1
|
Mankoti M, Pandit NK, Meena SS, Mohanty A. Investigating the genomic and metabolic abilities of PGPR Pseudomonas fluorescens in promoting plant growth and fire blight management. Mol Genet Genomics 2024; 299:110. [PMID: 39601883 DOI: 10.1007/s00438-024-02198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024]
Abstract
Pseudomonas fluorescens is commonly found in diverse environments and is well known for its metabolic and antagonistic properties. Despite its remarkable attributes, its potential role in promoting plant growth remains unexplored. This study examines these traits across 14 strains residing in diverse rhizosphere environments through pangenome and comparative genome analysis, alongside molecular docking studies against Erwinia amylovora to combat fire blight. Whole genome analysis revealed circular chromosome (6.01-7.07 Mb) with GC content averaging 59.95-63.39%. Predicted genes included 16S rRNA and protein-coding genes ranging from 4435 to 6393 bp and 1527 to 1541 bp, respectively. Pangenome analysis unveiled an open pangenome, shedding light on genetic factors influencing plant growth promotion and biocontrol, including nitrogen fixation, phosphorus solubilization, siderophore production, stress tolerance, flagella biosynthesis, and induced systemic resistance. Furthermore, pyrrolnitrin, phenazine-1-carboxylic acid, pyoluteorin, lokisin, 2,4-diacetylpholoroglucinol and pseudomonic acid were identified. Molecular docking against key proteins of E. amylovora highlighted the high binding affinities of 2,4-diacetylphloroglucinol, pseudomonic acid, and lokisin. These findings underscore the multifaceted role of P. fluorescens in plant growth promotion and biocontrol, with key biomolecules showing promising applications in plant growth and defense against pathogens.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | - Nisha Kumari Pandit
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India.
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India.
| |
Collapse
|
2
|
Jalal-Ud-Din S, Elahi NN, Mubeen F. Significance of zinc-solubilizing plant growth-promoting rhizobacterial strains in nutrient acquisition, enhancement of growth, yield, and oil content of canola ( Brassica napus L.). Front Microbiol 2024; 15:1446064. [PMID: 39397794 PMCID: PMC11466859 DOI: 10.3389/fmicb.2024.1446064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
The present study was conducted with the aim to isolate, characterize, and identify the promising zinc-solubilizing rhizobacteria found naturally in the rhizosphere of canola (Brassica napus L.) plants. The study investigated the roles of these strains in nutrient acquisition and assimilation of extracellular molecules such as hormones and secondary metabolites. Ten isolated promising zinc-solubilizing strains (CLS1, CLS2, CLS3, CLS6, CLS8, CLS9, CLS11, CLS12, CLS13, and CLS15) were selected and characterized biochemically. Almost all the tested strains were Gram-positive, could fix nitrogen, and were positive for indole acetic acid, HCN, exopolysaccharides, and siderophore production. These effective zinc-solubilizing strains were identified through 16S rRNA gene sequencing. Based on the amount of solubilized zinc and halo zone diameter, four potent strains (CLS1, CLS2, CLS3, and CLS9) were selected for pot and field evaluation. Among all the identified bacterial genera isolated from the rhizosphere of the same host plant at different sampling sites, Priestia aryabhattai was found most abundant and found at all three sampling sites. The strains Priestia megaterium, Staphylococcus succinus, and Bacillus cereus were found at two different sites. Bacillus subtilis was found at only one site. These strains have a number of plant growth-stimulating characteristics as well as the ability to colonize plant roots successfully. The results indicated that inoculation of all these four zinc-solubilizing tested strains enhanced the plant growth, oil contents, and yield attributes of canola as compared to non-inoculated control with fertilizer levels. Staphylococcus succinus (CLS1) was first reported as a zinc solubilizer and associated with canola. Priestia aryabhattai (CLS2) and Priestia megaterium (CLS9) were found to be the best strains, with the most pronounced beneficial effect on canola growth and yield traits in both pot and field conditions. The site-specific dominance of these strains observed in this study may contribute toward decision-making for the development of specific inocula for canola. Therefore, identification of these strains could help in providing adequate amount of soluble zinc along with enhanced plant growth, yield, and oil content of canola.
