1
|
Geryk M, Charpentier F. Pathophysiological mechanisms of cardiomyopathies induced by desmin gene variants located in the C-Terminus of segment 2B. J Cell Physiol 2024; 239:e31254. [PMID: 38501553 DOI: 10.1002/jcp.31254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.
Collapse
Affiliation(s)
- Michelle Geryk
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| | - Flavien Charpentier
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| |
Collapse
|
2
|
Silva AMS, Rodrigo P, Moreno CAM, Mendonça RDH, Estephan EDP, Camelo CG, Campos ED, Dias AT, Nascimento AM, Kulikowski LD, Oliveira ASB, Reed UC, Goldfarb LG, Olivé M, Zanoteli E. The Location of Disease-Causing DES Variants Determines the Severity of Phenotype and the Morphology of Sarcoplasmic Aggregates. J Neuropathol Exp Neurol 2022; 81:746-757. [PMID: 35898174 DOI: 10.1093/jnen/nlac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Desmin (DES) is the main intermediate muscle filament that connects myofibrils individually and with the nucleus, sarcolemma, and organelles. Pathogenic variants of DES cause desminopathy, a disorder affecting the heart and skeletal muscles. We aimed to analyze the clinical features, morphology, and distribution of desmin aggregates in skeletal muscle biopsies of patients with desminopathy and to correlate these findings with the type and location of disease-causing DES variants. This retrospective study included 30 patients from 20 families with molecularly confirmed desminopathy from 2 neuromuscular referral centers. We identified 2 distinct patterns of desmin aggregates: well-demarcated subsarcolemmal aggregates and diffuse aggregates with poorly delimited borders. Pathogenic variants located in the 1B segment and the tail domain of the desmin molecule are more likely to present with early-onset cardiomyopathy compared to patients with variants in other segments. All patients with mutations in the 1B segment had well-demarcated subsarcolemmal aggregates, but none of the patients with variants in other desmin segments showed such histological features. We suggest that variants located in the 1B segment lead to well-shaped subsarcolemmal desmin aggregation and cause disease with more frequent cardiac manifestations. These findings will facilitate early identification of patients with potentially severe cardiac syndromes.
Collapse
Affiliation(s)
| | - Patricia Rodrigo
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Eliene Dutra Campos
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Alexandre Torchio Dias
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Amom Mendes Nascimento
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Umbertina Conti Reed
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lev G Goldfarb
- Department of Pathology and Molecular Medicine, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Montse Olivé
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
3
|
Luo YB, Peng Y, Lu Y, Li Q, Duan H, Bi F, Yang H. Expanding the Clinico-Genetic Spectrum of Myofibrillar Myopathy: Experience From a Chinese Neuromuscular Center. Front Neurol 2020; 11:1014. [PMID: 33041974 PMCID: PMC7522348 DOI: 10.3389/fneur.2020.01014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Myofibrillar myopathy is a group of hereditary neuromuscular disorders characterized by dissolution of myofibrils and abnormal intracellular accumulation of Z disc-related proteins. We aimed to characterize the clinical, physiological, pathohistological, and genetic features of Chinese myofibrillar myopathy patients from a single neuromuscular center. Methods: A total of 18 patients were enrolled. Demographic and clinical data were collected. Laboratory investigations, electromyography, and cardiac evaluation was performed. Routine and immunohistochemistry stainings against desmin, αB-crystallin, and BAG3 of muscle specimen were carried out. Finally, next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders were performed. Results: Twelve pathogenic variants in DES, BAG3, FLNC, FHL1, and TTN were identified, of which seven were novel mutations. The novel DES c.1256C>T substitution is a high frequency mutation. The combined recessively/dominantly transmitted c.19993G>T and c.107545delG mutations in TTN gene cause a limb girdle muscular dystrophy phenotype with the classical myofibrillar myopathy histological changes. Conclusions: We report for the first time that hereditary myopathy with early respiratory failure patient can have peripheral nerve and severe spine involvement. The mutation in Ig-like domain 16 of FLNC is associated with the limb girdle type of filaminopathy, and the mutation in Ig-like domain 18 with distal myopathy type. These findings expand the phenotypic and genotypic correlation spectrum of myofibrillar myopathy.
