1
|
A Y K, E M, R B, E M, M D, L C, F D. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. FRONTIERS IN PLANT SCIENCE 2024; 15:1390401. [PMID: 39253571 PMCID: PMC11381284 DOI: 10.3389/fpls.2024.1390401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Wheat grain yield is a complex trait resulting from a trade-off among many distinct components. During wheat evolution, domestication events and then modern breeding have strongly increased the yield potential of wheat plants, by enhancing spike fertility. To address the genetic bases of spike fertility in terms of spikelet number per spike and floret number per spikelet, a population of 110 recombinant inbred lines (RILS) obtained crossing a Triticum turgidum ssp. durum cultivar (Latino) and a T. dicoccum accession (MG5323) was exploited. Being a modern durum and a semi-domesticated genotype, respectively, the two parents differ for spike architecture and fertility, and thus the corresponding RIL population is the ideal genetic material to dissect genetic bases of yield components. The RIL population was phenotyped in four environments. Using a high-density SNP genetic map and taking advantage of several genome sequencing available for Triticeae, a total of 94 QTLs were identified for the eight traits considered; these QTLs were further reduced to 17 groups, based on their genetic and physical co-location. QTLs controlling floret number per spikelet and spikelet number per spike mapped in non-overlapping chromosomal regions, suggesting that independent genetic factors determine these fertility-related traits. The physical intervals of QTL groups were considered for possible co-location with known genes functionally involved in spike fertility traits and with yield-related QTLs previously mapped in tetraploid wheat. The most interesting result concerns a QTL group on chromosome 5B, associated with spikelet number per spike, since it could host genes still uncharacterized for their association to spike fertility. Finally, we identified two different regions where the trade-off between fertility related traits and kernel weight is overcome. Further analyses of these regions could pave the way for a future identification of new genetic loci contributing to fertility traits essential for yield improvement in durum wheat.
Collapse
Affiliation(s)
- Kiros A Y
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mica E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Battaglia R
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Mazzucotelli E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Dell'Acqua M
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cattivelli L
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Desiderio F
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
2
|
Wang J, Wang E, Cheng S, Ma A. Identification of molecular markers and candidate regions associated with grain number per spike in Pubing3228 using SLAF-BSA. FRONTIERS IN PLANT SCIENCE 2024; 15:1361621. [PMID: 38504905 PMCID: PMC10948542 DOI: 10.3389/fpls.2024.1361621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Grain number per spike, a pivotal agronomic trait dictating wheat yield, lacks a comprehensive understanding of its underlying mechanism in Pubing3228, despite the identification of certain pertinent genes. Thus, our investigation sought to ascertain molecular markers and candidate regions associated with grain number per spike through a high-density genetic mapping approach that amalgamates site-specific amplified fragment sequencing (SLAF-seq) and bulked segregation analysis (BSA). To facilitate this, we conducted a comparative analysis of two wheat germplasms, Pubing3228 and Jing4839, known to exhibit marked discrepancies in spike shape. By leveraging this methodology, we successfully procured 2,810,474 SLAF tags, subsequently resulting in the identification of 187,489 single nucleotide polymorphisms (SNPs) between the parental strains. We subsequently employed the SNP-index association algorithm alongside the extended distribution (ED) association algorithm to detect regions associated with the trait. The former algorithm identified 24 trait-associated regions, whereas the latter yielded 70. Remarkably, the intersection of these two algorithms led to the identification of 25 trait-associated regions. Amongst these regions, we identified 399 annotated genes, including three genes harboring non-synonymous mutant SNP loci. Notably, the APETALA2 (AP2) transcription factor families, which exhibited a strong correlation with spike type, were also annotated. Given these findings, it is plausible to hypothesize that these genes play a critical role in determining spike shape. In summation, our study contributes significant insights into the genetic foundation of grain number per spike. The molecular markers and candidate regions we have identified can be readily employed for marker-assisted breeding endeavors, ultimately leading to the development of novel wheat cultivars possessing enhanced yield potential. Furthermore, conducting further functional analyses on the identified genes will undoubtedly facilitate a comprehensive elucidation of the underlying mechanisms governing spike development in wheat.
Collapse
Affiliation(s)
- Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Erwei Wang
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, China
| | - Shiping Cheng
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Aichu Ma
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, China
| |
Collapse
|
3
|
Zhao D, Hu W, Fang Z, Cheng X, Liao S, Fu L. Two QTL regions for spike length showing pleiotropic effects on Fusarium head blight resistance and thousand-grain weight in bread wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:82. [PMID: 37974900 PMCID: PMC10645863 DOI: 10.1007/s11032-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Spike length (SL) plays an important role in the yield improvement of wheat and is significantly associated with other traits. Here, we used a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) to construct a genetic linkage map and identify quantitative trait loci (QTL) for SL. A total of 5 QTL were identified for SL, among which QSl.yaas-3A and QSl.yaas-5B are two novel QTL for SL. The YZ1 alleles at QSl.yaas-2D and QSl.yaas-5A, and the YM12 alleles at QSl.yaas-2A, QSl.yaas-3A, and QSl.yaas-5B conferred increasing SL effects. Two major QTL QSl.yaas-5A and QSl.yaas-5B explained 9.11-15.85% and 9.01-12.85% of the phenotypic variations, respectively. Moreover, the positive alleles of QSl.yaas-5A and QSl.yaas-5B could significantly increase Fusarium head blight (FHB) resistance (soil surface inoculation and spray inoculation were used) and thousand-grain weight (TGW) in the RIL population. Kompetitive allele-specific PCR (KASP) markers for QSl.yaas-5A and QSl.yaas-5B were developed and validated in an additional panel of 180 wheat cultivars/lines. The cultivars/lines harboring both the positive alleles of QSl.yaas-5A and QSl.yaas-5B accounted for only 28.33% of the validation populations and had the longest SL, best FHB resistance (using spray inoculation), and highest TGW. A total of 358 and 200 high-confidence annotated genes in QSl.yaas-5A and QSl.yaas-5B were identified, respectively. Some of the genes in these two regions were involved in cell development, disease resistance, and so on. The results of this study will provide a basis for directional breeding of longer SL, higher TGW, and better FHB resistance varieties and a solid foundation for fine-mapping QSl.yaas-5A and QSl.yaas-5B in future. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01427-8.
