1
|
Huang X, Gu C, Ran Q, Chen L, Tian S, Zhong M, Ren Z, Wang Q, Yang M, Ji J, Wan W, Huang J, Zhang H, Jin X. Exploring the forensic effectiveness and population genetic differentiation in Guizhou Miao and Bouyei group by the self-constructed panel of X chromosomal multi-insertion/deletions. BMC Genomics 2024; 25:1185. [PMID: 39648202 PMCID: PMC11626752 DOI: 10.1186/s12864-024-11088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
In this research, a self-developed panel comprising 22 X chromosomal multi-InDels and one X-STR was used to explore the genetic polymorphisms and forensic characteristics of these loci in Guizhou Miao and Guizhou Bouyei populations. Besides, genetic affiliations among Guizhou Miao, Guizhou Bouyei and Guizhou Han populations were investigated using principal component analysis, STRUCTURE and machine learning methods. The findings indicated that these loci in the male and female samples had comprehensive discrimination powers greater than 0.999999999. Meanwhile, the cumulative mean exclusion chance of these 23 loci for trio and duo cases were also greater than 0.9999 in Guizhou Miao and Guizhou Bouyei populations. Population genetic analyses of three Guizhou populations revealed that there were relatively low genetic divergences among these populations based on the self-constructed panel. In conclusion, this system could be utilized as the valuable tool for forensic personal identification and parentage testing in Guizhou Miao and Guizhou Bouyei populations.
Collapse
Affiliation(s)
- Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Changyun Gu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qianchong Ran
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Min Zhong
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wen Wan
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jiang Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
2
|
Yang C, Liu C, Lun M, Chen X, Xu Q, Liu X, He M, Ye L, He G, Wang M, Liu C. Dissecting the genetic admixture and forensic signatures of ethnolinguistically diverse Chinese populations via a 114-plex NGS InDel panel. BMC Genomics 2024; 25:1137. [PMID: 39587470 PMCID: PMC11587575 DOI: 10.1186/s12864-024-10894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
Comprehensive characterizations of genetic diversity and demographic models of ethnolinguistically diverse Chinese populations are essential for elucidating their forensic characteristics and evolutionary past. We developed a 114-plex NGS InDel panel to genotype 114 genome-wide markers and investigated the genetic structures of Zhuang, Hui, Miao, Li, Tibetan, Yi, and Mongolian populations, encompassing five language families. This panel demonstrated robust performance, with exceptional potential for forensic individual identification and paternity testing, evidenced by the combined power of discrimination for 77 autosomal InDels (ranged from 1-3.6400 × 10-30 to 1-3.5713 × 10-32) and the combined power of exclusion (ranged from 1-2.1863 × 10-6 to 1-2.1261 × 10-7). The cumulative mean exclusion chance for 32 X-chromosomal InDels varied between 0.99996 and 0.99999 for trios and 0.99760 to 0.99898 for duos. We also analyzed genetic similarities and differences between these populations and 27 global populations, revealing distinct clusters among African, South Asian, East Asian, and European groups, with a close genetic affinity to East Asians. Notably, we identified geography-related genetic substructures: Inner Mongolia Mongolians and Gansu Huis formed a northern branch, Tibetans and Yis from Sichuan constituted a highland branch, and Guangxi Zhuangs exhibited close ties with Hainan Lis and Guangxi Miaos in the southern branch. Additionally, many InDels proved to be ancestry-informative markers for biogeographic ancestry inference. Collectively, these findings underscore the utility of the 114-plex NGS InDel panel as a complementary tool for forensic investigations and as a source of insights into the genetic architecture of ethnolinguistically distinct Chinese populations.
Collapse
Affiliation(s)
- Chengliang Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Changhui Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Miaoqiang Lun
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Chen
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Xueyuan Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Meiyun He
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Guanglin He
- Center for Archaeological Science, Sichuan University, Chengdu, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, China.
| | - Mengge Wang
- Center for Archaeological Science, Sichuan University, Chengdu, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, China.
