1
|
Botticella E, Savatin DV, Sestili F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High Fiber Grains. FRONTIERS IN PLANT SCIENCE 2021; 12:745579. [PMID: 34594354 PMCID: PMC8477015 DOI: 10.3389/fpls.2021.745579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Cereals represent an important source of beneficial compounds for human health, such as macro- and micronutrients, vitamins, and bioactive molecules. Generally, the consumption of whole-grain products is associated with significant health benefits, due to the elevated amount of dietary fiber (DF). However, the consumption of whole-grain foods is still modest compared to more refined products. In this sense, it is worth focusing on the increase of DF fractions inside the inner compartment of the seed, the endosperm, which represents the main part of the derived flour. The main components of the grain fiber are arabinoxylan (AX), β-glucan (βG), and resistant starch (RS). These three components are differently distributed in grains, however, all of them are represented in the endosperm. AX and βG, classified as non-starch polysaccharides (NSP), are in cell walls, whereas, RS is in the endosperm, being a starch fraction. As the chemical structure of DFs influences their digestibility, the identification of key actors involved in their metabolism can pave the way to improve their function in human health. Here, we reviewed the main achievements of plant biotechnologies in DFs manipulation in cereals, highlighting new genetic targets to be exploited, and main issues to face to increase the potential of cereals in fighting malnutrition.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
2
|
Botticella E, Pucci A, Sestili F. Molecular characterisation of two novel starch granule proteins 1 in wild and cultivated diploid A genome wheat species. JOURNAL OF PLANT RESEARCH 2018; 131:487-496. [PMID: 29260339 DOI: 10.1007/s10265-017-1005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Starch synthase IIa, also known as starch granule protein 1 (SGP-1), plays a key role in amylopectin biosynthesis. The absence of SGP-1 in cereal grains is correlated to dramatic changes in the grains' starch content, structure, and composition. An extensive investigation of starch granule proteins in this study revealed a polymorphism in the electrophoretic mobility of SGP-1 between two species of wheat, Triticum urartu and T. monococcum; this protein was, however, conserved among all other Triticum species that share the A genome inherited from their progenitor T. urartu. Two different electrophoretic profiles were identified: SGP-A1 proteins of T. urartu accessions had a SDS-PAGE mobility similar to those of tetraploid and hexaploid wheat species; conversely, SGP-A1 proteins of T. monococcum ssp. monococcum and ssp. boeoticum accessions showed a different electrophoretic mobility. The entire coding region of the two genes was isolated and sequenced in an attempt to explain the polymorphism identified. Several single nucleotide polymorphisms (SNPs) responsible for amino acid changes were identified, but no indel polymorphism was observed to explain the difference in electrophoretic mobility. Amylose content did not differ significantly among T. urartu, T. monococcum ssp. boeoticum and T. monococcum ssp. monococcum, except in one accession of the ssp. boeoticum. Conversely, several interspecific differences were observed in viscosity properties (investigated as viscosity profiles using a rapid visco analyzer-RVA profiles) of these cereal grains. T. monococcum ssp. boeoticum accessions had the lowest RVA profiles, T. urartu accessions had an intermediate RVA profile, whereas T. monococcum ssp. monococcum showed the highest RVA profile. These differences could be associated with the numerous amino acid and structural changes evident among the SGP-1 proteins.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Department of Agriculture and Forestry Sciences, University of Tuscia, Via S. Camillo de Lellis SNC, Viterbo, Italy
| | - Anna Pucci
- Department of Agriculture and Forestry Sciences, University of Tuscia, Via S. Camillo de Lellis SNC, Viterbo, Italy
| | - Francesco Sestili
- Department of Agriculture and Forestry Sciences, University of Tuscia, Via S. Camillo de Lellis SNC, Viterbo, Italy.
| |
Collapse
|
3
|
Chen L, Lu D, Wang T, Li Z, Zhao Y, Jiang Y, Zhang Q, Cao Q, Fang K, Xing Y, Qin L. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons. PLoS One 2017; 12:e0177792. [PMID: 28542293 PMCID: PMC5441625 DOI: 10.1371/journal.pone.0177792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alternative food source and acts as an important commercial nut tree in China. Starch is the major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumulation of total starch and amylopectin showed a similar increasing trend during the development of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after pollination (DAP). The increase of total starch mainly results from amylopectin synthesis. Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme) showed significant increase during nut development. Two starch branching enzyme isoforms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut development. The accumulations of CmSBE transcripts and proteins in developing cotyledons were characterized. The expressions of two CmSBE genes increased from 64 DAP and reached the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influenced the amylopectin content in the developing cotyledon, which would be beneficial to chestnut germplasm selection and breeding.
