1
|
Chen Y, Huang JH, Kang YB, Yao ZJ, Song JH. Bioinformatics analysis revealed the potential crosstalk genes and molecular mechanisms between intracranial aneurysms and periodontitis. BMC Med Genomics 2024; 17:114. [PMID: 38685029 PMCID: PMC11059758 DOI: 10.1186/s12920-024-01864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVES The risk of intracranial aneurysms (IAs) development and rupture is significantly higher in patients with periodontitis (PD), suggesting an association between the two. However, the specific mechanisms of association between these two diseases have not been fully investigated. MATERIALS AND METHODS In this study, we downloaded IAs and PD data from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. The protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) was performed to identified key modules and key crosstalk genes. In addition, the immune cell landscape was assessed and the correlation of key crosstalk genes with each immune cell was calculated. Finally, transcription factors (TFs) regulating key crosstalk genes were explored. RESULTS 127 overlapping DEGs were identified and functional enrichment analysis highlighted the important role of immune reflection in the pathogenesis of IAs and PD. We identified ITGAX and COL4A2 as key crosstalk genes. In addition, the expression of multiple immune cells was significantly elevated in PDs and IAs compared to controls, and both key crosstalk genes were significantly negatively associated with Macrophages M2. Finally, GATA2 was identified as a potential key transcription factor (TF), which regulates two key crosstalk gene. CONCLUSIONS The present study identifies key crosstalk genes and TF in PD and IAs, providing new insights for further study of the co-pathogenesis of PD and IAs from an immune and inflammatory perspective. Also, this is the first study to report the above findings.
Collapse
Affiliation(s)
- Yao Chen
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Jian-Huang Huang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China.
| | - Yuan-Bao Kang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zheng-Jian Yao
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Jian-Hua Song
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| |
Collapse
|
2
|
Xie F, Wang D, Cheng M. CDKN2B-AS1 may act as miR-92a-3p sponge in coronary artery disease. Minerva Cardiol Angiol 2024; 72:125-133. [PMID: 38231078 DOI: 10.23736/s2724-5683.23.06441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND LncRNAs, miRNAs, and the sponge effect between them exert diverse biological influences on the pathogenesis and progression of coronary artery disease (CAD), thus necessitating an exploration of the lncRNA-miRNA-gene regulatory network in CAD. METHODS Expression profile GSE98583 was obtained from NCBI, containing the data of 12 CAD patients and 6 controls. Limma package was utilized to determine the differentially expressed genes (DEGs). Functional enrichment analysis was performed by DAVID. The CAD-related miRNA-DEG associations were retrieved via HMDD and miRTarBase, and the CAD-related lncRNA-miRNA associations were retrieved via LncRNADisease and starBase. The CAD-related lncRNA-miRNA-DEG regulatory network was constructed by combining these associations. The dual luciferase test was carried out to validate the connections among lncRNA, miRNA, and gene. RESULTS Overall, 534 DEGs were identified between CAD samples and controls, including 243 up-regulated and 291 down-regulated, and were enriched in various gene ontology biological processes and KEGG pathways. The CAD-related miRNAs targeting DEGs included hsa-miR-206, has-miR-320b, has-miR-4513, has-miR-765, and has-miR-92a-3p, and hsa-miR-92a-3p regulated the most DEGs. In the lncRNA-miRNA associations, only CDKN2B-AS1 regulated the CAD-related miRNA, hsa-miR-92a-3p, which was validated using the dual luciferase test. CONCLUSIONS CDKN2B-AS1 may act as an hsa-miR-92a-3p sponge to regulate the downstream DEGs in CAD. CDKN2B-AS1/ hsa-miR-92a-3p/GATA2 might be a novel mechanism for CAD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Wang
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China -
| |
Collapse
|
3
|
Tay KY, Wu KX, Chioh FWJ, Autio MI, Pek NMQ, Narmada BC, Tan SH, Low AFH, Lian MM, Chew EGY, Lau HH, Kao SL, Teo AKK, Foo JN, Foo RSY, Heng CK, Chan MYY, Cheung C. Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease. Atherosclerosis 2022; 362:11-22. [PMID: 36435092 DOI: 10.1016/j.atherosclerosis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.
Collapse
Affiliation(s)
- Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Florence Wen Jing Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Balakrishnan Chakrapani Narmada
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Experimental Drug Development Centre, A*STAR, 10 Biopolis Road, Singapore, 138670
| | - Sock-Hwee Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Adrian Fatt-Hoe Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Hwee Hui Lau
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Shih Ling Kao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, National University Hospital and National University Health System, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Roger Sik Yin Foo
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Chew Kiat Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yan Yee Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore.
| |
Collapse
|
4
|
Yu K, Yang C, Liu J, Mo D. GATA2 might be used to predict the susceptibility of people to coronary artery disease. Int J Cardiol 2022; 358:94. [PMID: 35421517 DOI: 10.1016/j.ijcard.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Kang Yu
- Department of Laboratory Medicine, Liaocheng People(,)s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China
| | - Chuansheng Yang
- Department of Cardiology, Liaocheng People(,)s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China
| | - Jiahui Liu
- Department of Cardiology, Liaocheng People(,)s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China
| | - Degang Mo
- Department of Cardiology, Liaocheng People(,)s Hospital Affiliated to Shandong First Medical University, Liaocheng 252000, PR China.
| |
Collapse
|
5
|
Kee Z, Ong SM, Heng CK, Ooi DSQ. Androgen-dependent tissue factor pathway inhibitor regulating protein: a review of its peripheral actions and association with cardiometabolic diseases. J Mol Med (Berl) 2021; 100:185-196. [PMID: 34797389 DOI: 10.1007/s00109-021-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
The first genome-wide association study on coronary artery disease (CAD) in the Han Chinese population identified C6orf105 as a susceptibility gene. The C6orf105 gene was later found to encode for a protein that regulates tissue factor pathway inhibitor (TFPI) expression in endothelial cells in an androgen-dependent manner, and the novel protein was thus termed androgen-dependent TFPI-regulating protein (ADTRP). Since the identification of ADTRP, there have been several studies associating genetic variants on the ADTRP gene with CAD risk, as well as research providing mechanistic insights on this novel protein and its functional role. ADTRP is a membrane protein, whose expression is upregulated by androgen, GATA-binding protein 2, oxidized low-density lipoprotein, peroxisome proliferator-activated receptors, and low-density lipoprotein receptors. ADTRP regulates multiple downstream targets involved in coagulation, inflammation, endothelial function, and vascular integrity. In addition, ADTRP functions as a fatty acid esters of hydroxy fatty acid (FAHFA)-specific hydrolase that is involved in energy metabolism. Current evidence suggests that ADTRP may play a role in the pathogenesis of atherosclerosis, CAD, obesity, and metabolic disorders. This review summarizes the current literature on ADTRP, with a focus on the peripheral actions of ADTRP, including expression, genetic variations, signaling pathways, and function. The evidence linking ADTRP and cardiometabolic diseases will also be discussed.
Collapse
Affiliation(s)
- Zizheng Kee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Sze Min Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore.
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore.
| |
Collapse
|
6
|
Huang Y, Sun M, Zhuang L, He J. Molecular Phylogenetic Analysis of the AIG Family in Vertebrates. Genes (Basel) 2021; 12:genes12081190. [PMID: 34440364 PMCID: PMC8394805 DOI: 10.3390/genes12081190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Minghao Sun
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| | - Jin He
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| |
Collapse
|