Collapse
Affiliation(s)
- Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Yuyao Peng
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Yuling Lu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| |
Collapse
|
4
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
5
|
Shintani-Domoto Y, Hayasaka T, Maeda D, Masaki N, Ito TK, Sakuma K, Tanaka M, Kabashima K, Takei S, Setou M, Fukayama M. Different desmin peptides are distinctly deposited in cytoplasmic aggregations and cytoplasm of desmin-related cardiomyopathy patients. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:828-836. [PMID: 28341603 DOI: 10.1016/j.bbapap.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/16/2022]
Abstract
Desmin-related cardiomyopathy is a heterogeneous group of myofibrillar myopathies characterized by aggregates of desmin and related proteins in myocytes. It has been debated how the expression and protein structure are altered in the aggregates and other parts of myocytes in patients. To address this question, we investigated the proteome quantification as well as localization in formalin-fixed and paraffin-embedded specimens of the heart of patients by imaging mass spectrometry and liquid chromatography-mass spectrometry analyses. Fifteen tryptic peptide signals were enriched in the desmin-related cardiomyopathy myocardium, twelve of which were identified as desmin peptides with 14.3- to 27.3-fold increase compared to normal hearts. High-intensity signals at m/z 1032.5 and 1002.5, which were desmin peptides 59-70 at the head portion and 213-222 at the 1B domain, were with infrequent colocalization distributed not only in desmin-positive intracytoplasmic aggregates but also in histologically normal cytoplasm, indicating that desmin protein is fragmented and different types of naturally-occurring truncated proteins ectopically assemble throughout the heart of patients. Thus, in addition to conventional histological identification of protein aggregates, specific desmin peptides show a marked difference in quantity and localization in a tissue section of desmin-related cardiomyopathy and differentiate from other cardiomyopathies. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Yukako Shintani-Domoto
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Hayasaka
- Laboratory for Advanced Lipid Analysis, Health Innovation & Technology Center, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan; Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daichi Maeda
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cellular and Organ Pathology, Akita University, Akita, Japan
| | - Noritaka Masaki
- Department of Medical Spectroscopy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education &Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi K Ito
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kei Sakuma
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michio Tanaka
- Department of Pathology, Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan
| | - Katsuya Kabashima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiro Takei
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Riken Center for Molecular Imaging Science, Kobe, Japan; Department of Anatomy, The University of Hong Kong, Hong Kong, China; Division of Neural Systematics, National Institute for Physiological Sciences, Okazaki, Japan.
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Olausson P, Gerdle B, Ghafouri N, Sjöström D, Blixt E, Ghafouri B. Protein alterations in women with chronic widespread pain--An explorative proteomic study of the trapezius muscle. Sci Rep 2015; 5:11894. [PMID: 26150212 PMCID: PMC4493691 DOI: 10.1038/srep11894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic widespread pain (CWP) has a high prevalence in the population and is associated with prominent negative individual and societal consequences. There is no clear consensus concerning the etiology behind CWP although alterations in the central processing of nociception maintained by peripheral nociceptive input has been suggested. Here, we use proteomics to study protein changes in trapezius muscle from 18 female patients diagnosed with CWP compared to 19 healthy female subjects. The 2-dimensional gel electrophoresis (2-DE) in combination with multivariate statistical analyses revealed 17 proteins to be differently expressed between the two groups. Proteins were identified by mass spectrometry. Many of the proteins are important enzymes in metabolic pathways like the glycolysis and gluconeogenesis. Other proteins are associated with muscle damage, muscle recovery, stress and inflammation. The altered expressed levels of these proteins suggest abnormalities and metabolic changes in the myalgic trapezius muscle in CWP. Taken together, this study gives further support that peripheral factors may be of importance in maintaining CWP.
Collapse
Affiliation(s)
- Patrik Olausson
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Björn Gerdle
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Nazdar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Dick Sjöström
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Emelie Blixt
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Bijar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| |
Collapse
|
7
|
Fichna JP, Karolczak J, Potulska-Chromik A, Miszta P, Berdynski M, Sikorska A, Filipek S, Redowicz MJ, Kaminska A, Zekanowski C. Two desmin gene mutations associated with myofibrillar myopathies in Polish families. PLoS One 2014; 9:e115470. [PMID: 25541946 PMCID: PMC4277352 DOI: 10.1371/journal.pone.0115470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/24/2014] [Indexed: 11/29/2022] Open
Abstract
Desmin is a muscle-specific intermediate filament protein which forms a network connecting the sarcomere, T tubules, sarcolemma, nuclear membrane, mitochondria and other organelles. Mutations in the gene coding for desmin (DES) cause skeletal myopathies often combined with cardiomyopathy, or isolated cardiomyopathies. The molecular pathomechanisms of the disease remain ambiguous. Here, we describe and comprehensively characterize two DES mutations found in Polish patients with a clinical diagnosis of desminopathy. The study group comprised 16 individuals representing three families. Two mutations were identified: a novel missense mutation (Q348P) and a small deletion of nine nucleotides (A357_E359del), previously described by us in the Polish population. A common ancestry of all the families bearing the A357_E359del mutation was confirmed. Both mutations were predicted to be pathogenic using a bioinformatics approach, including molecular dynamics simulations which helped to rationalize abnormal behavior at molecular level. To test the impact of the mutations on DES expression and the intracellular distribution of desmin muscle biopsies were investigated. Elevated desmin levels as well as its atypical localization in muscle fibers were observed. Additional staining for M-cadherin, α-actinin, and myosin heavy chains confirmed severe disruption of myofibrill organization. The abnormalities were more prominent in the Q348P muscle, where both small atrophic fibers as well large fibers with centrally localized nuclei were observed. We propose that the mutations affect desmin structure and cause its aberrant folding and subsequent aggregation, triggering disruption of myofibrils organization.
