1
|
Yan X, Zhang A, Guan Y, Jiao J, Ghanim M, Zhang Y, He X, Shi R. Comparative Metabolome and Transcriptome Analyses Reveal Differential Enrichment of Metabolites with Age in Panax notoginseng Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1441. [PMID: 38891250 PMCID: PMC11175106 DOI: 10.3390/plants13111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.
Collapse
Affiliation(s)
- Xinru Yan
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Ao Zhang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Jinlong Jiao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, 68 Hamaccabim Road, Rishon LeZion 7505101, Israel;
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| |
Collapse
|
2
|
He M, Zhang G, Huo D, Yang S. Combined Metabolome and Transcriptome Analysis of Creamy Yellow and Purple Colored Panax notoginseng Roots. Life (Basel) 2023; 13:2100. [PMID: 37895482 PMCID: PMC10607970 DOI: 10.3390/life13102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Panax notoginseng (Burk.) F.H. Chen is a species of the Araliaceae family that inhabits southwestern China, Burma, and Nepal. It is cultivated on a commercial scale in Yunnan province, China, owing to its significance in traditional Chinese medicine. Panax notoginseng roots are usually yellow-white (HS); however, purple roots (ZS) have also been reported. The majority of P. notoginseng research has concentrated on the identification and production of natural chemicals in HS; however, there is little to no information about the composition of ZS. Using UPLC-MS/MS, we investigated the global metabolome profile of both ZS- and HS-type roots and discovered 834 metabolites from 11 chemical groups. There were 123 differentially accumulated metabolites (DAM) in the HS and ZS roots, which were classified as lipids and lipid-like molecules, polyketides, organoheterocyclic chemicals, and organooxygen compounds. We investigated the associated compounds in the DAMs because of the importance of anthocyanins in color and saponins and ginsenosides in health benefits. In general, we discovered that pigment compounds such as petunidin 3-glucoside, delphinidin 3-glucoside, and peonidin-3-O-beta-galactoside were more abundant in ZS. The saponin (eight compounds) and ginsenoside (26 compounds) content of the two varieties of roots differed as well. Transcriptome sequencing revealed that flavonoid and anthocyanin production genes were more abundant in ZS than in HS. Similarly, we found differences in gene expression in genes involved in terpenoid production and related pathways. Overall, these findings suggest that the purple roots of P. notoginseng contain varying amounts of ginsenosides and anthocyanins compared to roots with a creamy yellow color.
Collapse
Affiliation(s)
- Muhan He
- Office of Academic Affairs, Yunnan Forestry Technological College, Kunming 650224, China; (M.H.); (D.H.)
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China;
| | - Dongfang Huo
- Office of Academic Affairs, Yunnan Forestry Technological College, Kunming 650224, China; (M.H.); (D.H.)
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Seo J, Lee JS, Shim SL, In JG, Park CS, Lee YJ, Ahn HJ. Development and authentication of Panax ginseng cv. Sunhong with high yield and multiple tolerance to heat damage, rusty roots and lodging. HORTICULTURE, ENVIRONMENT AND BIOTECHNOLOGY 2023:1-12. [PMID: 37361129 PMCID: PMC10202357 DOI: 10.1007/s13580-023-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/28/2023]
Abstract
Ginseng (Panax ginseng) has been used as a valuable medicinal plant in Asia, and the demand for ginseng production for health functional food is increasing worldwide after the COVID-19 crisis. Although a number of cultivars have been developed to increase ginseng production, none of them were widely cultivated in Korea because they could not resist various environmental stresses while being grown in one place for at least 4 years. To address this, Sunhong was developed as a ginseng cultivar with high yield and multiple stress tolerance by pure line selection. Sunhong showed high yield and heat tolerance comparable to Yunpoong, a representative high-yielding cultivar, and exhibited 1.4 times lower prevalence of rusty roots than Yunpoong, suggesting that Sunhong can keep its high yield and quality during long-term cultivation. In addition, distinct color and lodging resistance were expected to increase the convenience of cultivation. To supply pure seeds to farmers, we also established a reliable high-throughput authentication system for Sunhong and seven ginseng cultivars through genotyping-by-sequencing (GBS) analysis. The GBS approach enabled to identify a sufficient number of informative SNPs in ginseng, a heterozygous and polyploid species. These results contribute to the improvement of yield, quality, and homogeneity, and therefore promote the ginseng industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13580-023-00526-x.
Collapse
Affiliation(s)
- Jiho Seo
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| | - Joon-Soo Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| | - Sung-Lye Shim
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| | - Jun-Gyo In
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| | - Chol-Soo Park
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| | - Yong-Jae Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| | - Hee-Jun Ahn
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34128 Korea
| |
Collapse
|
4
|
Review: Molecular techniques to assess genetic variation within and between Panax ginseng and Panax quinquefolius. Fitoterapia 2019; 138:104343. [PMID: 31472181 DOI: 10.1016/j.fitote.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 11/23/2022]
Abstract
A variety of methods have been used to examine genetic differences in P. ginseng and P. quinquefolius. They have shown genetic differences within populations of P. ginseng (within and between elite cultivars, landraces and wild accessions), within populations of P. quinquefolius (within and between wild and cultivated accessions) and between P. ginseng and P. quinquefolius as well as other Panax species. Some examples of their applications have been to show that some elite cultivars are not uniform, there are possible founder effects in certain populations, there has been the spread of cultivated types into wild populations, relative diversity differs between different populations and identification of the source and purity of commercial samples. More work in the use of molecular markers for ginseng are needed, however, particularly the use of Next Generation Sequencing. Potential applications are the use of sequence analysis for genetic selection, breeding to develop new cultivars and providing traceability from field to consumer. Research on molecular markers in ginseng has lagged compared to other crops probably because of less of an emphasis on breeding for cultivar development and relatively small areas of production. The many potential benefits for ginseng production have yet to be realized.
Collapse
|
5
|
Fan H, Li K, Yao F, Sun L, Liu Y. Comparative transcriptome analyses on terpenoids metabolism in field- and mountain-cultivated ginseng roots. BMC PLANT BIOLOGY 2019; 19:82. [PMID: 30782123 PMCID: PMC6381674 DOI: 10.1186/s12870-019-1682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND There exist differences in morphological traits and phytochemical compositions between field- and mountain-cultivated Panax ginseng (FCG and MCG), which might be attributed to variations of terpenoids metabolism adapting to different growth conditions. The present work aims to uncover these variations. RESULTS Among 26,648 differentially expressed genes, 496 genes distributed in seven dominant terpenoids pathways were identified. Diterpenoids and triterpenoids biosynthesis genes were significantly higher-expressed in FCG root. Conversely, biosynthesis of carotenoids was significantly more active in MCG root. Additionally, terpenoids backbones, monoterpenoids, sesquiterpenoids, and terpenoid-quinones biosyntheses were neither obviously inclined. Our determination also revealed that there were more gibberellins and steroids accumulated in FCG root which might be responsible for its quick vegetative growth, and enriched abscisic acid and germacrenes as well as protopanaxatriol-type ginsenosides might be major causes of enhanced stress-resistance in MCG root. CONCLUSIONS The study firstly provided an overview of terpenoids metabolism in roots of FCG and MCG in elucidating the underlying mechanisms for their different morphological appearances and phytochemical compositions.
Collapse
Affiliation(s)
- Hang Fan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Ke Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
- Research Institute of Advanced Eco-Environmental Protection Technology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Fan Yao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| |
Collapse
|
6
|
Kim J, Manivannan A, Kim DS, Lee ES, Lee HE. Transcriptome sequencing assisted discovery and computational analysis of novel SNPs associated with flowering in Raphanus sativus in-bred lines for marker-assisted backcross breeding. HORTICULTURE RESEARCH 2019; 6:120. [PMID: 31700647 PMCID: PMC6823433 DOI: 10.1038/s41438-019-0200-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 05/08/2023]
Abstract
The sequencing of radish genome aids in the better understanding and tailoring of traits associated with economic importance. In order to accelerate the genomics assisted breeding and genetic selection, transcriptomes of 33 radish inbred lines with diverse traits were sequenced for the development of single nucleotide polymorphic (SNP) markers. The sequence reads ranged from 2,560,543,741 bp to 20,039,688,139 bp with the GC (%) of 47.80-49.34 and phred quality score (Q30) of 96.47-97.54%. A total of 4951 polymorphic SNPs were identified among the accessions after stringent filtering and 298 SNPs with efficient marker assisted backcross breeding (MAB) markers were generated from the polymorphic SNPs. Further, functional annotations of SNPs revealed the effects and importance of the SNPs identified in the flowering process. The SNPs were predominantly associated with the four major flowering related transcription factors such as MYB, MADS box (AG), AP2/EREB, and bHLH. In addition, SNPs in the vital flowering integrator gene (FT) and floral repressors (EMBRYONIC FLOWER 1, 2, and FRIGIDA) were identified among the radish inbred lines. Further, 50 SNPs were randomly selected from 298 SNPs and validated using Kompetitive Allele Specific PCR genotyping system (KASP) in 102 radish inbred lines. The homozygosity of the inbred lines varied from 56 to 96% and the phylogenetic analysis resulted in the clustering of inbred lines into three subgroups. Taken together, the SNP markers identified in the present study can be utilized for the discrimination, seed purity test, and adjusting parental combinations for breeding in radish.
Collapse
Affiliation(s)
- Jinhee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, 55365 Republic of Korea
| | - Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, 55365 Republic of Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, 55365 Republic of Korea
| | - Eun-Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, 55365 Republic of Korea
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, 55365 Republic of Korea
| |
Collapse
|
7
|
Jo IH, Lee J, Hong CE, Lee DJ, Bae W, Park SG, Ahn YJ, Kim YC, Kim JU, Lee JW, Hyun DY, Rhee SK, Hong CP, Bang KH, Ryu H. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome. Genes (Basel) 2017; 8:E228. [PMID: 28914759 PMCID: PMC5615361 DOI: 10.3390/genes8090228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022] Open
Abstract
Korean ginseng (Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng, we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana. Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng. In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.
Collapse
Affiliation(s)
- Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea.
| | - Chi Eun Hong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | | | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea.
| | - Sin-Gi Park
- TheragenEtex Bio Institute, Suwon 16229, Korea.
| | - Yong Ju Ahn
- TheragenEtex Bio Institute, Suwon 16229, Korea.
| | - Young Chang Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | - Jang Uk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | - Jung Woo Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | - Dong Yun Hyun
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea.
| | | | - Kyong Hwan Bang
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural development administration (RDA), Eumseong 27709, Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
8
|
Jo IH, Kim YC, Kim DH, Kim KH, Hyun TK, Ryu H, Bang KH. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars ( Panax ginseng). J Ginseng Res 2016; 41:444-449. [PMID: 29021689 PMCID: PMC5628328 DOI: 10.1016/j.jgr.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Ick Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27715, Republic of Korea
| | - Young Chang Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27715, Republic of Korea
| | - Dong Hwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27715, Republic of Korea
| | - Kee Hong Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27715, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyong Hwan Bang
- Department of Planning and Coordination, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|