Collapse
Affiliation(s)
| | | | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
3
|
Choi S, Jung H, Kim Y, Han JA, Kim EY, Lee HS. Draft genome sequence of Priestia megaterium strain IMGN3 derived from soil. Microbiol Resour Announc 2024; 13:e0045824. [PMID: 39162470 PMCID: PMC11385723 DOI: 10.1128/mra.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Priestia megaterium sp. strain IMGN3 was isolated from the soil in South Korea. Here, we report its draft genome sequence, comprising 12 contigs with a total sequence length of 5.64 Mbp. This genome will provide valuable resources for future genomic studies, particularly focusing on plant growth promotion and biocontrol.
Collapse
Affiliation(s)
- Sejin Choi
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, South Korea
| | - Hoseong Jung
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, South Korea
| | - Yeongjun Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, South Korea
| | - Jeong A Han
- Gyeonggido Agricultural Research & Extension Services, Hwaseong, South Korea
| | - Eun Yu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, South Korea
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
- Environment Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ho-Seok Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Jankoski PR, Bach E, da Fonseca RN, Hübner S, de Carvalho JB, de Souza da Motta A. Bacillus altitudinis 1.4 genome analysis-functional annotation of probiotic properties and immunomodulatory activity. World J Microbiol Biotechnol 2024; 40:293. [PMID: 39112831 DOI: 10.1007/s11274-024-04096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
Probiotics are live microorganisms that, when administered in adequate quantities, provide health benefits to the host. In this study, phenotypic and genotypic methods were used to evaluate the probiotic properties of Bacillus altitudinis 1.4. The isolate was sensitive to all antimicrobials tested and presented a positive result in the hemolysis test. B. altitudinis 1.4 spores were more resistant than vegetative cells, when evaluated in simulation of cell viability in the gastrointestinal tract, as well as adhesion to the intestinal mucosa. The isolate was capable of self-aggregation and coaggregation with pathogens such as Escherichia coli ATCC 25922 and Salmonella Enteritidis ATCC 13076. Genomic analysis revealed the presence of genes with probiotic characteristics. From this study it was possible to evaluate the gene expression of pro-inflammatory and anti-inflammatory cytokines for different treatments. Viable vegetative cells of B. altitudinis 1.4 increased the transcription of pro-inflammatory factors, in addition to also increasing the transcription of IL-10, indicating a tendency to stimulate a pro-inflammatory profile. Given the results presented, B. altitudinis 1.4 showed potential to be applied in the incorporation of this microorganism into animal feed, since the spores could tolerate the feed handling and pelletization processes.
Collapse
Affiliation(s)
- Priscila Ribeiro Jankoski
- Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, sala 216, Porto Alegre, RS, 90050-170, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências (IB), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Nobre da Fonseca
- Departamento de Veterinária Preventiva, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Silvia Hübner
- Departamento de Veterinária Preventiva, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Amanda de Souza da Motta
- Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, sala 216, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
5
|
Silveira RD, Veras FF, Hernandes KC, Bach E, Passaglia LMP, Zini CA, Brandelli A, Welke JE. Genomic analysis reveals genes that encode the synthesis of volatile compounds by a Bacillus velezensis-based biofungicide used in the treatment of grapes to control Aspergillus carbonarius. Int J Food Microbiol 2024; 415:110644. [PMID: 38417280 DOI: 10.1016/j.ijfoodmicro.2024.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-β-ionone, β-ionone, dihydroactinidiolide, linalool oxide, and β-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Rafaela Diogo Silveira
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501- 970 Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501- 970 Porto Alegre, Brazil
| | - Karolina Cardoso Hernandes
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501- 970 Porto Alegre, Brazil
| | - Evelise Bach
- Instituto de Biociências, UFRGS, Av. Bento Gonçalves, 9500, Prédio 43411, CEP 91501-970 Porto Alegre, Brazil
| | | | - Claudia Alcaraz Zini
- Instituto de Química, UFRGS, Av. Bento Gonçalves, 9500, Prédio 43111, CEP 91501-970 Porto Alegre, Brazil
| | - Adriano Brandelli
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501- 970 Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501- 970 Porto Alegre, Brazil.
| |
Collapse
|
6
|
Comba-González NB, Chaves-Moreno D, Santamaría-Vanegas J, Montoya-Castaño D. A pan-genomic assessment: Delving into the genome of the marine epiphyte Bacillus altitudinis strain 19_A and other very close Bacillus strains from multiple environments. Heliyon 2024; 10:e27820. [PMID: 38560215 PMCID: PMC10981035 DOI: 10.1016/j.heliyon.2024.e27820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.
