1
|
Wu P, Wang TY, Wang YH, Liu AL, Zhao SP, Feng K, Li LJ. Effect of Slow-Release Urea on Yield and Quality of Euryale ferox. Int J Mol Sci 2024; 25:11737. [PMID: 39519289 PMCID: PMC11546189 DOI: 10.3390/ijms252111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Slow-release urea, as an environmentally friendly fertiliser, can provide a continuous and uniform supply of nutrients needed by the crop, reduce the amount and frequency of fertiliser application, and promote the uptake and utilisation of nitrogen in crops. The production of E. ferox is often dominated by the application of quick-acting fertilisers, resulting in serious problems of over-fertilisation, inappropriate periods of fertilisation, eutrophication of soil and water due to fertilisation, and difficulties in applying fertilisers. Therefore, in this study, different amounts (CK, T1, T2, T3, T4, T5) of SRU (Slow-release Urea) were first applied, and T3 (18.8 kg·667 m-2) was found to significantly improve both yield and quality. Further, it was found that under different SRU (CK, S1, S2, S3, S4) application period treatments, application of 18.8 kg·667 m-2 at AFP20 (S2) period significantly increased the yield and quality of E. ferox. In the seed kernels of E. ferox, the total yield, soluble sugar content, total starch, and flavonoid content increased significantly by 10.35%, 36.40%, 5.91%, and 22.80%, respectively, compared with CK. In addition, the expression of key sugar transporter genes (EfSWEETs), flavonoid synthesis-related genes (EfPAL, EfDFR, etc.), and starch synthesis-related enzyme activities (SBE, SSS, GBSS) were significantly increased. By exploring the quantity of application and application period of SRU, this study was carried out to investigate the in-depth effect of SRU on the growth and development of E. ferox and to provide technical references for the increase in E. ferox yield, the improvement in E. ferox quality, and the simplification of fertiliser application.
Collapse
Affiliation(s)
- Peng Wu
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Tian-Yu Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Yu-Hao Wang
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Ai-Lian Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Shu-Ping Zhao
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Kai Feng
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
| | - Liang-Jun Li
- School of Horticulture and Landscape Architecture, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, China; (P.W.); (T.-Y.W.); (Y.-H.W.); (A.-L.L.); (S.-P.Z.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Yu Y, Huang J, Deng Z, Wang Y, Jiang X, Wang J. Soil Application of Bacillus subtilis Regulates Flavonoid and Alkaloids Biosynthesis in Mulberry Leaves. Metabolites 2024; 14:180. [PMID: 38668308 PMCID: PMC11052171 DOI: 10.3390/metabo14040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.
Collapse
Affiliation(s)
- Yanfang Yu
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Jinzhi Huang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Zhenhua Deng
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Yawei Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Xinfeng Jiang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| | - Junwen Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (Y.Y.); (J.H.); (Z.D.); (Y.W.); (X.J.)
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330202, China
| |
Collapse
|
3
|
Yu L, Yue J, Dai Y, Zhang L, Wang Q, Yuan J. Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensis by UPLC-ESI-MS/MS and RNA sequencing. BMC PLANT BIOLOGY 2023; 23:466. [PMID: 37803268 PMCID: PMC10557168 DOI: 10.1186/s12870-023-04494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Chimonobambusa hejiangensis (C.hejiangensis) is a high-quality bamboo species native to China, known for its shoots that are a popular nutritional food. Three C.hejiangensis cultivars exhibit unique color variation in their shoot sheaths, however, the molecular mechanism behind this color change remains unclear. METHODS We investigated flavonoid accumulation in the three bamboo cultivar sheaths using metabolomics and transcriptomics. RESULTS UPLC-MS/MS identified 969 metabolites, with 187, 103, and 132 having differential accumulation in the yellow-sheath (YShe) vs. spot-sheath (SShe)/black-sheath (BShe) and SShe vs. BShe comparison groups. Flavonoids were the major metabolites that determined bamboo sheath color through differential accumulation of metabolites (DAMs) analysis. Additionally, there were 33 significantly differentially expressed flavonoid structural genes involved in the anthocyanin synthesis pathway based on transcriptome data. We conducted a KEGG analysis on DEGs and DAMs, revealing significant enrichment of phenylpropanoid and flavonoid biosynthetic pathways. Using gene co-expression network analysis, we identified nine structural genes and 29 transcription factors strongly linked to anthocyanin biosynthesis. CONCLUSION We identified a comprehensive regulatory network for flavonoid biosynthesis which should improve our comprehension of the molecular mechanisms responsible for color variation and flavonoid biosynthesis in bamboo sheaths.
