed an insignificant change in the relative quantity of Minos from the expected value of merging the two parental genomes, indicating that, despite its activation, no significant burst in Minos copy number can be seen in the newly formed allohexaploid. Interestingly, we found that CCGG sites surrounding Minos underwent massive hypermethylation following the allohexaploidization process. Our data suggest that MITEs have maintained their capacity for activity throughout the evolution of wheat and might be epigenetically deregulated in the first generations following allopolyploidization.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
35
|
Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 2012; 29:3601-11. [PMID: 22723303 PMCID: PMC3859920 DOI: 10.1093/molbev/mss168] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%-28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%-22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types.
Collapse
Affiliation(s)
- Mathieu Piednoël
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| | - Andre J. Aberer
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Gerald M. Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - Jiri Macas
- Institute of Plant Molecular Biology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Petr Novak
- Institute of Plant Molecular Biology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Heidrun Gundlach
- Institute for Bioinformatics and System Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Eva M. Temsch
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
36
|
Xu Y, Zhao Q, Mei S, Wang J. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata × Brassica rapa. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:734-44. [PMID: 22309095 DOI: 10.1111/j.1438-8677.2011.00553.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Allopolyploidisation is a prominent evolutionary force that involves two major events: interspecific hybridisation and genome doubling. Both events have important functional consequences in shaping the genomic architecture of the neo-allopolyploids. The respective effects of hybridisation and genome doubling upon genomic and transcriptomic changes in Brassica allopolyploids are unresolved. In this study, amplified fragment length polymorphism (AFLP), methylation-sensitive amplification polymorphism (MSAP) and cDNA-AFLP approaches were used to track genetic, epigenetic and transcriptional changes in both allohexaploid Brassica (ArArBcBcCcCc genome) and triploid hybrids (ArBcCc genome). Results from these groups were compared with each other and also to their parents Brassica carinata (BBCC genome) and Brassica rapa (AA genome). Rapid and dramatic genetic, DNA methylation and gene expression changes were detected in the triploid hybrids. During the shift from triploidy to allohexaploidy, some of the hybridisation-induced alterations underwent reversion. Additionally, novel genetic, epigenetic and transcriptional alterations were also detected. The proportions of A-genome-specific DNA methylation and gene expression alterations were significantly greater than those of BC-genome-specific alterations in the triploid hybrids. However, the two parental genomes were equally affected during the ploidy shift. Hemi-CCG methylation changes induced by hybridisation were recovered after genome doubling. Full-CG methylation changes were a more general process initiated in the hybrid and continued after genome doubling. These results indicate that genome doubling could ameliorate genomic and transcriptomic alterations induced by hybridisation and instigate additional alterations in trigenomic Brassica allohexaploids. Moreover, genome doubling also modified hybridisation-induced progenitor genome-biased alterations and epigenetic alteration characteristics.
Collapse
Affiliation(s)
- Y Xu
- Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou, Hubei, China Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Q Zhao
- Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou, Hubei, China Hubei Academy of Agricultural Sciences, Wuhan, China
| | - S Mei
- Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou, Hubei, China Hubei Academy of Agricultural Sciences, Wuhan, China
| | - J Wang
- Key Laboratory of the MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou, Hubei, China Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
37
|
Aversano R, Ercolano MR, Caruso I, Fasano C, Rosellini D, Carputo D. Molecular tools for exploring polyploid genomes in plants. Int J Mol Sci 2012; 13:10316-10335. [PMID: 22949863 PMCID: PMC3431861 DOI: 10.3390/ijms130810316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/16/2022] Open
Abstract
Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Maria Raffaella Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Immacolata Caruso
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Carlo Fasano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Daniele Rosellini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mail:
| | - Domenico Carputo
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| |
Collapse
|
38
|
Osabe K, Kawanabe T, Sasaki T, Ishikawa R, Okazaki K, Dennis ES, Kazama T, Fujimoto R. Multiple mechanisms and challenges for the application of allopolyploidy in plants. Int J Mol Sci 2012; 13:8696-8721. [PMID: 22942729 PMCID: PMC3430260 DOI: 10.3390/ijms13078696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022] Open
Abstract
An allopolyploid is an individual having two or more complete sets of chromosomes derived from different species. Generation of allopolyploids might be rare because of the need to overcome limitations such as co-existing populations of parental lines, overcoming hybrid incompatibility, gametic non-reduction, and the requirement for chromosome doubling. However, allopolyploids are widely observed among plant species, so allopolyploids have succeeded in overcoming these limitations and may have a selective advantage. As techniques for making allopolyploids are developed, we can compare transcription, genome organization, and epigenetic modifications between synthesized allopolyploids and their direct parental lines or between several generations of allopolyploids. It has been suggested that divergence of transcription caused either genetically or epigenetically, which can contribute to plant phenotype, is important for the adaptation of allopolyploids.