Collapse
Affiliation(s)
- Die Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Wenjing Hu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Zhengwu Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Xiaoming Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Sen Liao
- Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Luping Fu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
4
|
Wang M, Lu J, Liu R, Li Y, Ao D, Wu Y, Zhang L. Identification and validation of a major quantitative trait locus for spike length and compactness in the wheat ( Triticum aestivum L.) line Chuanyu12D7. FRONTIERS IN PLANT SCIENCE 2023; 14:1186183. [PMID: 37469784 PMCID: PMC10353862 DOI: 10.3389/fpls.2023.1186183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Spike length (SL) and spike compactness (SC) are crucial traits related to wheat (Triticum aestivum L.) yield potential. In this study, a backcrossed inbred lines (BILs) population segregating for SL/SC was developed by using a commercial variety chuanyu25 as recurrent parent and a backbone parent Chuanyu12D7. Bulked segregant analysis (BSA) combined with the Wheat 660K SNP array was performed to conduct quantitative trait locus (QTL) mapping. A major and stable SL/SC QTL (designated as QSl/Sc.cib-2D.1) was identified on chromosome 2DS, explaining 45.63-59.72% of the phenotypic variation. QSl/Sc.cib-2D.1 was mapped to a 102.29-Kb interval by flanking SNPs AX-110276364 and AX-111593853 using a BC4F2:3 population. Since QSl/Sc.cib-2D.1 is linked to the Rht8 gene, their additive effects on plant type and spike type were analysed. Remarkably, the superior allele of QSl/Sc.cib-2D.1 combined with Rht8 can increase SL and TGW, and decrese SC without any apparent trade-offs in other yield-related traits. In addition, the closely linked kompetitive allele-specific PCR (KASP) markers of this locus were developed for marker-assisted selection (MAS) breeding. Four genes within the physical interval were considered as potential candidates based on expression patterns as well as orthologous gene functions. These results laid the foundation for map-based cloning of the gene(s) underlying QSl/Sc.cib-2D.1 and its potential application in wheat ideotype breeding.
Collapse
Affiliation(s)
- Mingxiu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- Department of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Yunfang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Donghui Ao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
5
|
Ma C, Liu L, Liu T, Jia Y, Jiang Q, Bai H, Ma S, Li S, Wang Z. QTL Mapping for Important Agronomic Traits Using a Wheat55K SNP Array-Based Genetic Map in Tetraploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:847. [PMID: 36840195 PMCID: PMC9964379 DOI: 10.3390/plants12040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Wheat yield is highly correlated with plant height, heading date, spike characteristics, and kernel traits. In this study, we used the wheat55K single nucleotide polymorphism array to genotype a recombinant inbred line population of 165 lines constructed by crossing two tetraploid wheat materials, Icaro and Y4. A genetic linkage map with a total length of 6244.51 cM was constructed, covering 14 chromosomes of tetraploid wheat. QTLs for 12 important agronomic traits, including plant height (PH), heading date (HD), awn color (AC), spike-branching (SB), and related traits of spike and kernel, were mapped in multiple environments, while combined QTL-by-environment interactions and epistatic effects were analyzed for each trait. A total of 52 major or stable QTLs were identified, among which may be some novel loci controlling PH, SB, and kernel length-width ratio (LWR), etc., with LOD values ranging from 2.51 to 54.49, thereby explaining 2.40-66.27% of the phenotypic variation. Based on the 'China Spring' and durum wheat reference genome annotations, candidate genes were predicted for four stable QTLs, QPH.nwafu-2B.2 (165.67-166.99 cM), QAC.nwafu-3A.1 (419.89-420.52 cM), QAC.nwafu-4A.1 (424.31-447.4 cM), and QLWR.nwafu-7A.1 (166.66-175.46 cM). Thirty-one QTL clusters and 44 segregation distortion regions were also detected, and 38 and 18 major or stable QTLs were included in these clusters and segregation distortion regions, respectively. These results provide QTLs with breeding application potential in tetraploid wheat that broadens the genetic basis of important agronomic traits such as PH, HD, AC, SB, etc., and benefits wheat breeding.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Le Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yatao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Haibo Bai
- Agricultural Bio-Technology Research Center, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Sishuang Ma
- Agricultural Bio-Technology Research Center, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Shuhua Li
- Agricultural Bio-Technology Research Center, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Gill HS, Halder J, Zhang J, Rana A, Kleinjan J, Amand PS, Bernardo A, Bai G, Sehgal SK. Whole-genome analysis of hard winter wheat germplasm identifies genomic regions associated with spike and kernel traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2953-2967. [PMID: 35939073 DOI: 10.1007/s00122-022-04160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Genetic dissection of yield component traits including spike and kernel characteristics is essential for the continuous improvement in wheat yield. Genome-wide association studies (GWAS) have been frequently used to identify genetic determinants for spike and kernel-related traits in wheat, though none have been employed in hard winter wheat (HWW) which represents a major class in US wheat acreage. Further, most of these studies relied on assembled diversity panels instead of adapted breeding lines, limiting the transferability of results to practical wheat breeding. Here we assembled a population of advanced/elite breeding lines and well-adapted cultivars and evaluated over four environments for phenotypic analysis of spike and kernel traits. GWAS identified 17 significant multi-environment marker-trait associations (MTAs) for various traits, representing 12 putative quantitative trait loci (QTLs), with five QTLs affecting multiple traits. Four of these QTLs mapped on three chromosomes 1A, 5B, and 7A for spike length, number of spikelets per spike (NSPS), and kernel length are likely novel. Further, a highly significant QTL was detected on chromosome 7AS that has not been previously associated with NSPS and putative candidate genes were identified in this region. The allelic frequencies of important quantitative trait nucleotides (QTNs) were deduced in a larger set of 1,124 accessions which revealed the importance of identified MTAs in the US HWW breeding programs. The results from this study could be directly used by the breeders to select the lines with favorable alleles for making crosses, and reported markers will facilitate marker-assisted selection of stable QTLs for yield components in wheat breeding.