Collapse
MESH Headings
- Adult
- DNA Mutational Analysis
- Desmin/chemistry
- Desmin/genetics
- Female
- Genetic Association Studies
- Humans
- Male
- Middle Aged
- Molecular Dynamics Simulation
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Mutation, Missense
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Pedigree
- Poland
- Sequence Deletion
- Young Adult
Collapse
Affiliation(s)
- Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Justyna Karolczak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | - Przemyslaw Miszta
- Faculty of Chemistry and Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Mariusz Berdynski
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Sikorska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Slawomir Filipek
- Faculty of Chemistry and Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Maria Jolanta Redowicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Kaminska
- Department of Neurology, Medical University of Warsaw, Warszawa, Poland
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
- * E-mail:
| |
Collapse
|
8
|
Lipshultz SE, Cochran TR, Briston DA, Brown SR, Sambatakos PJ, Miller TL, Carrillo AA, Corcia L, Sanchez JE, Diamond MB, Freundlich M, Harake D, Gayle T, Harmon WG, Rusconi PG, Sandhu SK, Wilkinson JD. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol 2013; 9:817-48. [PMID: 24180540 PMCID: PMC3903430 DOI: 10.2217/fca.13.66] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pediatric cardiomyopathies, which are rare but serious disorders of the muscles of the heart, affect at least one in every 100,000 children in the USA. Approximately 40% of children with symptomatic cardiomyopathy undergo heart transplantation or die from cardiac complications within 2 years. However, a significant number of children suffering from cardiomyopathy are surviving into adulthood, making it an important chronic illness for both pediatric and adult clinicians to understand. The natural history, risk factors, prevalence and incidence of this pediatric condition were not fully understood before the 1990s. Questions regarding optimal diagnostic, prognostic and treatment methods remain. Children require long-term follow-up into adulthood in order to identify the factors associated with best clinical practice including diagnostic approaches, as well as optimal treatment approaches. In this article, we comprehensively review current research on various presentations of this disease, along with current knowledge about their causes, treatments and clinical outcomes.
Collapse
Affiliation(s)
- Steven E Lipshultz
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
- Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Thomas R Cochran
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - David A Briston
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Stefanie R Brown
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Peter J Sambatakos
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Tracie L Miller
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
- Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Adriana A Carrillo
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Liat Corcia
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Janine E Sanchez
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Melissa B Diamond
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Michael Freundlich
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Danielle Harake
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Tamara Gayle
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - William G Harmon
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Paolo G Rusconi
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Satinder K Sandhu
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - James D Wilkinson
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
- Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
9
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
10
|
Bax ML, Sayd T, Aubry L, Ferreira C, Viala D, Chambon C, Rémond D, Santé-Lhoutellier V. Muscle composition slightly affects in vitro digestion of aged and cooked meat: identification of associated proteomic markers. Food Chem 2012. [PMID: 23194521 DOI: 10.1016/j.foodchem.2012.09.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Meat is an appropriate source of proteins and minerals for human nutrition. Technological treatments modify the physical-chemical properties of proteins, making them liable to decrease the nutritional potential of meat. To counteract this damage, antioxidants and chaperone proteins in muscle cells can prevent oxidation, restore the function of denatured proteins, and thus prevent aggregation. This study aimed to explore the impact of indoor vs outdoor-reared meat protein composition on digestion and to associate protein markers to in vitro digestion parameters. Indoor-reared meat tended to show less oxidation and denaturation than outdoor-reared meat and was characterised by an overexpression of contractile and chaperone proteins. Outdoor-reared meat showed amplification of antioxidant and detoxification metabolism defending against oxidised compounds. Impacts on digestion remained minor. Several protein markers of in vitro digestion parameters were found for aged and cooked meat, linked to the detoxification process and to muscle contraction.
Collapse
Affiliation(s)
- M-L Bax
- INRA, UR 370 QuaPA, F-63122 Saint-Genès-Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Olivé M, Odgerel Z, Martínez A, Poza JJ, Bragado FG, Zabalza RJ, Jericó I, Gonzalez-Mera L, Shatunov A, Lee HS, Armstrong J, Maraví E, Arroyo MR, Pascual-Calvet J, Navarro C, Paradas C, Huerta M, Marquez F, Rivas EG, Pou A, Ferrer I, Goldfarb LG. Clinical and myopathological evaluation of early- and late-onset subtypes of myofibrillar myopathy. Neuromuscul Disord 2011; 21:533-42. [PMID: 21676617 DOI: 10.1016/j.nmd.2011.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Myofibrillar myopathies (MFM) are a group of disorders associated with mutations in DES, CRYAB, MYOT, ZASP, FLNC, or BAG3 genes and characterized by disintegration of myofibrils and accumulation of degradation products into intracellular inclusions. We retrospectively evaluated 53 MFM patients from 35 Spanish families. Studies included neurologic exam, muscle imaging, light and electron microscopic analysis of muscle biopsy, respiratory function testing and cardiologic work-up. Search for pathogenic mutations was accomplished by sequencing of coding regions of the six genes known to cause MFM. Mutations in MYOT were the predominant cause of MFM in Spain affecting 18 of 35 families, followed by DES in 11 and ZASP in 3; in 3 families the cause of MFM remains undetermined. Comparative analysis of DES, MYOT and ZASP associated phenotypes demonstrates substantial phenotypic distinctions that should be considered in studies of disease pathogenesis, for optimization of subtype-specific treatments and management, and directing molecular analysis.