Collapse
Affiliation(s)
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Dolly Montoya-Castaño
- Bioprocesses and Bioprospecting Group, Biotechnology Institute, Universidad Nacional de Colombia, Colombia
| |
Collapse
|
7
|
Dobrange E, Porras-Domínguez JR, Van den Ende W. The Complex GH32 Enzyme Orchestra from Priestia megaterium Holds the Key to Better Discriminate Sucrose-6-phosphate Hydrolases from Other β-Fructofuranosidases in Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1302-1320. [PMID: 38175162 DOI: 10.1021/acs.jafc.3c06874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Inulin is widely used as a prebiotic and emerging as a priming compound to counteract plant diseases. We isolated inulin-degrading strains from the lettuce phyllosphere, identified as Bacillus subtilis and Priestia megaterium, species hosting well-known biocontrol organisms. To better understand their varying inulin degradation strategies, three intracellular β-fructofuranosidases from P. megaterium NBRC15308 were characterized after expression in Escherichia coli: a predicted sucrose-6-phosphate (Suc6P) hydrolase (SacAP1, supported by molecular docking), an exofructanase (SacAP2), and an invertase (SacAP3). Based on protein multiple sequence and structure alignments of bacterial glycoside hydrolase family 32 enzymes, we identified conserved residues predicted to be involved in binding phosphorylated (Suc6P hydrolases) or nonphosphorylated substrates (invertases and fructanases). Suc6P hydrolases feature positively charged residues near the structural catalytic pocket (histidine, arginine, or lysine), whereas other β-fructofuranosidases contain tryptophans. This correlates with our phylogenetic tree, grouping all predicted Suc6P hydrolases in a clan associated with genomic regions coding for transporters involved in substrate phosphorylation. These results will help to discriminate between Suc6P hydrolases and other β-fructofuranosidases in future studies and to better understand the interaction of B. subtilis and P. megaterium endophytes with sucrose and/or fructans, sugars naturally present in plants or exogenously applied in the context of defense priming.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| |
Collapse
|
8
|
Srivastava N, Shiburaj S, Khare SK. Pan-genomic comparison of a potential solvent-tolerant alkaline protease-producing Exiguobacterium sp. TBG-PICH-001 isolated from a marine habitat. 3 Biotech 2023; 13:371. [PMID: 37854939 PMCID: PMC10579205 DOI: 10.1007/s13205-023-03796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
The identification and applicability of bacteria are inconclusive until comprehended with genomic repositories. Our isolate, Exiguobacterium sp. TBG-PICH-001 exhibited excellent halo- and organic solvent tolerance with simultaneous production of alkaline protease/s (0.512 IU/mL). The crude protease (1 IU) showed a 43.57% degradation of whey protein. The bulk proteins in the whey were hydrolyzed to smaller peptides which were evident in the SDS-PAGE profile. With such characteristics, the isolate became interesting for its genomic studies. The TBG-PICH-001 genome was found to be 3.14 Mb in size with 17 contigs and 47.33% GC content. The genome showed 3176 coding genes, and 2699 genes were characterized for their functionality. The Next-Generation-Sequencing of the genome identified only the isolate's genus; hence we attempted to delineate its species position. The genomes of the isolate and other representative Exiguobacterium spp. were compared based on orthologous genes (Orthovenn2 server). A pan-genomic analysis revealed the match of TBG-PICH-001 with 15 uncharacterized Exiguobacterium genomes at the species level. All these collectively matched with Exiguobacterium indicum, and the results were reconfirmed through phylogenetic studies. Further, the Exiguobacterium indicum genomes were engaged for homology studies rendering 11 classes of protease genes. Two putative proteases (Zinc metalloprotease and Serine protease) obtained from homology were checked for PCR amplification using genomic DNA of TBG-PICH-001 and other Exiguobacterium genomes. The results showed amplification only in the Exiguobacterium indicum genome. These protease genes, after sequencing, were matched with the TBG-PICH-001 genome. Their presence in its whole genome experimentally validated the study. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03796-5.