Collapse
Affiliation(s)
- Harsimardeep S Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Anshul Rana
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jonathan Kleinjan
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
7
|
Yu Q, Feng B, Xu Z, Fan X, Zhou Q, Ji G, Liao S, Gao P, Wang T. Genetic Dissection of Three Major Quantitative Trait Loci for Spike Compactness and Length in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:882655. [PMID: 35677243 PMCID: PMC9168683 DOI: 10.3389/fpls.2022.882655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Spike compactness (SC) and length (SL) are the components of spike morphology and are strongly related to grain yield in wheat (Triticum aestivum L.). To investigate quantitative trait loci (QTL) associated with SC and SL, a recombinant inbred lines (RIL) population derived from the cross of Bailangmai (BLM, a Tibet landrace) and Chuanyu 20 (CY20, an improved variety) was employed in six environments. Three genomic regions responsible for SC and SL traits were identified on chromosomes 2A and 2D using bulked segregant exome sequencing (BSE-Seq). By constructing genetic maps, six major QTL were repeatedly detected in more than four environments and the best linear unbiased estimation (BLUE) datasets, explaining 7.00-28.56% of the phenotypic variation and the logarithm of the odd (LOD) score varying from 2.50 to 13.22. They were co-located on three loci, designed as QSc/Sl.cib-2AS, QSc/Sl.cib-2AL, and QSc/Sl.cib-2D, respectively. Based on the flanking markers, their interactions and effects on the corresponding trait and other agronomic traits were also analyzed. Comparison analysis showed that QSc/Sl.cib-2AS and QSc/Sl.cib-2AL were possibly two novel loci for SC and SL. QSc/Sl.cib-2AS and QSc/Sl.cib-2D showed pleiotropic effects on plant height and grain morphology, while QSc/Sl.cib-2AL showed effects on spikelet number per spike (SNS) and grain width (GW). Based on the gene annotation, orthologous search, and spatiotemporal expression patterns of genes, TraesCS2A03G0410600 and TraesCS2A03G0422300 for QSc/Sl.cib-2AS, and TraesCS2D03G1129300 and TraesCS2D03G1131500 for QSc/Sl.cib-2D were considered as potential candidate genes, respectively. These results will be useful for fine mapping and developing new varieties with high yield in the future.
Collapse
Affiliation(s)
- Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
You J, Liu H, Wang S, Luo W, Gou L, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Peng Y, Tang L, Habib A, Wei Y, Zheng Y, Lan X, Ma J. Spike Density Quantitative Trait Loci Detection and Analysis in Tetraploid and Hexaploid Wheat Recombinant Inbred Line Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:796397. [PMID: 34975986 PMCID: PMC8716915 DOI: 10.3389/fpls.2021.796397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 05/15/2023]
Abstract
Spike density (SD) is an agronomically important character in wheat. In addition, an optimized spike structure is a key basis for high yields. Identification of quantitative trait loci (QTL) for SD has provided a genetic basis for constructing ideal spike morphologies in wheat. In this study, two recombinant inbred line (RIL) populations (tetraploid RIL AM and hexaploid RIL 20828/SY95-71 (2SY)) previously genotyped using the wheat55K SNP array were used to identify SD QTL. A total of 18 QTL were detected, and three were major and one was stably expressed (QSd.sau-2SY-7A.2, QSd.sau-AM-5A.2, QSd.sau-AM-7B, and QSd.sau-2SY-2D). They can explain up to 23.14, 19.97, 12.00, and 9.44% of phenotypic variation, respectively. QTL × environment and epistatic interactions for SD were further analyzed. In addition, pyramiding analysis further revealed that there were additive effects between QSd.sau-2SY-2D and QSd.sau-2SY-7A.2 in 2SY, and QSd.sau-AM-5A.2 and QSd.sau-AM-7B in AM. Pearson's correlation between SD and other agronomic traits, and effects of major or stable QTL on yield related traits indicated SD significantly impacted spike length (SL), spikelet number per spike (SNS) and kernel length (KL). Several genes related to spike development within the physical intervals of major or stable QTL were predicted and discussed. Collectively, our research identified QTL with potential applications for modern wheat breeding and broadening the genetic basis of SD.