Collapse
Affiliation(s)
- Montse Olivé
- Institute of Neuropathology, Department of Pathology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hong D, Wang Z, Zhang W, Xi J, Lu J, Luan X, Yuan Y. A series of Chinese patients with desminopathy associated with six novel and one reported mutations in the desmin gene. Neuropathol Appl Neurobiol 2011; 37:257-70. [DOI: 10.1111/j.1365-2990.2010.01112.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
van Spaendonck-Zwarts KY, van Hessem L, Jongbloed JDH, de Walle HEK, Capetanaki Y, van der Kooi AJ, van Langen IM, van den Berg MP, van Tintelen JP. Desmin-related myopathy. Clin Genet 2010; 80:354-66. [PMID: 20718792 DOI: 10.1111/j.1399-0004.2010.01512.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We provide (i) a literature review on DRM, including clinical manifestations, inheritance, molecular genetics, myopathology and management and (ii) a meta-analysis of reported DES mutation carriers, focusing on their clinical characteristics and potential genotype-phenotype correlations. Meta-analysis: DES mutation carriers (n = 159) with 40 different mutations were included. Neurological signs were present in 74% and cardiological signs in 74% of carriers (both neurological and cardiological signs in 49%, isolated neurological signs in 22%, and isolated cardiological signs in 22%). More than 70% of carriers exhibited myopathy or muscular weakness, with normal creatine kinase levels present in one third of them. Up to 50% of carriers had cardiomyopathy and around 60% had cardiac conduction disease or arrhythmias, with atrioventricular block as an important hallmark. Symptoms generally started during the 30s; a quarter of carriers died at a mean age of 49 years. Sudden cardiac death occurred in two patients with a pacemaker, suggesting a ventricular tachyarrhythmia as cause of death. The majority of DES mutations were missense mutations, mostly located in the 2B domain. Mutations in the 2B domain were predominant in patients with an isolated neurological phenotype, whereas head and tail domain mutations were predominant in patients with an isolated cardiological phenotype.
Collapse
Affiliation(s)
- K Y van Spaendonck-Zwarts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mehboob S, Song Y, Witek M, Long F, Santarsiero BD, Johnson ME, Fung LWM. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J Biol Chem 2010; 285:14572-84. [PMID: 20228407 DOI: 10.1074/jbc.m109.080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have solved the crystal structure of a segment of nonerythroid alpha-spectrin (alphaII) consisting of the first 147 residues to a resolution of 2.3 A. We find that the structure of this segment is generally similar to a corresponding segment from erythroid alpha-spectrin (alphaI) but exhibits unique differences with functional significance. Specific features include the following: (i) an irregular and frayed first helix (Helix C'); (ii) a helical conformation in the junction region connecting Helix C' with the first structural domain (D1); (iii) a long A(1)B(1) loop in D1; and (iv) specific inter-helix hydrogen bonds/salt bridges that stabilize D1. Our findings suggest that the hydrogen bond networks contribute to structural domain stability, and thus rigidity, in alphaII, and the lack of such hydrogen bond networks in alphaI leads to flexibility in alphaI. We have previously shown the junction region connecting Helix C' to D1 to be unstructured in alphaI (Park, S., Caffrey, M. S., Johnson, M. E., and Fung, L. W. (2003) J. Biol. Chem. 278, 21837-21844) and now find it to be helical in alphaII, an important difference for alpha-spectrin association with beta-spectrin in forming tetramers. Homology modeling and molecular dynamics simulation studies of the structure of the tetramerization site, a triple helical bundle of partial domain helices, show that mutations in alpha-spectrin will affect Helix C' structural flexibility and/or the junction region conformation and may alter the equilibrium between spectrin dimers and tetramers in cells. Mutations leading to reduced levels of functional tetramers in cells may potentially lead to abnormal neuronal functions.
Collapse
Affiliation(s)
- Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ, Wiesfeld AC, Jongbloed JD, van den Wijngaard A, Kuks JB, van Spaendonck-Zwarts KY, Notermans N, Boven L, van den Heuvel F, Veenstra-Knol HE, Saffitz JE, Hofstra RM, van den Berg MP. Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 2009; 6:1574-83. [DOI: 10.1016/j.hrthm.2009.07.041] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/23/2009] [Indexed: 11/29/2022]
|
16
|
Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 2009; 119:1806-13. [PMID: 19587455 PMCID: PMC2701871 DOI: 10.1172/jci38027] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Muscle fiber deterioration resulting in progressive skeletal muscle weakness, heart failure, and respiratory distress occurs in more than 20 inherited myopathies. As discussed in this Review, one of the newly identified myopathies is desminopathy, a disease caused by dysfunctional mutations in desmin, a type III intermediate filament protein, or alphaB-crystallin, a chaperone for desmin. The range of clinical manifestations in patients with desminopathy is wide and may overlap with those observed in individuals with other myopathies. Awareness of this disease needs to be heightened, diagnostic criteria reliably outlined, and molecular testing readily available; this would ensure prevention of sudden death from cardiac arrhythmias and other complications.