Collapse
Affiliation(s)
- Kenji Osabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Takahiro Kawanabe
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Taku Sasaki
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8510, Japan; E-Mail:
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK; E-Mail:
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata 950-2181, Japan; E-Mail:
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan; E-Mail:
| | - Ryo Fujimoto
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata 950-2181, Japan; E-Mail:
| |
Collapse
|
39
|
Ploidy and Hybridity Effects on Growth Vigor and Gene Expression in Arabidopsis thaliana Hybrids and Their Parents. G3-GENES GENOMES GENETICS 2012; 2:505-13. [PMID: 22540042 PMCID: PMC3337479 DOI: 10.1534/g3.112.002162] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022]
Abstract
Both ploidy and hybridity affect cell size and growth vigor in plants and animals, but the relative effects of genome dosage and hybridization on biomass, fitness, and gene expression changes have not been systematically examined. Here we performed the first comparative analysis of seed, cell, and flower sizes, starch and chlorophyll content, biomass, and gene expression changes in diploid, triploid, and tetraploid hybrids and their respective parents in three Arabidopsis thaliana ecotypes: Columbia, C24, and Landsberg erecta (Ler). Ploidy affects many morphological and fitness traits, including stomatal size, flower size, and seed weight, whereas hybridization between the ecotypes leads to altered expression of central circadian clock genes and increased starch and chlorophyll content, biomass, and seed weight. However, varying ploidy levels has subtle effects on biomass, circadian clock gene expression, and chlorophyll and starch content. Interestingly, biomass, starch content, and seed weight are significantly different between the reciprocal hybrids at all ploidy levels tested, with the lowest and highest levels found in the reciprocal triploid hybrids, suggesting parent-of-origin effects on biomass, starch content, and seed weight. These findings provide new insights into molecular events of polyploidy and heterosis, as well as complex agronomic traits that are important to biomass and seed production in hybrid and polyploid crops.
Collapse
|
40
|
Parisod C, Senerchia N. Responses of Transposable Elements to Polyploidy. PLANT TRANSPOSABLE ELEMENTS 2012. [DOI: 10.1007/978-3-642-31842-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
He F, Zhang X, Hu JY, Turck F, Dong X, Goebel U, Borevitz JO, de Meaux J. Widespread interspecific divergence in cis-regulation of transposable elements in the Arabidopsis genus. Mol Biol Evol 2011; 29:1081-91. [PMID: 22086904 DOI: 10.1093/molbev/msr281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are so abundant and variable that they count among the most important mutational sources in genomes. Nonetheless, little is known about the genetics of their variation in activity or silencing across closely related species. Here, we demonstrate that regulation of TE genes can differ dramatically between the two closely related Arabidopsis species A. thaliana and A. lyrata. In leaf and floral tissues of F1 interspecific hybrids, about 47% of TEs show allele-specific expression, with the A. lyrata copy being generally expressed at higher level. We confirm that TEs are generally expressed in A. lyrata but not in A. thaliana. Allele-specific differences in TE expression are associated with divergence in epigenetic modifications like DNA and histone methylation between species as well as with sequence divergence. Our data demonstrate that A. thaliana silences TEs much better than A. lyrata. For long terminal repeat retrotransposons, these differences are more pronounced for younger insertions. Interspecific differences in TE silencing may have a great impact on genome size changes.
Collapse
Affiliation(s)
- Fei He
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fujimoto R, Taylor JM, Sasaki T, Kawanabe T, Dennis ES. Genome wide gene expression in artificially synthesized amphidiploids of Arabidopsis. PLANT MOLECULAR BIOLOGY 2011; 77:419-31. [PMID: 21882042 DOI: 10.1007/s11103-011-9820-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/22/2011] [Indexed: 05/12/2023]
Abstract
The merging of two different genomes occurs during the formation of amphidiploids, and the merged regulatory networks have the potential to generate a new gene expression pattern. We examined the genome-wide gene expression of two newly synthesized amphidiploids between Arabidopsis thaliana and the related species Arabidopsis lyrata subsp. lyrata and Arabidopsis halleri subsp. gemmifera. 1,137 (4.7%) and 1,316 (5.4%) of probesets showed differential gene expression in A. thaliana-A. halleri and A. thaliana-A. lyrata hybrids respectively, compared to the mid parent value and of these, 489 were in common. Genes that differed in expression between the parental lines tended to have an expression level in both hybrids differing from the mid parent value. In contrast to protein coding genes, there is little differential expression of transposons. Genes in the categories of chloroplast-targeted and response to stress were overrepresented in the non-additively expressed genes in both amphidiploids. As these genes have the potential to contribute directly to the plant phenotype, we suggest that rapid changes of gene expression in amphidiploids might be important for producing greater biomass.