Collapse
Affiliation(s)
- Lei Yu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China
| | - Jinjun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China
| | - Yaxing Dai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China
| | - Ling Zhang
- Forestry and Bamboo Bureau of Changning County, Sichuan Province, 644300, China
| | - Qiu Wang
- Forestry and Bamboo Bureau of Changning County, Sichuan Province, 644300, China
| | - Jinling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, 311400, China.
| |
Collapse
|
4
|
Jiang J, Ou H, Chen R, Lu H, Zhou L, Yang Z. The Ethnopharmacological, Phytochemical, and Pharmacological Review of Euryale ferox Salisb.: A Chinese Medicine Food Homology. Molecules 2023; 28:molecules28114399. [PMID: 37298878 DOI: 10.3390/molecules28114399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Euryale ferox Salisb. (prickly water lily) is the only extent of the genus Euryale that has been widely distributed in China, India, Korea, and Japan. The seeds of E. ferox (EFS) have been categorized as superior food for 2000 years in China, based on their abundant nutrients including polysaccharides, polyphenols, sesquineolignans, tocopherols, cyclic dipeptides, glucosylsterols, cerebrosides, and triterpenoids. These constituents exert multiple pharmacological effects, such as antioxidant, hypoglycemic, cardioprotective, antibacterial, anticancer, antidepression, and hepatoprotective properties. There are very few summarized reports on E. ferox, albeit with its high nutritional value and beneficial activities. Therefore, we collected the reported literature (since 1980), medical classics, database, and pharmacopeia of E. ferox, and summarized the botanical classification, traditional uses, phytochemicals, and pharmacological effects of E. ferox, which will provide new insights for further research and development of EFS-derived functional products.
Collapse
Affiliation(s)
- Jiahui Jiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haiyan Ou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruiye Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huiyun Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Liu S, Wang J, Liu Z, Yang Y, Li X. FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat. Curr Issues Mol Biol 2023; 45:3375-3390. [PMID: 37185745 PMCID: PMC10136674 DOI: 10.3390/cimb45040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
As a drought-tolerant crop, Tartary buckwheat survives under adverse environmental conditions, including drought stress. Proanthocyanidins (PAs) and anthocyanins are flavonoid compounds, and they participate in the regulation of resistance to both biotic and abiotic stresses by triggering genes' biosynthesis of flavonoids. In this study, a basic leucine zipper, basic leucine zipper 85 (FtbZIP85), which was predominantly expressed in seeds, was isolated from Tartary buckwheat. Our study shows that the expressions of FtDFR, FtbZIP85 and FtSnRK2.6 were tissue-specific and located in both the nucleus and the cytosol. FtbZIP85 could positively regulate PA biosynthesis by binding to the ABA-responsive element (ABRE) in the promoter of dihydroflavonol 4-reductase (FtDFR), which is a key enzyme in the phenylpropanoid biosynthetic pathway. Additionally, FtbZIP85 was also involved in the regulation of PA biosynthesis via interactions with FtSnRK2.6 but not with FtSnRK2.2/2.3. This study reveals that FtbZIP85 is a positive regulator of PA biosynthesis in TB.