Collapse
Affiliation(s)
- Lev G. Goldfarb
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marinos C. Dalakas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
17
|
|
18
|
Li Q, Fung LWM. Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance. Biochemistry 2009; 48:206-15. [PMID: 19072330 DOI: 10.1021/bi8013032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminal region of alpha-spectrin is responsible for its association with beta-spectrin in a heterodimer, forming functional tetramers. Non-erythroid alpha-spectrin (alphaII-spectrin) has a significantly higher association affinity for beta-spectrin than the homologous erythroid alpha-spectrin (alphaI-spectrin). We have previously determined the solution structure of the N-terminal region of alphaI-spectrin by NMR methods, but currently no structural information is available for alphaII-spectrin. We have used cysteine scanning, spin labeling electron paramagnetic resonance (EPR), and isothermal titration calorimetry (ITC) methods to study the tetramerization region of alphaII-spectrin. EPR data clearly show that, in alphaII-spectrin, the first nine N-terminal residues were unstructured, followed by an irregular helix (helix C'), frayed at the N-terminal end, but rigid at the C-terminal end, which merges into the putative triple-helical structural domain. The region corresponding to the important unstructured junction region linking helix C' to the first structural domain in alphaI-spectrin was clearly structured. On the basis of the published model for aligning helices A', B', and C', important interactions among residues in helix C' of alphaI- and alphaII-spectrin and helices A' and B' of betaI- and betaII-spectrin are identified, suggesting similar coiled coil helical bundling for spectrin I and II in forming tetramers. The differences in affinity are likely due to the differences in the conformation of the junction regions. Equilibrium dissociation constants of spin-labeled alphaII and betaI complexes from ITC measurements indicate that residues 15, 19, 37, and 40 are functionally important residues in alphaII-spectrin. Interestingly, all four corresponding homologous residues in alphaI-spectrin (residues 24, 28, 46, and 49) have been reported to be clinically significant residues involved in hematological diseases.
Collapse
Affiliation(s)
- Qufei Li
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607
| | | |
Collapse
|
19
|
Willis MS, Schisler JC, Portbury AL, Patterson C. Build it up-Tear it down: protein quality control in the cardiac sarcomere. Cardiovasc Res 2008; 81:439-48. [PMID: 18974044 DOI: 10.1093/cvr/cvn289] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly and maintenance of the cardiac sarcomere, which contains the basic contractile components of actin and myosin, are essential for cardiac function. While often described as a static structure, the sarcomere is actually dynamic and undergoes constant turnover, allowing it to adapt to physiological changes while still maintaining function. A host of new factors have been identified that play a role in the regulation of protein quality control in the sarcomere, including chaperones that mediate the assembly of sarcomere components and ubiquitin ligases that control their specific degradation. There is clear evidence of sarcomere disorganization in animal models lacking muscle-specific chaperone proteins, illustrating the importance of these molecules in sarcomere structure and function. Although ubiquitin ligases have been found within the sarcomere structure itself, the role of the ubiquitin proteasome system in cardiac sarcomere regulation, and the factors that control its activity, are only just now being elucidated. The number of ubiquitin ligases identified with specificity for sarcomere proteins, each with distinct target substrates, is growing, allowing for tight regulation of this system. In this review, we highlight the dynamic interplay between sarcomere-specific chaperones and ubiquitin-dependent degradation of sarcomere proteins that is necessary in order to maintain structure and function of the cardiac sarcomere.