Collapse
Affiliation(s)
- Ryo Fujimoto
- CSIRO Plant Industry, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
43
|
Jiang B, Lou Q, Wu Z, Zhang W, Wang D, Mbira KG, Weng Y, Chen J. Retrotransposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride. PLANT MOLECULAR BIOLOGY 2011; 77:225-33. [PMID: 21805197 DOI: 10.1007/s11103-011-9804-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/27/2011] [Indexed: 05/25/2023]
Abstract
Allopolyploidization is considered an essential evolutionary process in plants that could trigger genomic shock in allopolyploid genome through activation of transcription of retrotransposons, which may be important in plant evolution. Two retrotransposon-based markers, inter-retrotransposon amplified polymorphism and retrotransposon-microsatellite amplified polymorphism and a microsatellite-based marker, inter simple sequence repeat were employed to investigate genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride (2n = 4x = 38) which was derived from crossing between cultivated cucumber C. sativus L. (2n = 2x = 14) and its wild relative C. hystrix Chakr. (2n = 2x = 24). Extensive genomic changes were observed, most of which involved the loss of parental DNA fragments and gain of novel fragments in the allotetraploid. Among the 28 fragments examined, 24 were lost while four were novel, suggesting that DNA sequence elimination is a relatively frequent event during polyploidization in Cucumis. Interestingly, of the 24 lost fragments, 18 were of C. hystrix origin, four were C. sativus-specific, and the remaining two were shared by both species, implying that fragment loss may be correlated with haploid DNA content (genome size) of diploid parents. Most changes were observed in the first generation after polyploidization (S(1)) and stably inherited in the subsequent three generations (S(2)-S(4)), indicating that genomic changes might be a rapid driving force for the stabilization of allotetraploids. Sequence analysis of 11 of the 28 altered DNA fragments showed that genomic changes in the allotetraploid occurred in both coding and non-coding regions, which might suggest that retrotransposons inserted into genome randomly and had a genome-wide effect on the allotetraploid evolution. Fluorescence in situ hybridization (FISH) analysis revealed a unique distribution of retrotransposon and/or microsatellite flanking sequences in mitotic and meiotic chromosomes, where the preferential FISH signals occurred in the centromeric and telomeric regions, implying that these regions were the possible hotspots for genomic changes.
Collapse
Affiliation(s)
- Biao Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Southern Vegetable Crop Genetic Improvement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 2011; 28:2843-54. [PMID: 21512105 DOI: 10.1093/molbev/msr112] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We used next generation sequencing to characterize and compare the genomes of the recently derived allotetraploid, Nicotiana tabacum (<200,000 years old), with its diploid progenitors, Nicotiana sylvestris (maternal, S-genome donor), and Nicotiana tomentosiformis (paternal, T-genome donor). Analysis of 14,634 repetitive DNA sequences in the genomes of the progenitor species and N. tabacum reveal all major types of retroelements found in angiosperms (genome proportions range between 17-22.5% and 2.3-3.5% for Ty3-gypsy elements and Ty1-copia elements, respectively). The diploid N. sylvestris genome exhibits evidence of recent bursts of sequence amplification and/or homogenization, whereas the genome of N. tomentosiformis lacks this signature and has considerably fewer homogenous repeats. In the derived allotetraploid N. tabacum, there is evidence of genome downsizing and sequences loss across most repeat types. This is particularly evident amongst the Ty3-gypsy retroelements in which all families identified are underrepresented in N. tabacum, as is 35S ribosomal DNA. Analysis of all repetitive DNA sequences indicates the T-genome of N. tabacum has experienced greater sequence loss than the S-genome, revealing preferential loss of paternally derived repetitive DNAs at a genome-wide level. Thus, the three genomes of N. sylvestris, N. tomentosiformis, and N. tabacum have experienced different evolutionary trajectories, with genomes that are dynamic, stable, and downsized, respectively.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xu SX, Cai XD, Tan B, Li DL, Guo WW. Effect of ploidy increase on transgene expression: example from Citrus diploid cybrid and allotetraploid somatic hybrid expressing the EGFP gene. PROTOPLASMA 2011; 248:531-540. [PMID: 20734092 DOI: 10.1007/s00709-010-0200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from 'Murcott' tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic 'Valencia' orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy level conversion can affect transgene expression and citrus diploid cybrid and allotetraploid somatic hybrid represents another example of gene regulation coupled to ploidy.