Collapse
Affiliation(s)
- Jianing You
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Surong Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lulu Gou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Qiu X, Pu X, Li J, Liu Z, Zhang H, Liang J, Yang W, Yu M, Wei Y, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3625-3641. [PMID: 34309684 DOI: 10.1007/s00122-021-03918-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 05/27/2023]
Abstract
Two major and stable QTLs for spike compactness and length were detected and validated in multiple genetic backgrounds and environments, and their pleiotropic effects on yield-related traits were analyzed. Spike compactness (SC) and length (SL) are greatly associated with wheat (Triticum aestivum L.) grain yield. To detect quantitative trait loci (QTL) associated with SC and SL, two biparental populations derived from crosses of Chuanmai42/Kechengmai1 and Chuanmai42/Chuannong16 were employed to perform QTL mapping in five environments. A total of 34 QTLs were identified, in which six major QTLs were repeatedly detected in more than four environments and the best linear unbiased prediction datasets, explaining 7.13-33.6% of phenotypic variation. These major QTLs were co-located in two genomic regions on chromosome 5A and 6A, namely QSc/Sl.cib-5A and QSc/Sl.cib-6A, respectively. By developing kompetitive allele-specific PCR (KASP) markers that linked to them, the two loci were validated in different genetic backgrounds, and their interactions were also analyzed. Comparison analysis showed that QSc/Sl.cib-5A was not Vrn-A1 and Q, and QSc/Sl.cib-6A was likely a new locus for SC and SL. Both QSc/Sl.cib-5A and QSc/Sl.cib-6A had pleiotropic effects on other yield-related traits including plant height, thousand grain weight and grain length. Therefore, the two loci combined with the developed KASP markers might be potentially applicable in wheat breeding. Furthermore, based on the spatiotemporal expression patterns, gene annotation, orthologous search and sequence differences, TraesCS5A01G301400 and TraesCS6A01G090300 were considered as potential candidates for QSc/Sl.cib-5A and QSc/Sl.cib-6A, respectively. These results provided valuable information for fine mapping and cloning of the two loci in the future.
Collapse
Affiliation(s)
- Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xvebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
10
|
Ji G, Xu Z, Fan X, Zhou Q, Yu Q, Liu X, Liao S, Feng B, Wang T. Identification of a major and stable QTL on chromosome 5A confers spike length in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:56. [PMID: 37309397 PMCID: PMC10236030 DOI: 10.1007/s11032-021-01249-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 06/14/2023]
Abstract
Spike length (SL) is the key determinant of plant architecture and yield potential. In this study, 193 recombinant inbred lines (RILs) derived from a cross between 13F10 and Chuanmai 42 (CM42) were evaluated for spike length in six environments. Sixty RILs consisting of 30 high and 30 low SLs were genotyped using the bulked segregant analysis exome sequencing (BSE-Seq) analysis for preliminary quantitative trait locus (QTL) mapping. A 6.69 Mb (518.43-525.12 Mb) region on chromosome 5AL was found to have a significant effect on the SL trait. Fifteen competitive allele-specific PCR (KASP) markers were successfully converted from the single nucleotide polymorphisms (SNPs) in the SL target region. Combined with four novel simple sequence repeat (SSR) markers, a genetic linkage map spanning 21.159 cM was constructed. The mapping result confirmed the identity of a major and stable QTL named QSl.cib-5A in the targeted region that explained 7.88-26.60% of the phenotypic variation in SL. QSl.cib-5A was narrowed to a region of 4.84 cM interval corresponding to a 4.67 Mb (516.60-521.27 Mb) physical region in the Chinese Spring RefSeq v2.0 containing 17 high-confidence genes with 25 transcripts. In addition, this QTL exhibited pleiotropic effects on spikelet density (SD), with the phenotypic variances proportion ranging from 11.34 to 19.92%. This study provides a foundational step for cloning the QSl.cib-5A, which is involved in the regulation of spike morphology in common wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01249-6.
Collapse
Affiliation(s)
- Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
11
|
Mo Z, Zhu J, Wei J, Zhou J, Xu Q, Tang H, Mu Y, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Li W, Wei Y, Zheng Y, Lan X, Ma J. The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat ( Triticum turgidum L.) Population: Chinese Landrace "Ailanmai" × Wild Emmer. FRONTIERS IN PLANT SCIENCE 2021; 12:732837. [PMID: 34531890 PMCID: PMC8439258 DOI: 10.3389/fpls.2021.732837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 05/08/2023]
Abstract
Spikelet number per spike (SNS) is the primary factor that determines wheat yield. Common wheat breeding reduces the genetic diversity among elite germplasm resources, leading to a detrimental effect on future wheat production. It is, therefore, necessary to explore new genetic resources for SNS to increase wheat yield. A tetraploid landrace "Ailanmai" × wild emmer wheat recombinant inbred line (RIL) population was used to construct a genetic map using a wheat 55K single- nucleotide polymorphism (SNP) array. The linkage map containing 1,150 bin markers with a total genetic distance of 2,411.8 cm was obtained. Based on the phenotypic data from the eight environments and best linear unbiased prediction (BLUP) values, five quantitative trait loci (QTLs) for SNS were identified, explaining 6.71-29.40% of the phenotypic variation. Two of them, QSns.sau-AM-2B.2 and QSns.sau-AM-3B.2, were detected as a major and novel QTL. Their effects were further validated in two additional F2 populations using tightly linked kompetitive allele-specific PCR (KASP) markers. Potential candidate genes within the physical intervals of the corresponding QTLs were predicted to participate in inflorescence development and spikelet formation. Genetic associations between SNS and other agronomic traits were also detected and analyzed. This study demonstrates the feasibility of the wheat 55K SNP array developed for common wheat in the genetic mapping of tetraploid population and shows the potential application of wheat-related species in wheat improvement programs.