Collapse
Affiliation(s)
- Monte S Willis
- Carolina Cardiovascular Biology Center, University of North Carolina, 8200 Medical Biomolecular Research Bldg, 103 Mason Farm Road, Chapel Hill, NC 27599-7126, USA
| | | | | | | |
Collapse
|
20
|
Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K, Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A, Huebner A, Kress W, Reimann J, Schröder R, Eymard B, Fardeau M, Udd B, Goldfarb L, Vorgerd M, Olivé M. Distinct muscle imaging patterns in myofibrillar myopathies. Neurology 2008; 71:758-65. [PMID: 18765652 DOI: 10.1212/01.wnl.0000324927.28817.9b] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare muscle imaging findings in different subtypes of myofibrillar myopathies (MFM) in order to identify characteristic patterns of muscle alterations that may be helpful to separate these genetic heterogeneous muscular disorders. METHODS Muscle imaging and clinical findings of 46 patients with MFM were evaluated (19 desminopathy, 12 myotilinopathy, 11 filaminopathy, 1 alphaB-crystallinopathy, and 3 ZASPopathy). The data were collected retrospectively in 43 patients and prospectively in 3 patients. RESULTS In patients with desminopathy, the semitendinosus was at least equally affected as the biceps femoris, and the peroneal muscles were never less involved than the tibialis anterior (sensitivity of these imaging criteria to detect desminopathy in our cohort 100%, specificity 95%). In most of the patients with myotilinopathy, the adductor magnus showed more alterations than the gracilis muscle, and the sartorius was at least equally affected as the semitendinosus (sensitivity 90%, specificity 93%). In filaminopathy, the biceps femoris and semitendinosus were at least equally affected as the sartorius muscle, and the medial gastrocnemius was more affected than the lateral gastrocnemius. The semimembranosus mostly showed more alterations than the adductor magnus (sensitivity 88%, specificity 96%). Early adult onset and cardiac involvement was most often associated with desminopathy. In patients with filaminopathy, muscle weakness typically beginning in the 5th decade of life was mostly pronounced proximally, while late adult onset (>50 years) with distal weakness was more often present in myotilinopathy. CONCLUSIONS Muscle imaging in combination with clinical data may be helpful for separation of distinct myofibrillar myopathy subtypes and in scheduling of genetic analysis.
Collapse
Affiliation(s)
- D Fischer
- Department of Neurology, University Hospital Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Myofibrillar myopathies (MFMs) are clinically and genetically heterogeneous muscle disorders that are defined morphologically by the presence of foci of myofibril dissolution, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins. MFMs are the paradigm of conformational protein diseases of the skeletal (and cardiac) muscles characterised by intracellular protein accumulation in muscle cells. Understanding of this group of disorders has advanced in recent years through the identification of causative mutations in various genes, most of which encode proteins of the sarcomeric Z-disc, including desmin, alphaB-crystallin, myotilin, ZASP and filamin C. This review focuses on the MFMs arising from defects in these proteins, summarising genetic and clinical features of the disorders and then discussing emerging understanding of the molecular pathogenic mechanisms leading to muscle fibre degeneration. Defective extralysosomal degradation of proteins is now recognised as an important element in this process. Several factors--including mutant proteins, a defective ubiquitin-proteasome system, aggresome formation, mutant ubiquitin, p62, oxidative stress and abnormal regulation of some transcription factors--are thought to participate in the cascade of events occurring in muscle fibres in MFMs.
Collapse
|
22
|
Protein quality control gets muscle into shape. Trends Cell Biol 2008; 18:264-72. [PMID: 18495480 DOI: 10.1016/j.tcb.2008.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023]
Abstract
The synthesis, assembly and organisation of structural and motor proteins during muscle formation requires temporal and spatial control directed by specialized chaperones. For example, alphaB-crystallin, GimC and TRiC facilitate the assembly of sarcomeric proteins such as desmin and actin. Recent studies have demonstrated that the chaperone family of UCS proteins (UNC-45-CRO1-She4p) is required for the proper function of myosin motors. Mutations in the myosin-directed chaperone unc-45, a founding member of this family, lead to disorganisation of striated muscle in Caenorhabditiselegans. In addition to the involvement of client-specific chaperones, myofibrillogenesis also involves ubiquitin-dependent degradation of regulatory muscle proteins. Here, we highlight the interplay between chaperone activity and protein degradation in respect to the formation and maintenance of muscle during physiological and pathological conditions.
Collapse
|
23
|
Goldfarb LG, Olivé M, Vicart P, Goebel HH. Intermediate filament diseases: desminopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:131-64. [PMID: 19181099 PMCID: PMC2776705 DOI: 10.1007/978-0-387-84847-1_11] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desminopathy is one of the most common intermediate filament human disorders associated with mutations in closely interacting proteins, desmin and alphaB-crystallin. The inheritance pattern in familial desminopathy is characterized as autosomal dominant or autosomal recessive, but many cases have no family history. At least some and likely most sporadic desminopathy cases are associated with de novo DES mutations. The age of disease onset and rate of progression may vary depending on the type of inheritance and location of the causative mutation. Typically, the illness presents with lower and later upper limb muscle weakness slowly spreading to involve truncal, neck-flexor, facial and bulbar muscles. Skeletal myopathy is often combined with cardiomyopathy manifested by conduction blocks, arrhythmias and chronic heart failure resulting in premature sudden death. Respiratory muscle weakness is a major complication in some patients. Sections of the affected skeletal and cardiac muscles show abnormal fibre areas containing chimeric aggregates consisting of desmin and other cytoskeletal proteins. Various DES gene mutations: point mutations, an insertion, small in-frame deletions and a larger exon-skipping deletion, have been identified in desminopathy patients. The majority of these mutations are located in conserved alpha-helical segments, but additional mutations have recently been identified in the tail domain. Filament and network assembly studies indicate that most but not all disease-causing mutations make desmin assembly-incompetent and able to disrupt a pre-existing filamentous network in dominant-negative fashion. AlphaB-crystallin serves as a chaperone for desmin preventing its aggregation under various forms of stress; mutant CRYAB causes cardiac and skeletal myopathies identical to those resulting from DES mutations.