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Feng K, Kan XY, Liu Q, Yan YJ, Sun N, Yang ZY, Zhao SP, Wu P, Li LJ. Metabolomics Analysis Reveals Metabolites and Metabolic Pathways Involved in the Growth and Quality of Water Dropwort [ Oenanthe javanica (Blume) DC.] under Nutrient Solution Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1459. [PMID: 37050085 PMCID: PMC10097307 DOI: 10.3390/plants12071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Water dropwort (Oenanthe javanica (Blume) DC.) is an important vegetable crop. Nutrient liquid culture has become an important cultivation method in the production of water dropwort. However, the effects of different nutrient solution cultivation methods on the growth and quality of water dropwort remains unclear. In this study, to screen the most suitable nutrient solution formula for the cultivation of water dropwort, the effects of different nutrient solution formulas (Hoagland, Cooper, Dutch greenhouse, Garden-style, Yamasaki and SCAU) on plant physiological and quality characteristics are investigated. The plant height, root length, water content (%), distribution rate of dry matter (%), chlorophyll, VC, flavonoid, total phenolic, DPPH and dietary fiber of water dropwort under different nutrient solutions were determined. According to the analytic hierarchy process (AHP) of the growth index and quality index of water dropwort under different nutrient solutions, the Yamazaki nutrient solution was considered to be the most suitable nutrient solution formula for water dropwort. To further confirm the differences of water dropwort under nutrient solution culture and soil culture, the broadly targeted metabolomics were performed. A total of 485 metabolites were detected in water dropwort under optimal nutrient solution and soil cultivation. Metabolomics analysis showed that flavonoids were the most abundant differential accumulated metabolites, and most flavonoids were up-regulated. A qRT-PCR assay indicated that the structural genes of the flavonoid biosynthesis pathway (PAL, C4H, CHS, CHI, F3H, DFR, UFGT) were significantly higher under the Yamasaki nutrient solution treatment. The current study provided a theoretical basis and technical guidance for the nutrient solution cultivation of water dropwort. Meanwhile, this study provides new insights into the study of flavonoids in water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Xia-Yue Kan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Qing Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Liu A, Zhu Y, Wang Y, Wang T, Zhao S, Feng K, Li L, Wu P. Molecular identification of phenylalanine ammonia lyase-encoding genes EfPALs and EfPAL2-interacting transcription factors in Euryale ferox. FRONTIERS IN PLANT SCIENCE 2023; 14:1114345. [PMID: 37008508 PMCID: PMC10064797 DOI: 10.3389/fpls.2023.1114345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Flavonoids are one of the most important secondary metabolites in plants, and phenylalanine ammonia-lyase (PAL) is the first rate-limiting enzyme for their biosynthesis. However, detailed information on the regulation of PAL in plants is still little. In this study, PAL in E. ferox was identified and functionally analyzed, and its upstream regulatory network was investigated. Through genome-wide identification, we obtained 12 putative PAL genes from E. ferox. Phylogenetic tree and synteny analysis revealed that PAL in E. ferox was expanded and mostly preserved. Subsequently, enzyme activity assays demonstrated that EfPAL1 and EfPAL2 both catalyzed the production of cinnamic acid from phenylalanine only, with EfPAL2 exhibiting a superior enzyme activity. Overexpression of EfPAL1 and EfPAL2 in Arabidopsis thaliana, respectively, both enhanced the biosynthesis of flavonoids. Furthermore, two transcription factors, EfZAT11 and EfHY5, were identified by yeast one-hybrid library assays as binding to the promoter of EfPAL2, and further luciferase (LUC) activity analysis indicated that EfZAT11 promoted the expression of EfPAL2, while EfHY5 repressed the expression of EfPAL2. These results suggested that EfZAT11 and EfHY5 positively and negatively regulate flavonoid biosynthesis, respectively. Subcellular localization revealed that EfZAT11 and EfHY5 were localized in the nucleus. Our findings clarified the key EfPAL1 and EfPAL2 of flavonoid biosynthesis in E. ferox and established the upstream regulatory network of EfPAL2, which would provide novel information for the study of flavonoid biosynthesis mechanism.