Collapse
Affiliation(s)
- Ziqiang Mo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiatai Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Xiujin Lan
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jian Ma
| |
Collapse
|
12
|
Lin Y, Zhou K, Hu H, Jiang X, Yu S, Wang Q, Li C, Ma J, Chen G, Yang Z, Liu Y. Multi-Locus Genome-Wide Association Study of Four Yield-Related Traits in Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2021; 12:665122. [PMID: 34484253 PMCID: PMC8415402 DOI: 10.3389/fpls.2021.665122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Here, four yield-related traits, namely, spike length, spikelets number, tillers number, and thousand-kernel weight, were evaluated in 272 Chinese wheat landraces in multiple environments. Five multi-locus genome-wide association studies (FASTmrEMMA, ISIS EN-BLASSO, mrMLM, pKWmEB, and pLARmEB) were performed using 172,711 single-nucleotide polymorphisms (SNPs) to identify yield-related quantitative trait loci (QTL). A total of 27 robust QTL were identified by more than three models. Nine of these QTL were consistent with those in previous studies. The remaining 18 QTL may be novel. We identified a major QTL, QTkw.sicau-4B, with up to 18.78% of phenotypic variation explained. The developed kompetitive allele-specific polymerase chain reaction marker for QTkw.sicau-4B was validated in two recombinant inbred line populations with an average phenotypic difference of 16.07%. After combined homologous function annotation and expression analysis, TraesCS4B01G272300 was the most likely candidate gene for QTkw.sicau-4B. Our findings provide new insights into the genetic basis of yield-related traits and offer valuable QTL to breed wheat cultivars via marker-assisted selection.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojun Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zisong Yang
- College of Resources and Environment, Aba Teachers University, Wenchuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yaxi Liu, , orcid.org/0000-0001-6814-7218
| |
Collapse
|
13
|
Faris JD, Overlander ME, Kariyawasam GK, Carter A, Xu SS, Liu Z. Identification of a major dominant gene for race-nonspecific tan spot resistance in wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:829-841. [PMID: 31863156 DOI: 10.1007/s00122-019-03509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A single dominant gene found in tetraploid and hexaploid wheat controls broad-spectrum race-nonspecific resistance to the foliar disease tan spot caused by Pyrenophora tritici-repentis. Tan spot is an important foliar disease of durum and common wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Genetic studies in common wheat have shown that pathogen-produced necrotrophic effectors interact with host genes in an inverse gene-for-gene manner to cause disease, but quantitative trait loci (QTLs) with broad race-nonspecific resistance also exist. Less work has been done to understand the genetics of tan spot interactions in durum wheat. Here, we evaluated a set of Langdon durum-wild emmer (Triticum turgidum ssp. dicoccoides) disomic chromosome substitution lines for reaction to four P. tritici-repentis isolates representing races 1, 2, 3, and 5 to identify wild emmer chromosomes potentially containing tan spot resistance genes. Chromosome 3B from the wild emmer accession IsraelA rendered the tan spot-susceptible durum cultivar Langdon resistant to all four fungal isolates. Genetic analysis indicated that a single dominant gene, designated Tsr7, governed resistance. Detailed mapping experiments showed that the Tsr7 locus is likely the same as the race-nonspecific QTL previously identified in the hexaploid wheat cultivars BR34 and Penawawa. Four user-friendly SNP-based semi-thermal asymmetric reverse PCR (STARP) markers cosegregated with Tsr7 and should be useful for marker-assisted selection of resistance. In addition to 3B, other wild emmer chromosomes contributed moderate levels of tan spot resistance, and, as has been shown previously for tetraploid wheat, the Tsn1-Ptr ToxA interaction was not associated with susceptibility. This is the first report of a major dominant gene governing resistance to tan spot in tetraploid wheat.
Collapse
Affiliation(s)
- Justin D Faris
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| | - Megan E Overlander
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven S Xu
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA.