Collapse
Affiliation(s)
- Lev G Goldfarb
- National Institutes of Health, Bethesda, MD 20892-9404, USA.
| | | | | | | |
Collapse
|
24
|
|
25
|
Olivé M, van Leeuwen FW, Janué A, Moreno D, Torrejón-Escribano B, Ferrer I. Expression of mutant ubiquitin (UBB+1) and p62 in myotilinopathies and desminopathies. Neuropathol Appl Neurobiol 2007; 34:76-87. [PMID: 17931355 DOI: 10.1111/j.1365-2990.2007.00864.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein aggregates in muscle cells are the morphological hallmark of myofibrillar myopathies, including myotilinopathies and desminopathies. The aim of the present study is to analyse the expression of mutant ubiquitin (UBB+1), an aberrant form of ubiquitin which accumulates in certain disorders characterized by intracellular aggregates of proteins, and p62, a multimeric signal protein which plays an active role in aggregate formation, in muscle biopsies from patients suffering from myotilinopathy and desminopathy in order to gain understanding of the mechanisms leading to protein aggregation in these disorders. Single immunohistochemistry, and single- and double-labelling immunofluorescence and confocal microscopy for UBB+1 and p62, has been performed in muscle biopsies from patients suffering from myotilinopathy and desminopathy. Strong UBB+1 immunoreactivity, colocalizing with myotilin aggregates, was found in muscle fibres in myotilinopathies. UBB+1 accumulation, colocalizing with desmin aggregates, also occurs in desminopathies. In addition, strong p62 immunoreactivity colocalizing with myotilin aggregates was observed in myotilinopathies. Similarly, p62 immunoreactivity colocalizing with desmin aggregates was found in desminopathies. The present findings suggest that accumulation of protein aggregates in myotilinopathies and in desminopathies may be related with UBB+1/abnormal protein complexes which are resistant to proteasome degradation. Furthermore, these observations suggest a relationship between the presence of p62 and the formation of inclusions in different subtypes of myofibrillar myopathies.
Collapse
Affiliation(s)
- M Olivé
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Höllrigl A, Hofner M, Stary M, Weitzer G. Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 2007; 75:616-26. [PMID: 17381546 PMCID: PMC7615843 DOI: 10.1111/j.1432-0436.2007.00163.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Desmin contributes to the stability of the myocardium and its amino-terminal domain influences intermediate filament formation and interacts with a variety of proteins and DNAs. Specific serine residues located in this domain are reversibly phosphorylated in a cell cycle and developmental stage-dependent manner as has been demonstrated also for other cytoplasmic type III intermediate filament proteins. Although absence of desmin apparently does not affect cardiomyogenesis, homozygous deletion of the amino-terminal domain of desmin severely inhibited in vitro cardiomyogenesis. To demonstrate the significance of phosphorylation of this domain in cardiomyogenic commitment and differentiation, we inhibited phosphorylation of serine residues 6, 7, and 8 by mutation to alanine, and investigated early cardiomyogenesis in heterozygous embryoid bodies. As control, serine residues 31 and 32, which are not phosphorylated by kinases mutating serine residues 6, 7, and 8, were mutated to alanine in a second set. Desmin(S6,7,8A) interfered with cardiomyogenesis and myofibrillogenesis in a dominant negative fashion, whereas desmin(S31,32A) produced only a mild phenotype. Desmin(S6,7,8A) led to the down-regulation of the transcription factor genes brachyury, goosecoid, nkx2.5, and mef2C and increased apoptosis of presumptive mesoderm and differentiating cardiomyocytes. Surviving cardiomyocytes which were few in number had no myofibrils. Demonstration that some but not any mutant desmin interfered with the very beginning of cardiomyogenesis suggests an important function of temporarily phosphorylated serine residues 6, 7, and 8 in the amino-terminal domain of desmin in cardiomyogenic commitment and differentiation.
Collapse
Affiliation(s)
- Alexandra Höllrigl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Bergman JEH, Veenstra-Knol HE, van Essen AJ, van Ravenswaaij CMA, den Dunnen WFA, van den Wijngaard A, van Tintelen JP. Two related Dutch families with a clinically variable presentation of cardioskeletal myopathy caused by a novel S13F mutation in the desmin gene. Eur J Med Genet 2007; 50:355-66. [PMID: 17720647 DOI: 10.1016/j.ejmg.2007.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 06/08/2007] [Indexed: 11/28/2022]
Abstract
Desmin-related myopathy is characterised by skeletal muscle weakness often combined with cardiac involvement. Mutations in the desmin gene have been described as a cause of desmin-related myopathy (OMIM 601419). We report here on two distantly related Dutch families with autosomal dominant inheritance of desmin-related myopathy affecting 15 family members. A highly heterogeneous clinical picture is apparent, varying from isolated dilated cardiomyopathy to a more generalised skeletal myopathy and mild respiratory problems. Morphological analysis of muscle biopsies revealed intracytoplasmic desmin aggregates (desmin and p62 staining). In both families we identified an identical novel pathogenic heterozygous missense mutation, S13F, in the 'head' domain of the desmin gene which cosegregates with the disease phenotype. This is the 5th reported missense mutation located at the 'head' domain of the desmin gene and the first reported Dutch family with desmin-related myopathy. This article illustrates the importance of analysing the desmin gene in patients with (familial) cardiac conduction disease, dilated cardiomyopathy and/or a progressive skeletal myopathy resembling limb-girdle muscular dystrophy.