Collapse
Affiliation(s)
- Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Sugathan Shiburaj
- Department of Botany, University of Kerala, Palayam, Thiruvananthapuram, Kerala 695034 India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
9
|
Shi L, Zhu X, Qian T, Du J, Du Y, Ye J. Mechanism of Salt Tolerance and Plant Growth Promotion in Priestia megaterium ZS-3 Revealed by Cellular Metabolism and Whole-Genome Studies. Int J Mol Sci 2023; 24:15751. [PMID: 37958734 PMCID: PMC10647267 DOI: 10.3390/ijms242115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Approximately one-third of agricultural land worldwide is affected by salinity, which limits the productivity and sustainability of crop ecosystems. Plant-growth-promoting rhizobacteria (PGPR) are a potential solution to this problem, as PGPR increases crop yield through improving soil fertility and stress resistance. Previous studies have shown that Priestia megaterium ZS-3(ZS-3) can effectively help plants tolerate salinity stress. However, how ZS-3 regulates its metabolic adaptations in saline environments remains unclear. In this study, we monitored the metabolic rearrangement of compatibilisers in ZS-3 and combined the findings with genomic data to reveal how ZS-3 survives in stressful environments, induces plant growth, and tolerates stress. The results showed that ZS-3 tolerated salinity levels up to 9%. In addition, glutamate and trehalose help ZS-3 adapt to osmotic stress under low NaCl stress, whereas proline, K+, and extracellular polysaccharides regulate the osmotic responses of ZS-3 exposed to high salt stress. Potting experiments showed that applying the ZS-3 strain in saline and neutral soils could effectively increase the activities of soil acid phosphatase, urease, and invertase in both soils, thus improving soil fertility and promoting plant growth. In addition, strain ZS-3-GFP colonised the rhizosphere and leaves of Cinnamomum camphora well, as confirmed by confocal microscopy and resistance plate count analysis. Genomic studies and in vitro experiments have shown that ZS-3 exhibits a variety of beneficial traits, including plant-promoting, antagonistic, and other related traits (such as resistance to saline and heavy metal stress/tolerance, amino acid synthesis and transport, volatile compound synthesis, micronutrient utilisation, and phytohormone biosynthesis/regulatory potential). The results support that ZS-3 can induce plant tolerance to abiotic stresses. These data provide important clues to further reveal the interactions between plants and microbiomes, as well as the mechanisms by which micro-organisms control plant health.
Collapse
Affiliation(s)
- Lina Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jiazhou Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Zelaya-Molina LX, Guerra-Camacho JE, Ortiz-Alvarez JM, Vigueras-Cortés JM, Villa-Tanaca L, Hernández-Rodríguez C. Plant growth-promoting and heavy metal-resistant Priestia and Bacillus strains associated with pioneer plants from mine tailings. Arch Microbiol 2023; 205:318. [PMID: 37615783 DOI: 10.1007/s00203-023-03650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
Open mine tailings dams are extreme artificial environments containing sizeable potentially toxic elements (PTEs), including heavy metals (HMs), transition metals, and metalloids. Furthermore, these tailings have nutritional deficiencies, including assimilable phosphorus sources, organic carbon, and combined nitrogen, preventing plant colonization. Bacteria, that colonize these environments, have mechanisms to tolerate the selective pressures of PTEs. In this work, several Priestia megaterium (formerly Bacillus megaterium), Bacillus mojavensis, and Bacillus subtilis strains were isolated from bulk tailings, anthills, rhizosphere, and endosphere of pioneer plants from abandoned mine tailings in Zacatecas, Mexico. Bacillus spp. tolerated moderate HMs concentrations, produced siderophores and indole-3-acetic acid (IAA), solubilized phosphates, and reduced acetylene in the presence of HMs. The strains harbored different PIB-type ATPase genes encoding for efflux pumps and Cation Diffusion Facilitator (CDF) genes. Moreover, nifH and nifD nitrogenase genes were detected in P. megaterium and B. mojavensis genomic DNA. They showed similarity with sequences of the beta-Proteobacteria species, which may represent likely horizontal transfer events. These Bacillus species precede the colonization of mine tailings by plants. Their phenotypic and genotypic features could be essential in the natural recovery of the sites by reducing the oxidative stress of HMs, fixing nitrogen, solubilizing phosphate, and accumulating organic carbon. These traits of the strains reflect the adaptations of Bacillus species to the mine tailings environment and could contribute to the success of phytoremediation efforts.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
- Centro Nacional de Recursos Genéticos-INIFAP, Boulevard de La Biodiversidad 400, Rancho Las Cruces, C.P. 47600, Tepatitlán de Morelos, Jalisco, México
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
| | - Jossue M Ortiz-Alvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
- Programa "Investigadoras E Investigadores Por México". Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, C.P. 03940, Ciudad de México, México
| | - Juan M Vigueras-Cortés
- Laboratorio de Prototipos de Agua, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional, IPN CIIDIR Durango, Sigma 119, Fracc. 20 de Noviembre II, C.P. 34220, Durango, Durango, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México.