Collapse
Affiliation(s)
- Shi-Xiao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
46
|
Dong S, Adams KL. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. THE NEW PHYTOLOGIST 2011; 190:1045-1057. [PMID: 21361962 DOI: 10.1111/j.1469-8137.2011.03650.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout plant evolution and can result in considerable changes to gene expression when it takes place and over evolutionary time. Little is known about the effects of abiotic stress conditions on duplicate gene expression patterns in polyploid plants. We examined the expression patterns of 60 duplicated genes in leaves, roots and cotyledons of allotetraploid Gossypium hirsutum in response to five abiotic stress treatments (heat, cold, drought, high salt and water submersion) using single-strand conformation polymorphism assays, and 20 genes in a synthetic allotetraploid. Over 70% of the genes showed stress-induced changes in the relative expression levels of the duplicates under one or more stress treatments with frequent variability among treatments. Twelve pairs showed opposite changes in expression levels in response to different abiotic stress treatments. Stress-induced expression changes occurred in the synthetic allopolyploid, but there was little correspondence in patterns between the natural and synthetic polyploids. Our results indicate that abiotic stress conditions can have considerable effects on duplicate gene expression in a polyploid, with the effects varying by gene, stress and organ type. Differential expression in response to environmental stresses may be a factor in the preservation of some duplicated genes in polyploids.
Collapse
Affiliation(s)
- Shaowei Dong
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Plant Science Graduate Program, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Keith L Adams
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Plant Science Graduate Program, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
47
|
Yaakov B, Kashkush K. Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:569826. [PMID: 21760771 PMCID: PMC3134107 DOI: 10.1155/2011/569826] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/15/2011] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) constitute over 90% of the wheat genome. It was suggested that "genomic stress" such as hybridity or polyploidy might activate transposons. Intensive investigations of various polyploid systems revealed that allopolyploidization event is associated with widespread changes in genome structure, methylation, and expression involving low- and high-copy, coding and noncoding sequences. Massive demethylation and transcriptional activation of TEs were also observed in newly formed allopolyploids. Massive proliferation, however, was reported for very limited number of TE families in various polyploidy systems. The aim of this review is to summarize the accumulated data on genetic and epigenetic dynamics of TEs, particularly in synthetic allotetraploid and allohexaploid wheat species. In addition, the underlying mechanisms and the potential biological significance of TE dynamics following allopolyploidization are discussed.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
48
|
Genome reprogramming and small interfering RNA in the Arabidopsis germline. Curr Opin Genet Dev 2011; 21:134-9. [PMID: 21330131 DOI: 10.1016/j.gde.2011.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/18/2011] [Indexed: 12/31/2022]
Abstract
The movement of mobile small RNA signals between cells has garnered much interest over the last few years, and has recently been extended to germ cells during gamete development. Focusing on plants, we review mobile RNA signals that arise following reprogramming in the germline, and their effect on transposable element silencing on the one hand and on meiotic and apomictic germ cell fate on the other. A potential role for reprogramming and small RNA in hybrid formation and speciation is proposed.
Collapse
|
49
|
Kawakami T, Dhakal P, Katterhenry AN, Heatherington CA, Ungerer MC. Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Genome Biol Evol 2011; 3:156-67. [PMID: 21282712 PMCID: PMC3048363 DOI: 10.1093/gbe/evr005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species have undergone large-scale increases in genome size attributable to long terminal repeat (LTR) retrotransposon proliferation. The parental species that gave rise to the hybrid taxa are widely distributed, often sympatric, and contemporary hybridization between them is common. Natural H. annuus × H. petiolaris hybrid populations likely served as source populations from which the hybrid species arose and, as such, represent excellent natural experiments for examining the potential role of hybridization in transposable element derepression and proliferation in this group. In the current report, we examine multiple H. annuus × H. petiolaris hybrid populations for evidence of genome expansion, LTR retrotransposon copy number increases, and LTR retrotransposon transcriptional activity. We demonstrate that genome expansion and LTR retrotransposon proliferation are rare in contemporary hybrid populations, despite independent proliferation events that took place in the genomes of the ancient hybrid species. Interestingly, LTR retrotransposon lineages that proliferated in the hybrid species genomes remain transcriptionally active in hybrid and nonhybrid genotypes across the entire sampling area. The finding of transcriptional activity but not copy number increases in hybrid genotypes suggests that proliferation and genome expansion in contemporary hybrid populations may be mitigated by posttranscriptional mechanisms of repression.
Collapse
|
50
|
Sasaki T, Fujimoto R, Kishitani S, Nishio T. Analysis of target sequences of DDM1s in Brassica rapa by MSAP. PLANT CELL REPORTS 2011; 30:81-8. [PMID: 21072521 DOI: 10.1007/s00299-010-0946-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 05/08/2023]
Abstract
DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.
Collapse
Affiliation(s)
- Taku Sasaki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | | | | | | |
Collapse
|