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou, China.
| |
Collapse
|
3
|
Ferraretti G, Abondio P, Alberti M, Dezi A, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Peluzzi D, Sarno S, Sazzini M. Archaic introgression contributed to shape the adaptive modulation of angiogenesis and cardiovascular traits in human high-altitude populations from the Himalayas. eLife 2024; 12:RP89815. [PMID: 39513938 PMCID: PMC11548878 DOI: 10.7554/elife.89815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of BolognaBolognaItaly
| | - Marta Alberti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Agnese Dezi
- Department of Emergency and Organ Transplantation, University of Bari Aldo MoroBari Aldo MoroItaly
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | | | | | | | - Luca Natali
- Explora Nunaat International, Montorio al VomanoTeramoItaly
- Italian Institute of Human PaleontologyRomeItaly
| | - Angela Corcelli
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo MoroBariItaly
| | | | - Davide Peluzzi
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of BolognaBolognaItaly
| |
Collapse
|
4
|
Duan S, Wang M, Wang Z, Liu Y, Jiang X, Su H, Cai Y, Sun Q, Sun Y, Li X, Chen J, Zhang Y, Yan J, Nie S, Hu L, Tang R, Yun L, Wang CC, Liu C, Yang J, He G. Malaria resistance-related biological adaptation and complex evolutionary footprints inferred from one integrative Tai-Kadai-related genomic resource. Heliyon 2024; 10:e29235. [PMID: 38665582 PMCID: PMC11043949 DOI: 10.1016/j.heliyon.2024.e29235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogen‒host adaptative interactions and complex population demographical processes, including admixture, drift, and Darwen selection, have considerably shaped the Neolithic-to-Modern Western Eurasian population structure and genetic susceptibility to modern human diseases. However, the genetic footprints of evolutionary events in East Asia remain unknown due to the underrepresentation of genomic diversity and the design of large-scale population studies. We reported one aggregated database of genome-wide SNP variations from 796 Tai-Kadai (TK) genomes, including that of Bouyei first reported here, to explore the genetic history, population structure, and biological adaptative features of TK people from southern China and Southeast Asia. We found geography-related population substructure among TK people using the state-of-the-art population genetic structure reconstruction techniques based on the allele frequency spectrum and haplotype-resolved phased fragments. We found that the northern TK people from Guizhou harbored one TK-dominant ancestry maximized in the Bouyei people, and the southern TK people from Thailand were more influenced by Southeast Asians and indigenous people. We reconstructed fitted admixture models and demographic graphs, which showed that TK people received gene flow from ancient southern rice farmer-related lineages related to the Hmong-Mien and Austroasiatic people and from northern millet farmers associated with the Sino-Tibetan people. Biological adaptation focused on our identified unique TK lineages related to Bouyei, which showed many adaptive signatures conferring Malaria resistance and low-rate lipid metabolism. Further gene enrichment, the allele frequency distribution of derived alleles, and their correlation with the incidence of Malaria further confirmed that CR1 played an essential role in the resistance of Malaria in the ancient "Baiyue" tribes.
Collapse
Affiliation(s)
- Shuhan Duan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Xiucheng Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Haoran Su
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Yan Cai
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yijiu Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Guanglin He
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
5
|
Sun Q, Wang M, Lu T, Duan S, Liu Y, Chen J, Wang Z, Sun Y, Li X, Wang S, Lu L, Hu L, Yun L, Yang J, Yan J, Nie S, Zhu Y, Chen G, Wang CC, Liu C, He G, Tang R. Differentiated adaptative genetic architecture and language-related demographical history in South China inferred from 619 genomes from 56 populations. BMC Biol 2024; 22:55. [PMID: 38448908 PMCID: PMC10918984 DOI: 10.1186/s12915-024-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.