| |
Collapse
|
11
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
12
|
Rocha GT, Queiroz PRM, Grynberg P, Togawa RC, de Lima Ferreira ADC, do Nascimento IN, Gomes ACMM, Monnerat R. Biocontrol potential of bacteria belonging to the Bacillus subtilis group against pests and diseases of agricultural interest through genome exploration. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01822-3. [PMID: 37178245 DOI: 10.1007/s10482-023-01822-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The usage of microorganisms as biocontrol agents and biofertilizers has been recommended and recognized as an ecologically correct alternative to maintaining the productivity and safety of crops. Thus, the objectives of this work were to characterize twelve strains belonging to Invertebrate Bacteria Collection of Embrapa Genetic Resources and Biotechnology by molecular, morphological, and biochemical methods and to evaluate the pathogenicity of these strains against pests and diseases of agricultural interest. The morphological characteristic of the strains was performed according to the principles of Bergy's Manual of Systematic Bacteriology. The genomes of the 12 strains were sequenced in Macrogen, Inc. (Seoul, Korea) using the HiSeq2000 and GS-FLX Plus high-performance platforms. In the determination of antibiotic sensibility profiles, disc-diffusion methods (Cefar Diagnótica Ltda) were adopted©. Selective bioassays were carried out with insects of the Lepidoptera (Spodoptera frugiperda, Helicoverpa armigera, and Chrysodeixis includens), Coleoptera (Anthonomus grandis), Diptera (Aedes aegypti) and Hemiptera (Euschistus heros) orders, and with the nematode Caenorhabditis elegans. In addition, the antagonistic action of the phytopathogens Fusarium oxysporum f. sp. vasinfectum and Sclerotinia sclerotiorum against the strains under study, and in vitro assays of phosphate solubilization were also performed. Sequencing of the complete genome of the 12 strains determined that all of them belonged to the Bacillus subtilis sensu lato group. In the strains genome were detected genic clusters responsible for encoding secondary metabolites such as surfactin, iturin, fengycins/plipastatin, bacillomycin, bacillisin, and siderophores. Due to the production of these compounds, there was a survival reduction of the Lepidoptera order insects and a reduction in the phytopathogens mycelial growth. These results show that the species of group B. subtilis s.l. can become promising microbiological alternatives to pest and disease control.
Collapse
Affiliation(s)
- Gabriela Teodoro Rocha
- Faculdade de Agronomia e Medicina Veterinária., Universidade de Brasília - Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
| | - Paulo Roberto Martins Queiroz
- Centro Universitário de Brasília - CEUB 707/907 - Campus Universitário, SEPN - Asa Norte, Brasília, DF, 70790-075, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | | | - Izabela Nunes do Nascimento
- Universidade Federal da Paraíba - Centro de Ciências Agrárias, Campus II, Rodovia PB 079 - Km 12, Areia, PB, 58397-000, Brazil
| | - Ana Cristina Meneses Mendes Gomes
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Rose Monnerat
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
13
|
Khalifa A, Alsowayeh N. Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium Priestia filamentosa Strain AZC66 Obtained from Zygophyllum coccineum Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:1944. [PMID: 37653860 PMCID: PMC10222010 DOI: 10.3390/plants12101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66's indole acetic acid production. AZC66's inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 μg mL-1), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg-1 h-1). Cowpea's root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| |
Collapse
|
14
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
15
|
A bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis 2023. [DOI: 10.1007/s13199-023-00904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
16
|
Ribeiro IDA, Bach E, Passaglia LMP. Alternative nitrogenase of Paenibacillus sonchi genomovar Riograndensis: An insight in the origin of Fe-nitrogenase in the Paenibacillaceae family. Mol Phylogenet Evol 2022; 177:107624. [PMID: 36084857 DOI: 10.1016/j.ympev.2022.107624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
Abstract