Collapse
Affiliation(s)
- AiLian Liu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - Yue Zhu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - YuHao Wang
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - TianYu Wang
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - ShuPing Zhao
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
| | - LiangJun Li
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Wu M, Jiang Y, Wang J, Luo T, Yi Y, Wang H, Wang L. The Effect and Mechanism of Corilagin from Euryale Ferox Salisb Shell on LPS-Induced Inflammation in Raw264.7 Cells. Foods 2023; 12:foods12050979. [PMID: 36900496 PMCID: PMC10000429 DOI: 10.3390/foods12050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
(1) Background: Euryale ferox Salisb is a large aquatic plant of the water lily family and an edible economic crop with medicinal value. The annual output of Euryale ferox Salisb shell in China is higher than 1000 tons, often as waste or used as fuel, resulting in waste of resources and environmental pollution. We isolated and identified the corilagin monomer from Euryale ferox Salisb shell and discovered its potential anti-inflammatory effects. This study aimed to investigate the anti-inflammatory effect of corilagin isolated from Euryale ferox Salisb shell. (2) Methods: We predict the anti-inflammatory mechanism by pharmacology. LPS was added to 264.7 cell medium to induce an inflammatory state, and the safe action range of corilagin was screened using CCK-8. The Griess method was used to determine NO content. The presence of TNF-α, IL-6, IL-1β, and IL-10 was determined by ELISA to evaluate the effect of corilagin on the secretion of inflammatory factors, while that of reactive oxygen species was detected by flow cytometry. The gene expression levels of TNF-α, IL-6, COX-2, and iNOS were determined using qRT-PCR. qRT-PCR and Western blot were used to detect the mRNA and expression of target genes in the network pharmacologic prediction pathway. (3) Results: Network pharmacology analysis revealed that the anti-inflammatory effect of corilagin may be related to MAPK and TOLL-like receptor signaling pathways. The results demonstrated the presence of an anti-inflammatory effect, as indicated by the reduction in the level of NO, TNF-α, IL-6, IL-1β, IL-10, and ROS in Raw264.7 cells induced by LPS. The results suggest that corilagin reduced the expression of TNF-α, IL-6, COX-2, and iNOS genes in Raw264.7 cells induced by LPS. The downregulation of the phosphorylation of IκB-α protein related to the toll-like receptor signaling pathway and upregulation of the phosphorylation of key proteins in the MAPK signaling pathway, P65 and JNK, resulted in reduced tolerance toward lipopolysaccharide, allowing for the exertion of the immune response. (4) Conclusions: The results demonstrate the significant anti-inflammatory effect of corilagin from Euryale ferox Salisb shell. This compound regulates the tolerance state of macrophages toward lipopolysaccharide through the NF-κB signaling pathway and plays an immunoregulatory role. The compound also regulates the expression of iNOS through the MAPK signaling pathway, thereby alleviating the cell damage caused by excessive NO release.
Collapse
Affiliation(s)
- Minrui Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuhan Jiang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junnan Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ting Luo
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Limei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence:
| |
Collapse
|
9
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
10
|
Liu F, Wang Y, Corke H, Zhu H. Dynamic changes in flavonoids content during congou black tea processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Integrative Analysis of the Metabolome and Transcriptome Provides Insights into the Mechanisms of Flavonoid Biosynthesis in Quinoa Seeds at Different Developmental Stages. Metabolites 2022; 12:metabo12100887. [PMID: 36295789 PMCID: PMC9609036 DOI: 10.3390/metabo12100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a crop with high nutritional and health benefits. Quinoa seeds are rich in flavonoid compounds; however, the mechanisms behind quinoa flavonoid biosynthesis remain unclear. We independently selected the high-generation quinoa strain ‘Dianli-3260′, and used its seeds at the filling, milk ripening, wax ripening, and mature stages for extensive targeted metabolome analysis combined with joint transcriptome analysis. The results showed that the molecular mechanism of flavonoid biosynthesis in quinoa seeds was mainly concentrated in two pathways: “flavonoid biosynthesis pathway” and “flavone and flavonol biosynthesis pathway”. Totally, 154 flavonoid-related metabolites, mainly flavones and flavonols, were detected in the four development stages. Moreover, 39,738 genes were annotated with KEGG functions, and most structural genes of flavonoid biosynthesis were differentially expressed during grain development. We analyzed the differential flavonoid metabolites and transcriptome changes between the four development stages of quinoa seeds and found that 11 differential flavonoid metabolites and 22 differential genes were the key factors for the difference in flavonoid biosynthesis. This study provides important information on the mechanisms underlying quinoa flavonoid biosynthesis, the screening of potential quinoa flavonoid biosynthesis regulation target genes, and the development of quinoa products.