Collapse
Affiliation(s)
- Liangke Chen
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Dan Lu
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Teng Wang
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Zhi Li
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Yanyan Zhao
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Yichen Jiang
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
| | - Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Qingqin Cao
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing, China
| | - Kefeng Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
- * E-mail: (YX); (LQ)
| | - Ling Qin
- College of Plant Science and Technology, Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing, China
- * E-mail: (YX); (LQ)
| |
Collapse
|
4
|
Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra D. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:127-133. [PMID: 25711820 DOI: 10.1016/j.plantsci.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 05/20/2023]
Abstract
The amylose/amylopectin ratio has a major influence over the properties of starch and determines its optimal end use. Here, high amylose durum wheat has been bred by combining knock down alleles at the two homoelogous genes encoding starch branching enzyme IIa (SBEIIa-A and SBEIIa-B). The complete silencing of these genes had a number of pleiotropic effects on starch synthesis: it affected the transcriptional activity of SBEIIb, ISA1 (starch debranching enzyme) and all of the genes encoding starch synthases (SSI, SSIIa, SSIII and GBSSI). The starch produced by grain of the double SBEIIa mutants was high in amylose (up to ∼1.95 fold that of the wild type) and contained up to about eight fold more resistant starch. A single nucleotide polymorphism adjacent to the splice site at the end of exon 10 of the G364E mutant copies of both SBEIIa-A and SBEIIa-B resulted in the loss of a conserved exonic splicing silencer element. Its starch was similar to that of the SBEIIa double mutant. G364E SBEIIa pre-mRNA was incorrectly processed, resulting in the formation of alternative, but non-functional splicing products.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Samuela Palombieri
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Ermelinda Botticella
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Paola Mantovani
- Società Produttori Sementi Spa, Via Macero 1, 40050 Argelato, Bologna, Italy.
| | - Riccardo Bovina
- Società Produttori Sementi Spa, Via Macero 1, 40050 Argelato, Bologna, Italy; Department of Agricultural Science (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Domenico Lafiandra
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| |
Collapse
|
5
|
Wilhelm EP, Howells RM, Al-Kaff N, Jia J, Baker C, Leverington-Waite MA, Griffiths S, Greenland AJ, Boulton MI, Powell W. Genetic characterization and mapping of the Rht-1 homoeologs and flanking sequences in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1321-36. [PMID: 23381809 DOI: 10.1007/s00122-013-2055-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/20/2013] [Indexed: 05/18/2023]
Abstract
The introgression of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties beginning in the 1960s led to improved lodging resistance and yield, providing a major contribution to the 'green revolution'. Although wheat Rht-1 and surrounding sequence is available, the genetic composition of this region has not been examined in a homoeologous series. To determine this, three Rht-1-containing bacterial artificial chromosome (BAC) sequences derived from the A, B, and D genomes of the bread wheat variety Chinese Spring (CS) were fully assembled and analyzed. This revealed that Rht-1 and two upstream genes were highly conserved among the homoeologs. In contrast, transposable elements (TEs) were not conserved among homoeologs with the exception of intronic miniature inverted-repeat TEs (MITEs). In relation to the Triticum urartu ancestral line, CS-A genic sequences were highly conserved and several colinear TEs were present. Comparative analysis of the CS wheat BAC sequences with assembled Poaceae genomes showed gene synteny and amino acid sequences were well preserved. Further 5' and 3' of the wheat BAC sequences, a high degree of gene colinearity is present among the assembled Poaceae genomes. In the 20 kb of sequence flanking Rht-1, five conserved non-coding sequences (CNSs) were present among the CS wheat homoeologs and among all the Poaceae members examined. Rht-A1 was mapped to the long arm of chromosome 4 and three closely flanking genetic markers were identified. The tools developed herein will enable detailed studies of Rht-1 and linked genes that affect abiotic and biotic stress response in wheat.
Collapse
Affiliation(s)
- Edward P Wilhelm
- National Institute of Agricultural Botany, Huntingdon Rd., Cambridge CB3 0LE, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|