| |
Collapse
|
14
|
Wolde GM, Trautewig C, Mascher M, Schnurbusch T. Genetic insights into morphometric inflorescence traits of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1661-1676. [PMID: 30762083 PMCID: PMC6531419 DOI: 10.1007/s00122-019-03305-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/05/2019] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE Modifying morphometric inflorescence traits is important for increasing grain yield in wheat. Mapping revealed nine QTL, including new QTL and a new allele for the q locus, controlling wheat spike morphometric traits. To identify loci controlling spike morphometric traits, namely spike length (SL), internode length (IL), node number per spike (NPS), and node density (ND), we studied 146 Recombinant Inbred Lines of tetraploid wheat (Triticum turgidum L.) derived from standard spike and spike-branching mutant parents. Phenotypic analyses of spike morphometric traits showed low genetic coefficients of variation, resulting in high heritabilities. The phenotypic correlation between NPS with growing degree days (GDD) suggested the importance of GDD in the determination of node number in wheat. The major effect QTL for GDD or heading date was mapped to chromosome 7BS carrying the flowering time gene, Vrn3-B1. Mapping also identified nine QTL controlling spike morphometric traits. Most of these loci controlled more than a single trait, suggesting a close genetic interrelationship among spike morphometric traits. For example, this study identified a new QTL, QND.ipk-4AL, controlling ND (up to 17.6% of the phenotypic variance), IL (up to 11% of the phenotypic variance), and SL (up to 20.8% of the phenotypic variance). Similarly, the major effect QTL for IL was mapped to the q locus. Sequencing of the Q/q gene further revealed a new q allele, qdel-5A, in spike-branching accessions possessing a six base pair deletion close to the miR172 target site. The identification of qdel-5A suggested that the spike-branching tetraploid wheats are double mutants for the spikelet meristem (SM) identity gene, i.e., branched headt (TtBHt), and the q gene, which is believed to be involved in the SM indeterminacy complex in wheat.
Collapse
Affiliation(s)
- Gizaw M Wolde
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 OT Gatersleben, 06466, Seeland, Germany
- Department of Plant Sciences, University of California, Davis, USA
| | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 OT Gatersleben, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 OT Gatersleben, 06466, Seeland, Germany.
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University, Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
15
|
Sharma JS, Running KLD, Xu SS, Zhang Q, Peters Haugrud AR, Sharma S, McClean PE, Faris JD. Genetic analysis of threshability and other spike traits in the evolution of cultivated emmer to fully domesticated durum wheat. Mol Genet Genomics 2019; 294:757-771. [PMID: 30887143 DOI: 10.1007/s00438-019-01544-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Genetic mutations in genes governing wheat threshability were critical for domestication. Knowing when these genes mutated during wheat evolution will provide more insight into the domestication process and lead to further exploitation of primitive alleles for wheat improvement. We evaluated a population of recombinant inbred lines derived from a cross between the durum variety Rusty and the cultivated emmer accession PI 193883 for threshability, rachis fragility, and other spike-related traits. Quantitative trait loci (QTL) associated with spike length, spikelets per spike, and spike compactness were primarily associated with known genes such as the pleiotropic domestication gene Q. Interestingly, rachis fragility was not associated with the Q locus, suggesting that this trait, usually a pleiotropic effect of the q allele, can be influenced by the genetic background. Threshability QTL were identified on chromosome arms 2AS, 2BS, and 5AL corresponding to the tenacious glume genes Tg2A and Tg2B as well as the Q gene, respectively, further demonstrating that cultivated emmer harbors the primitive non-free-threshing alleles at all three loci. Genetic analysis indicated that the effects of the three genes are mostly additive, with Q having the most profound effects on threshability, and that free-threshing alleles are necessary at all three loci to attain a completely free-threshing phenotype. These findings provide further insight into the timeline and possible pathways of wheat domestication and evolution that led to the formation of modern day domesticated wheats.
Collapse
Affiliation(s)
- Jyoti S Sharma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB, R6M 1Y5, Canada
| | | | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Northern Crop Science Laboratory, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Qijun Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Sapna Sharma
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Northern Crop Science Laboratory, 1605 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
16
|
Fan X, Cui F, Ji J, Zhang W, Zhao X, Liu J, Meng D, Tong Y, Wang T, Li J. Dissection of Pleiotropic QTL Regions Controlling Wheat Spike Characteristics Under Different Nitrogen Treatments Using Traditional and Conditional QTL Mapping. FRONTIERS IN PLANT SCIENCE 2019; 10:187. [PMID: 30863417 PMCID: PMC6400075 DOI: 10.3389/fpls.2019.00187] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
Optimal spike characteristics are critical in improving the sink capacity and yield potential of wheat even in harsh environments. However, the genetic basis of their response to nitrogen deficiency is still unclear. In this study, quantitative trait loci (QTL) for six spike-related traits, including heading date (HD), spike length (SL), spikelet number (SN), spike compactness (SC), fertile spikelet number (FSN), and sterile spikelet number (SSN), were detected under two different nitrogen (N) supplies, based on a high-density genetic linkage map constructed by PCR markers, DArTs, and Affymetrix Wheat 660 K SNP chips. A total of 157 traditional QTLand 54 conditional loci were detected by inclusive composite interval mapping, among which three completely low N-stress induced QTL for SN and FSN (qSn-1A.1, qFsn-1B, and qFsn-7D) were found to maintain the desired spikelet fertility and kernel numbers even under N deficiency through pyramiding elite alleles. Twenty-eight stable QTL showing significant differencet in QTL detection model were found and seven genomic regions (R2D, R4A, R4B, R5A, R7A, R7B, and R7D) clustered by these stable QTL were highlighted. Among them, the effect of R4B on controlling spike characteristics might be contributed from Rht-B1. R7A harboring three major stable QTL (qSn-7A.2, qSc-7A, and qFsn-7A.3) might be one of the valuable candidate regions for further genetic improvement. In addition, the R7A was found to show syntenic with R7B, indicating the possibly exsting homoeologous candidate genes in both regions. The SNP markers involved with the above highlighted regions will eventually facilitate positional cloning or marker-assisted selection for the optimal spike characteristics under various N input conditions.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fa Cui