Paenibacillus sonchi genomovar Riograndensis is a nitrogen-fixing bacteria isolated from wheat that displays diverse plant growth-promoting abilities. Beyond conventional Mo-nitrogenase, this organism also harbors an alternative Fe-nitrogenase, whose many aspects related to regulation, physiology, and evolution remain to be elucidated. In this work, the origins of this alternative system were investigated, exploring the distribution and diversification of nitrogenases in the Panibacillaceae family. Our analysis showed that diazotrophs represent 17% of Paenibacillaceae genomes, of these, only 14.4% (2.5% of all Paenibacillaceae genomes) also contained Fe or V- nitrogenases. Diverse nif-like sequences were also described, occurring mainly in genomes that also harbor the alternative systems. The analysis of genomes containing Fe-nitrogenase showed a conserved cluster of nifEN anfHDGK across three genera: Gorillibacterium, Fontibacillus, and Paenibacillus. A phylogeny of anfHDGK separated the Fe-nitrogenases into three main groups. Our analysis suggested that Fe-nitrogenase was acquired by the ancestral lineage of Fontibacillus, Gorillibacterium, and Paenibacillus genera via horizontal gene transfer (HGT), and further events of transfer and gene loss marked the evolution of this alternative nitrogenase in these groups. The species phylogeny of N-fixing Paenibacillaceae separated the diazotrophs into five clades, one of these containing all occurrences of strains harboring alternative nitrogenases in the Paenibacillus genus. The pangenome of this clade is open and composed of more than 96% of accessory genes. Diverse functional categories were enriched in the flexible genome, including functions related to replication and repair. The latter involved diverse genes related to HGT, suggesting that such events may have an important role in the evolution of diazotrophic Paenibacillus. This study provided an insight into the organization, distribution, and evolution of alternative nitrogenase genes in Paenibacillaceae, considering different genomic aspects.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | - Evelise Bach
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| |
Collapse
|
17
|
Sánchez-Díaz R, Molina-Garza ZJ, Cruz-Suárez LE, Selvin J, Kiran GS, Gómez-Gil B, Galaviz-Silva L, Ibarra-Gámez JC. Draft genome sequences of Bacillus pumilus 36R ATNSAL and B. safensis 13L LOBSAL, two potential candidate probiotic strains for shrimp aquaculture. J Glob Antimicrob Resist 2022; 31:304-308. [PMID: 36272706 DOI: 10.1016/j.jgar.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES This work aimed to isolate bacterial strains with antagonist activity against Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (VPAHPND) that was isolated from outbreaks in Mexico. Here, we report the draft genome sequences of two antagonistic strains, isolated from saline sediment in Sonora, Mexico. METHODS Cross-streak and well diffusion tests were employed to find the bacterial strains with higher inhibitory activity against VPAHPND. The whole genomes of B. pumilus 36R ATNSAL and B. safensis 13L LOBSAL were sequenced using Ion TorrentTM (PGM) and Illumina MiseqTM platforms, respectively. Annotation was performed using the RAST server, and the genes involved in the biosynthesis of bacterial secondary metabolites were predicted using antiSMASH. RESULTS Two bacterial isolates, B. safensis 13L LOBSAL and B. pumilus 36R ATNSAL, were chosen based on their strong antagonistic profiles. The genome of 36R ATNSAL was 3.94 Mbp in length and contained 3824 genes and a total of 4116 coding sequences (CDSs); the genome of 13L LOBSAL was 3.68 Mbp and contained 3619 genes and 3688 CDSs. Twenty-eight and 32 biosynthetic gene clusters responsible for putative antimicrobial metabolite production were identified in 36R ATNSAL and 13L LOBSAL, respectively. CONCLUSIONS The two strains 13L LOBSAL and 36R ATNSAL showed excellent probiotic profiles in vitro. The genome sequences will help with the mining and reconstruction of metabolic pathways in Bacillus strains. Genome sequence-guided strain improvement could augment the probiotic potential of Bacillus strains for applications in shrimp aquaculture.
Collapse
Affiliation(s)
- Ricardo Sánchez-Díaz
- Technological Institute of Sonora (ITSON), 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora,CP 85000, México
| | - Zinnia Judith Molina-Garza
- Autonomous University of Nuevo Leon (UANL), Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, CP 66455, Mexico
| | - Lucía Elizabeth Cruz-Suárez
- Autonomous University of Nuevo Leon (UANL), Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, CP 66455, Mexico
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Bruno Gómez-Gil
- Research Center for Food and Development (CIAD), Mazatlan Unit, Av. Sábalo Cerritos S/N, Mazatlán, Sinaloa, C.P. 82112. Mexico
| | - Lucio Galaviz-Silva
- Autonomous University of Nuevo Leon (UANL), Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, CP 66455, Mexico.