Collapse
|
12
|
Wu P, Liu A, Zhu Y, Li X, Wang Y, Li L. Proteomic analysis of Euryale ferox Salisb seeds at different developmental stages. Gene 2022; 834:146645. [PMID: 35680017 DOI: 10.1016/j.gene.2022.146645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
The development of plant seeds is accompanied by changes in their internal substances. The edible part of E. ferox is the seed, and starch and flavonoids are the storage substances and functional substances in E. ferox seeds respectively. Herein, four time points of seed development, including after flowering T10 (10 days), T20 (20 days), T30 (30 days) and T40 (40 days), were investigated by using iTRAQ technology. A total of 2809 differential proteins were identified. The enrichment analysis of differential proteins found that they were mainly enriched in starch synthesis pathways and flavonoid biosynthesis pathways. The key candidate enzymes for starch synthesis, APS (c54069), APL (c55730), SBE (c56416), SSS (c54912) and GBSS (c53181), were identified. At the same time,PAL (c50934), CHS (c49212), F3H (c35949) and ANS (c54610) may be key enzymes in flavonoid biosynthesis. In addition, the ABA signal transduction pathway was analyzed and it was identified that PYL3 (c54854) and ABI5 (c56122) are up-regulated from T10 to T40, and it is speculated that they play an important regulatory role in the development of E. ferox seeds. Together, these results reveals the dynamic changes during the development of E. ferox seeds, which will provide guidance for the study of the molecular mechanism of starch and flavonoids.
Collapse
Affiliation(s)
- Peng Wu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China.
| | - AiLian Liu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Yue Zhu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiang Li
- School of Life Science, Nanchang University, Qianhu Road No. 999, Nanchang 330031, Jiangxi Province, PR China
| | - YuHao Wang
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - LiangJun Li
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China.
| |
Collapse
|
13
|
Tang Q, Chi FM, Liu HD, Zhang HJ, Song Y. Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry. FRONTIERS IN PLANT SCIENCE 2021; 12:754325. [PMID: 34659323 PMCID: PMC8514788 DOI: 10.3389/fpls.2021.754325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 05/24/2023]
Abstract
Blueberries (Vaccinium corymbosum) contain large amounts of flavonoids, which play important roles in the plant's ability to resist stress and can also have beneficial effects on human health when the fruits are eaten. However, the molecular mechanisms that regulate flavonoid synthesis in blueberries are still unclear. In this study, we combined two different transcriptome sequencing platforms, single-molecule real-time (SMRT) and Illumina sequencing, to elucidate the flavonoid synthetic pathways in blueberries. We analyzed transcript quantity, length, and the number of annotated genes. We mined genes associated with flavonoid synthesis (such as anthocyanins, flavonols, and proanthocyanidins) and employed fluorescence quantitative PCR to analyze the expression of these genes and their correlation with flavonoid synthesis. We discovered one R2R3 MYB transcription factor from the sequencing library, VcMYB1, that can positively regulate anthocyanin synthesis in blueberries. VcMYB1 is mainly expressed in colored (mature) fruits. Experiments showed that overexpression and transient expression of VcMYB1 promoted anthocyanin synthesis in Arabidopsis, tobacco (Nicotiana benthamiana) plants and green blueberry fruits. Yeast one-hybrid (Y1H) assay, electrophoretic mobility shift assay, and transient expression experiments showed that VcMYB1 binds to the MYB binding site on the promoter of the structural gene for anthocyanin synthesis, VcMYB1 to positively regulate the transcription of VcDFR, thereby promoting anthocyanin synthesis. We also performed an in-depth investigation of transcriptional regulation of anthocyanin synthesis. This study provides background information and data for studying the synthetic pathways of flavonoids and other secondary metabolites in blueberries.
Collapse
|
14
|
Ma X, Ding Q, Hou X, You X. Analysis of Flavonoid Metabolites in Watercress ( Nasturtium officinale R. Br.) and the Non-Heading Chinese Cabbage ( Brassica rapa ssp. chinensis cv. Aijiaohuang) Using UHPLC-ESI-MS/MS. Molecules 2021; 26:5825. [PMID: 34641369 PMCID: PMC8510128 DOI: 10.3390/molecules26195825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Flavonoids from plants play an important role in our diet. Watercress is a special plant that is rich in flavonoids. In this study, four important watercress varieties were compared with non-heading Chinese cabbage by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). A total of 132 flavonoid metabolites (including 8 anthocyanins, 2 dihydroflavone, 3 dihydroflavonol, 1 flavanols, 22 flavones, 11 flavonoid carbonosides, 82 flavonols, and 3 isoflavones) were detected. Flavonoid metabolites varied widely in different samples. Both the non-heading Chinese cabbage and the variety of watercress from Guangdong, China, had their own unique metabolites. This work is helpful to better understand flavonoid metabolites between the non-heading Chinese cabbage and the other four watercress varieties, and to provide a reliable reference value for further research.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (Q.D.)
| | - Qiang Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (Q.D.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (Q.D.)
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|