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong University, Yantai, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xueqiang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - JiaJia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Deyuan Meng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Tao Wang
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Junming Li
| |
Collapse
|
17
|
Würschum T, Leiser WL, Langer SM, Tucker MR, Longin CFH. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2071-2084. [PMID: 29959471 DOI: 10.1007/s00122-018-3133-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 05/24/2023]
Abstract
Phenotypic and genetic analysis of six spike and kernel characteristics in wheat revealed geographic patterns as well as long-term trends arising from breeding progress, particularly in regard to spikelet fertility, i.e. the number of kernels per spikelet, a grain yield component that appears to underlie the increase in the number of kernels per spike. Wheat is a staple crop of global relevance that faces continuous demands for improved grain yield. In this study, we evaluated a panel of 407 winter wheat cultivars for six characteristics of spike and kernel development. All traits showed a large genotypic variation and had high heritabilities. We observed geographic patterns for some traits in addition to long-term trends showing a continuous increase in the number of kernels per spike. This breeding progress is likely due to the increase in spikelet fertility, i.e. the number of kernels per spikelet. While the number of kernels per spike and spikelet fertility were significantly positively correlated, both traits showed a significant negative correlation with thousand-kernel weight. Genome-wide association mapping identified only small- and moderate-effect QTL and an effect of the phenology loci Rht-D1 and Ppd-D1 on some of the traits. The allele frequencies of some QTL matched the observed geographic patterns. The quantitative inheritance of all traits with contributions of additional small-effect QTL was substantiated by genomic prediction. Taken together, our results suggest that some of the examined traits were already the basis of grain yield progress in wheat in the past decades. A more targeted exploitation of the available variation, potentially coupled with genomic approaches, may assist wheat breeding in continuing to increase yield levels globally.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Bayer AG, European Wheat Breeding Center, Am Schwabeplan 8, 06466, Gatersleben, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
18
|
Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes. FRONTIERS IN PLANT SCIENCE 2017; 8:1798. [PMID: 29104581 PMCID: PMC5655018 DOI: 10.3389/fpls.2017.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 05/05/2023]
Abstract
Wild emmer (Triticum turgidum ssp. dicoccoides) is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. 'Langdon' x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum-Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.
Collapse
Affiliation(s)
- Chad Jorgensen
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ramesh Ramasamy
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mathew Dawson
- Department of Statistics, University of California, Davis, Davis, CA, United States
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Assaf Distelfeld
- Institute for Cereal Crops Improvement, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 2016; 60:26-45. [PMID: 27996306 DOI: 10.1139/gen-2016-0017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Wheat crops frequently experience a combination of abiotic stresses in the field, but most quantitative trait loci (QTL) studies have focused on the identification of QTLs for traits under single stress field conditions. A recombinant inbred line (RIL) population derived from SeriM82 × Babax was used to map QTLs under well-irrigated, heat, drought, and a combination of heat and drought stress conditions in two years. A total of 477 DNA markers were used to construct linkage groups that covered 1619.6 cM of the genome, with an average distance of 3.39 cM between adjacent markers. Moderate to relatively high heritability estimates (0.60-0.70) were observed for plant height (PHE), grain yield (YLD), and grain per square meter (GM2). The most important QTLs for days to heading (DHE), thousand grain weight (TGW), and YLD were detected on chromosomes 1B, 1D-a, and 7D-b. The prominent QTLs related to canopy temperature were on 3B. Results showed that common QTLs for DHE, YLD, and TGW on 7D-b were validated in heat and drought trials. Three QTLs for chlorophyll content in SPAD unit (on 1A/6B), leaf rolling (ROL) (on 3B/4A), and GM2 (on 1B/7D-b) showed significant epistasis × environment interaction. Six heat- or drought-specific QTLs (linked to 7D-acc/cat-10, 1B-agc/cta-9, 1A-aag/cta-8, 4A-acg/cta-3, 1B-aca/caa-3, and 1B-agc/cta-9 for day to maturity (DMA), SPAD, spikelet compactness (SCOM), TGW, GM2, and GM2, respectively) were stable and validated over two years. The major DHE QTL linked to 7D-acc/cat-10, with no QTL × environment (QE) interaction increased TGW and YLD. This QTL (5.68 ≤ LOD ≤ 10.5) explained up to 19.6% variation in YLD in drought, heat, and combined stress trials. This marker as a candidate could be used for verification in other populations and identifying superior allelic variations in wheat cultivars or its wild progenitors to increase the efficiency of selection of high yielding lines adapted to end-season heat and drought stress conditions.