Collapse
Affiliation(s)
- Qiuxia Sun
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Tao Lu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shaomei Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Liuyi Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Forensic Science Institute, Guangzhou, 510055, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| |
Collapse
|
6
|
He G, Wang P, Chen J, Liu Y, Sun Y, Hu R, Duan S, Sun Q, Tang R, Yang J, Wang Z, Yun L, Hu L, Yan J, Nie S, Wei L, Liu C, Wang M. Differentiated genomic footprints suggest isolation and long-distance migration of Hmong-Mien populations. BMC Biol 2024; 22:18. [PMID: 38273256 PMCID: PMC10809681 DOI: 10.1186/s12915-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| | - Peixin Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Medical Information, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Rong Hu
- School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liping Hu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Inner Mongolia, 010028, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
7
|
Wang J, Yang L, Duan S, Sun Q, Li Y, Wu J, Wu W, Wang Z, Liu Y, Tang R, Yang J, Liu C, Yuan B, Wang D, Xu J, Wang M, He G. Genome-wide allele and haplotype-sharing patterns suggested one unique Hmong-Mein-related lineage and biological adaptation history in Southwest China. Hum Genomics 2023; 17:3. [PMID: 36721228 PMCID: PMC9887792 DOI: 10.1186/s40246-023-00452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fine-scale genetic structure of ethnolinguistically diverse Chinese populations can fill the gap in the missing diversity and evolutionary landscape of East Asians, particularly for anthropologically informed Chinese minorities. Hmong-Mien (HM) people were one of the most significant indigenous populations in South China and Southeast Asia, which were suggested to be the descendants of the ancient Yangtze rice farmers based on linguistic and archeological evidence. However, their deep population history and biological adaptative features remained to be fully characterized. OBJECTIVES To explore the evolutionary and adaptive characteristics of the Miao people, we genotyped genome-wide SNP data in Guizhou HM-speaking populations and merged it with modern and ancient reference populations via a comprehensive population genetic analysis and evolutionary admixture modeling. RESULTS The overall genetic admixture landscape of Guizhou Miao showed genetic differentiation between them and other linguistically diverse Guizhou populations. Admixture models further confirmed that Miao people derived their primary ancestry from geographically close Guangxi Gaohuahua people. The estimated identity by descent and effective population size confirmed a plausible population bottleneck, contributing to their unique genetic diversity and population structure patterns. We finally identified several natural selection candidate genes associated with several biological pathways. CONCLUSIONS Guizhou Miao possessed a specific genetic structure and harbored a close genetic relationship with geographically close southern Chinese indigenous populations and Guangxi historical people. Miao people derived their major ancestry from geographically close Guangxi Gaohuahua people and experienced a plausible population bottleneck which contributed to the unique pattern of their genetic diversity and structure. Future ancient DNA from Shijiahe and Qujialing will provide new insights into the origin of the Miao people.
Collapse
Affiliation(s)
- Jiawen Wang
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Lin Yang
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Shuhan Duan
- grid.449525.b0000 0004 1798 4472School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000 China
| | - Qiuxia Sun
- grid.203458.80000 0000 8653 0555Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331 China
| | - Youjing Li
- grid.411634.50000 0004 0632 4559Congjiang People’s Hospital, Congjiang, 557499 China
| | - Jun Wu
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Wenxin Wu
- grid.413458.f0000 0000 9330 9891College of Forensic Medicine, Guizhou Medical University, Guiyang, 550004 China
| | - Zheng Wang
- grid.13291.380000 0001 0807 1581Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610000 China
| | - Yan Liu
- grid.13291.380000 0001 0807 1581Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041 China ,grid.449525.b0000 0004 1798 4472School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000 China
| | - Renkuan Tang
- grid.203458.80000 0000 8653 0555Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331 China
| | - Junbao Yang
- grid.449525.b0000 0004 1798 4472School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000 China
| | - Chao Liu
- grid.12981.330000 0001 2360 039XFaculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Buhong Yuan
- Longli People’s Hospital, Longli, 551299 China
| | - Daoyong Wang
- Nayong Guohua Yixin Hospital, Nayong, 553306 China
| | - Jianwei Xu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|