| | - José Cuauhtémoc Ibarra-Gámez
- Technological Institute of Sonora (ITSON), 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora,CP 85000, México.
| |
Collapse
|
18
|
Deb S. Pan-genome evolution and its association with divergence of metabolic functions in Bifidobacterium genus. World J Microbiol Biotechnol 2022; 38:231. [PMID: 36205822 DOI: 10.1007/s11274-022-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 10/10/2022]
Abstract
Previous studies were mainly focused on genomic evolution and diversity of type species of Bifidobacterium genus due to their health-promoting effect on host. However, those studies were mainly based on species-level taxonomic resolution, adaptation, and characterization of carbohydrate metabolic features of the bifidobacterial species. Here, a comprehensive analysis of the type strain genome unveils the association of pan-genome evolution with the divergence of metabolic function of the Bifidobacterium genus. This study has also demonstrated that horizontal gene transfer, as well as genome expansion and reduction events, leads to the divergence of metabolic functions in Bifidobacterium genus. Furthermore, the genome-based search of probiotic traits among all the available bifidobacterial type strains gives hints on type species, that could confer health benefits to nutrient-deficient individuals. Altogether, the present study provides insight into the developments of genomic evolution, functional divergence, and potential probiotic type species of the Bifidobacterium genus.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, 799022, Tripura, India. .,All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
19
|
Shahid M, Zeyad MT, Syed A, Singh UB, Mohamed A, Bahkali AH, Elgorban AM, Pichtel J. Stress-Tolerant Endophytic Isolate Priestia aryabhattai BPR-9 Modulates Physio-Biochemical Mechanisms in Wheat ( Triticum aestivum L.) for Enhanced Salt Tolerance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10883. [PMID: 36078599 PMCID: PMC9518148 DOI: 10.3390/ijerph191710883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 05/28/2023]
Abstract
In efforts to improve plant productivity and enhance defense mechanisms against biotic and abiotic stresses, endophytic bacteria have been used as an alternative to chemical fertilizers and pesticides. In the current study, 25 endophytic microbes recovered from plant organs of Triticum aestivum L. (wheat) were assessed for biotic (phyto-fungal pathogens) and abiotic (salinity, drought, and heavy metal) stress tolerance. Among the recovered isolates, BPR-9 tolerated maximum salinity (18% NaCl), drought (15% PEG-6000), and heavy metals (µg mL-1): Cd (1200), Cr (1000), Cu (1000), Pb (800), and Hg (30). Based on phenotypic and biochemical characteristics, as well as 16S rDNA gene sequencing, endophytic isolate BPR-9 was recognized as Priestia aryabhattai (accession no. OM743254.1). This isolate was revealed as a powerful multi-stress-tolerant crop growth promoter after extensive in-vitro testing for plant growth-promoting attributes, nutrient (phosphate, P; potassium, K; and zinc, Zn) solubilization efficiency, extracellular enzyme (protease, cellulase, amylase, lipase, and pectinase) synthesis, and potential for antagonistic activity against important fungal pathogens viz. Alternaria solani, Rhizoctonia solani, Fusarium oxysporum, and Ustilaginoidea virens. At elevated salt levels, increases were noted in indole-3-acetic acid; siderophores; P, K, and Zn-solubilization; ACC deaminase; and ammonia synthesized by Priestia aryabhattai. Additionally, under in-vitro plant bioassays, wheat seedlings inoculated with P. aryabhattai experienced superior growth compared to non-inoculated seedlings in high salinity (0-15% NaCl) environment. Under NaCl stress, germination rate, plant length, vigor indices, and leaf pigments of wheat seedlings significantly increased following P. aryabhattai inoculation. Furthermore, at 2%-NaCl, B. aryabhattai greatly and significantly (p ≤ 0.05) decreased relative leaf water content, membrane damage, and electrolyte leakage compared with the non-inoculated control. Catalase, superoxide dismutase, and peroxidase activity increased by 29, 32, and 21%, respectively, in wheat seedlings exposed to 2% NaCl and inoculated with the bacteria. The present findings demonstrate that endophytic P. aryabhattai strains might be used in the future as a multi-stress reducer and crop growth promoter in agronomically important crops including cereals.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, India
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, India
| | - Abdullah Mohamed
- Research Centre, Future University in Egypt, New Cairo 11835, Egypt
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|