Collapse
Affiliation(s)
- Sirous Tahmasebi
- a Seed and Plant Improvement Division, Agricultural and Natural Resources Research Center of Fars Province, Darab, Iran.,b Department of Crop Production and Plant Breeding, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- b Department of Crop Production and Plant Breeding, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
| | - Hassan Pakniyat
- b Department of Crop Production and Plant Breeding, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
| | - C Lynne McIntyre
- c CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, QLD, 4068, Australia
| |
Collapse
|
20
|
Kowalski AM, Gooding M, Ferrante A, Slafer GA, Orford S, Gasperini D, Griffiths S. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. FIELD CROPS RESEARCH 2016; 191:150-160. [PMID: 27212788 PMCID: PMC4862442 DOI: 10.1016/j.fcr.2016.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 05/03/2023]
Abstract
Reduced height 8 (Rht8) is the main alternative to the GA-insensitive Rht alleles in hot and dry environments where it reduces plant height without yield penalty. The potential of Rht8 in northern-European wheat breeding remains unclear, since the close linkage with the photoperiod-insensitive allele Ppd-D1a is unfavourable in the relatively cool summers. In the present study, two near-isogenic lines (NILs) contrasting for the Rht8/tall allele from Mara in a UK-adapted and photoperiod-sensitive wheat variety were evaluated in trials with varying nitrogen fertiliser (N) treatments and water regimes across sites in the UK and Spain. The Rht8 introgression was associated with a robust height reduction of 11% regardless of N treatment and water regime and the Rht8 NIL was more resistant to root-lodging at agronomically-relevant N levels than the tall NIL. In the UK with reduced solar radiation over the growing season than the site in Spain, the Rht8 NIL showed a 10% yield penalty at standard agronomic N levels due to concomitant reduction in grain number and spike number whereas grain weight and harvest index were not significantly different to the tall NIL. The yield penalty associated with the Rht8 introgression was overcome at low N and in irrigated conditions in the UK, and in the high-temperature site in Spain. Decreased spike length and constant spikelet number in the Rht8 NIL resulted in spike compaction of 15%, independent of N and water regime. The genetic interval of Rht8 overlaps with the compactum gene on 2DS, raising the possibility of the same causative gene. Further genetic dissection of these loci is required.
Collapse
Key Words
- 12L, length of the second internode from the top
- 13L, length of the third internode from the top
- AN, anthesis
- ANOVA, analysis of variance
- Compactum
- GN, grain number (m−2)
- HD, heading date
- HI, harvest index
- PAR, photosynthetically active radiation
- Plant height
- R: FR, red: far-red light reflectance ratio
- RCBD, randomised complete block design
- Rht8
- SN, spike number (m−2)
- SS, spikelet number (spike−1)
- Spike compaction
- Wheat
- Y, yield
- Yield components
Collapse
Affiliation(s)
- Ania M. Kowalski
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Mike Gooding
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 237, Reading RG6 6AR, UK
- Aberystwyth University (IBERS), Carwyn James building, Penglais Campus, Aberystwyth SY23 3DA, UK
| | - Ariel Ferrante
- Catalonian Institute for Research and Advanced Studies (ICREA), Department of Crop and Forest Sciences and Center for Research in Agrotechnology (AGROTECNIO), University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 203 Tor St., Toowoomba QLD 4350, Australia
| | - Gustavo A. Slafer
- Catalonian Institute for Research and Advanced Studies (ICREA), Department of Crop and Forest Sciences and Center for Research in Agrotechnology (AGROTECNIO), University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Simon Orford
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Debora Gasperini
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Signaling Group, Leibniz Institute of Plant Biochemistry, Department of Molecular Signal Processing, Weinberg 3, 06120 Halle (Saale), Germany
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| |
Collapse
|
21
|
Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q. QTL Analysis of Spike Morphological Traits and Plant Height in Winter Wheat ( Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. FRONTIERS IN PLANT SCIENCE 2016; 7:1617. [PMID: 27872629 PMCID: PMC5097907 DOI: 10.3389/fpls.2016.01617] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/12/2016] [Indexed: 05/18/2023]
Abstract
Wheat yield can be enhanced by modifying the spike morphology and the plant height. In this study, a population of 191 F9 recombinant inbred lines (RILs) was developed from a cross between two winter cultivars Yumai 8679 and Jing 411. A dense genetic linkage map with 10,816 markers was constructed by incorporating single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker information. Five spike morphological traits and plant height were evaluated under nine environments for the RILs and parental lines, and the number of detected environmentally stable QTLs were 18 and three, respectively. The 1RS/1BL (rye) translocation increased both spike length and spikelet number with constant spikelet compactness. The QPht.cau-2D.1 was identical to gene Rht8, which decreased spike length without modifying spikelet number. Notably, four novel QTLs locating on chromosomes 1AS (QSc.cau-1A.1), 2DS (QSc.cau-2D.1), and 7BS (QSl.cau-7B.1 and QSl.cau-7B.2) were firstly identified in this study, which provide further insights into the genetic factors that shaped the spike morphology in wheat. Moreover, SNP markers tightly linked to previously reported QTLs will eventually facilitate future studies including their positional cloning or marker-assisted selection.
Collapse
Affiliation(s)
- Huijie Zhai
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
- National Plant Gene Research CentreBeijing, China
| | - Zhiyu Feng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
- National Plant Gene Research CentreBeijing, China
| | - Jiang Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
- National Plant Gene Research CentreBeijing, China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
- National Plant Gene Research CentreBeijing, China
| | - Shihe Xiao
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
- National Plant Gene Research CentreBeijing, China
- *Correspondence: Zhongfu Ni
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
- National Plant Gene Research CentreBeijing, China
- Qixin Sun
| |
Collapse
|
22
|
Golan G, Oksenberg A, Peleg Z. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5703-11. [PMID: 26019253 PMCID: PMC4566971 DOI: 10.1093/jxb/erv249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts.
Collapse
Affiliation(s)
- Guy Golan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Adi Oksenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
23
|
Faris JD, Zhang Q, Chao S, Zhang Z, Xu SS. Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2333-48. [PMID: 25186168 DOI: 10.1007/s00122-014-2380-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/15/2014] [Indexed: 05/21/2023]
Abstract
Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today's fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Red River Valley Agricultural Research Unit, Fargo, ND, 58102, USA,
| | | | | | | | | |
Collapse
|