Collapse
Affiliation(s)
- Jorieke E H Bergman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Post Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mogensen J. Troponin mutations in cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:201-26. [PMID: 17278367 DOI: 10.1007/978-4-431-38453-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jens Mogensen
- Department of Cardiology, Skejby University Hospital Aarhus, Denmark
| |
Collapse
|
29
|
Parry DAD, Strelkov SV, Burkhard P, Aebi U, Herrmann H. Towards a molecular description of intermediate filament structure and assembly. Exp Cell Res 2007; 313:2204-16. [PMID: 17521629 DOI: 10.1016/j.yexcr.2007.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
Intermediate filaments (IFs) represent one of the prominent cytoskeletal elements of metazoan cells. Their constituent proteins are coded by a multigene family, whose members are expressed in complex patterns that are controlled by developmental programs of differentiation. Hence, IF proteins found in epidermis differ significantly from those in muscle or neuronal tissues. Due to their fibrous nature, which stems from a fairly conserved central alpha-helical coiled-coil rod domain, IF proteins have long resisted crystallization and thus determination of their atomic structure. Since they represent the primary structural elements that determine the shape of the nucleus and the cell more generally, a major challenge is to arrive at a more rational understanding of how their nanomechanical properties effect the stability and plasticity of cells and tissues. Here, we review recent structural results of the coiled-coil dimer, assembly intermediates and growing filaments that have been obtained by a hybrid methods approach involving a rigorous combination of X-ray crystallography, small angle X-ray scattering, cryo-electron tomography, computational analysis and molecular modeling.
Collapse
Affiliation(s)
- David A D Parry
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
30
|
Olivé M, Armstrong J, Miralles F, Pou A, Fardeau M, Gonzalez L, Martínez F, Fischer D, Martínez Matos JA, Shatunov A, Goldfarb L, Ferrer I. Phenotypic patterns of desminopathy associated with three novel mutations in the desmin gene. Neuromuscul Disord 2007; 17:443-50. [PMID: 17418574 PMCID: PMC5127195 DOI: 10.1016/j.nmd.2007.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/09/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
Desminopathy represents a subgroup of myofibrillar myopathies caused by mutations in the desmin gene. Three novel disease-associated mutations in the desmin gene were identified in unrelated Spanish families affected by cardioskeletal myopathy. A selective pattern of muscle involvement, which differed from that observed in myofibrillar myopathy resulting from mutations in the myotilin gene, was observed in each of the three families with novel mutations and each of three desminopathy patients with known desmin mutations. Prominent joint retractions at the ankles and characteristic nasal speech were observed early in the course of illness. These findings suggest that muscle imaging in combination with routine clinical and pathological examination may be helpful in distinguishing desminopathy from other forms of myofibrillar myopathy and ordering appropriate molecular investigations.
Collapse
Affiliation(s)
- Montse Olivé
- Institut de Neuropatologia, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kirmse R, Portet S, Mücke N, Aebi U, Herrmann H, Langowski J. A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. J Biol Chem 2007; 282:18563-18572. [PMID: 17403663 DOI: 10.1074/jbc.m701063200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro assembly of intermediate filament proteins is a very rapid process. It starts without significant delay by lateral association of tetramer complexes into unit-length filaments (ULFs) after raising the ionic strength from low salt to physiological conditions (100 mM KCl). We employed electron and scanning force microscopy complemented by mathematical modeling to investigate the kinetics of in vitro assembly of human recombinant vimentin. From the average length distributions of the resulting filaments measured at increasing assembly times we simulated filament assembly and estimated specific reaction rate parameters. We modeled eight different potential pathways for vimentin filament elongation. Comparing the numerical with the experimental data we conclude that a two-step mechanism involving rapid formation of ULFs followed by ULF and filament annealing is the most robust scenario for vimentin assembly. These findings agree with the first two steps of the previously proposed three-step assembly model (Herrmann, H., and Aebi, U. (1998) Curr. Opin. Struct. Biol. 8, 177-185). In particular, our modeling clearly demonstrates that end-to-end annealing of ULFs and filaments is obligatory for forming long filaments, whereas tetramer addition to filament ends does not contribute significantly to filament elongation.
Collapse
Affiliation(s)
- Robert Kirmse
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Stephanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg MB, Canada R3T 2N2
| | - Norbert Mücke
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Ueli Aebi
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Jörg Langowski
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany.
| |
Collapse
|
32
|
Taylor MRG, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, Haubold K, Boucek MM, