1
|
Suthon S, Tangjittipokin W. Mechanisms and Physiological Roles of Polymorphisms in Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:2039. [PMID: 38396716 PMCID: PMC10888615 DOI: 10.3390/ijms25042039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a significant pregnancy complication linked to perinatal complications and an elevated risk of future metabolic disorders for both mothers and their children. GDM is diagnosed when women without prior diabetes develop chronic hyperglycemia due to β-cell dysfunction during gestation. Global research focuses on the association between GDM and single nucleotide polymorphisms (SNPs) and aims to enhance our understanding of GDM's pathogenesis, predict its risk, and guide patient management. This review offers a summary of various SNPs linked to a heightened risk of GDM and explores their biological mechanisms within the tissues implicated in the development of the condition.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Zhang Y, Zhao K, Jin L, Zhou Y, Shang X, Wang X, Yu H. MTNR1B gene variations and high pre-pregnancy BMI increase gestational diabetes mellitus risk in Chinese women. Gene 2024; 894:148023. [PMID: 38007162 DOI: 10.1016/j.gene.2023.148023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
AIM To investigate the association of melatonin receptor 1B (MTNR1B) gene variations and pre-pregnancy body mass index (BMI) with gestational diabetes mellitus (GDM). MATERIALS AND METHOD In this study, 1566 Chinese Han pregnant women were enrolled and multiple genetic models were used to evaluate the association between MTNR1B gene polymorphisms and the risk of GDM. The clinical value of pre-pregnancy BMI in predicting GDM was analyzed and evaluated using receiver operating characteristic (ROC) curves. Several methods of analysis were used to examine the impact of gene-gene and gene-BMI interactions on the incidence of GDM influence. RESULTS For the MTNR1B gene, rs1387153 (C > T), rs10830962 (C > G), rs4753426 (T > C), and rs10830963 (C > G) are all risk mutations associated with the susceptibility of GDM. The ROC curve analysis indicated that the BMI demonstrated an area under the curve (AUC) of 0.595. Alongside, the sensitivity and specificity stood at 0.676 and 0.474 respectively. The maximum Joden index was found to be 0.150, with a corresponding critical BMI value of 20.5691 kg/m2. Interaction analysis revealed that gene-gene and gene-BMI interactions had no significant effect on GDM occurrence. CONCLUSION MTNR1B genetic variations confers the risk to GDM in Chinese women. Furthermore, the high pre-pregnancy BMI (≥20.5691 kg/m2) significantly increases the risk of GDM in Chinese women.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Yuanzhong Zhou
- School of Public health, Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Guizhou, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Xin Wang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China.
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
3
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
4
|
Jansen EC, Zhang KP, Dolinoy DC, Burgess HJ, O'Brien LM, Langen E, Unwala N, Ehlinger J, Mulcahy MC, Goodrich JM. Early-to-mid pregnancy sleep and circadian markers in relation to birth outcomes: An epigenetics pilot study. Chronobiol Int 2023; 40:1224-1234. [PMID: 37722702 PMCID: PMC10626590 DOI: 10.1080/07420528.2023.2256854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Maternal sleep and circadian health during pregnancy are emerging as important predictors of pregnancy outcomes, but examination of potential epigenetic mechanisms is rare. We investigated links between maternal leukocyte DNA methylation of circadian genes and birth outcomes within a pregnancy cohort. Women (n = 96) completed a questionnaire and provided a blood sample at least once during early-to-mid pregnancy (average gestation weeks = 14.2). Leukocyte DNA was isolated and DNA methylation (average percent of methylation) at multiple CpG sites within BMAL1, PER1, and MTNR1B genes were quantified by pyrosequencing. Birth outcomes including gestational age at delivery, birthweight, and head circumference were abstracted from medical charts. Linear regression analyses were run between each CpG site with birth outcomes, adjusting for important confounders. Sleep duration and timing were assessed as secondary exposures. Higher methylation of a CpG site in PER1 was associated with smaller log-transformed head circumference (β=-0.02 with 95% CI -0.02 to 0.01; P, trend = 0.04). Higher methylation of MTNR1B (averaged across sites) was associated with lower log-transformed birthweight (-0.08 with 95% CI -0.16 to -0.01; P, trend = 0.0495). In addition, longer sleep duration was associated with higher birthweight (0.10 with 95% CI 0.02 to 0.18 comparing > 9 h to < 8 h; P, trend = 0.04). This pilot investigation revealed that higher methylation of PER1 and MTNR1B genes, and sleep duration measured in early-to-mid pregnancy were related to birth outcomes.
Collapse
Affiliation(s)
- Erica C Jansen
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Kelvin Pengyuan Zhang
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C Dolinoy
- Environmental Health Sciences and Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Elizabeth Langen
- Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Naquia Unwala
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jessa Ehlinger
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Molly C Mulcahy
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Chen F, Fei X, Li M, Zhang Z, Zhu W, Zhang M, Chen X, Xu J, Zhang M, Shen Y, Du J. Associations of the MTNR1B rs10830963 and PPARG rs1801282 variants with gestational diabetes mellitus: A meta-analysis. Int J Diabetes Dev Ctries 2023. [DOI: 10.1007/s13410-023-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
6
|
Tian Y, Li P. Genetic risk score to improve prediction and treatment in gestational diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:955821. [PMID: 36339414 PMCID: PMC9627198 DOI: 10.3389/fendo.2022.955821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus is a chronic disease caused by the interaction of genetics and the environment that can lead to chronic damage to many organ systems. Genome-wide association studies have identified accumulating single-nucleotide polymorphisms related to type 2 diabetes mellitus and gestational diabetes mellitus. Genetic risk score (GRS) has been utilized to evaluate the incidence risk to improve prediction and optimize treatments. This article reviews the research progress in the use of the GRS in diabetes mellitus in recent years and discusses future prospects.
Collapse
|
7
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
8
|
Laste G, Silva AAD, Gheno BR, Rychcik PM. Relationship between melatonin and high-risk pregnancy: A review of investigations published between the years 2010 and 2020. Chronobiol Int 2021; 38:168-181. [PMID: 33432828 DOI: 10.1080/07420528.2020.1863975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this review was to search for articles on human studies investigating the relationship between melatonin and high-risk pregnancy. An electronic search was conducted in the MEDLINE and PubMed databases from September 2010 to October 2020. The initial search produced 441 articles in PubMed and 407 in MEDLINE. After sorting the titles and abstracts, and removing duplicates, we had nine articles in PubMed and three in Medline. The results of these studies mainly show that the association between melatonin receptor 1B polymorphisms and gestational diabetes mellitus is the most common physiological mechanism relating to melatonin and high-risk pregnancy in this review. In addition, the circadian rhythm, decreased melatonin production, and anti-inflammatory and antioxidant effects were explored. The findings of our review of the literature suggest that this indoleamine is essential in high-risk pregnancy for its potent anti-inflammatory and antioxidant effects, regulation of the circadian rhythm, and genic receptor expression.
Collapse
Affiliation(s)
- Gabriela Laste
- Programa de Pós-Graduação em Ciências Médicas, Universidade do Vale do Taquari - Univates , Lajeado, Brasil
| | - André Anjos da Silva
- Programa de Pós-Graduação em Ciências Médicas, Universidade do Vale do Taquari - Univates , Lajeado, Brasil
| | | | | |
Collapse
|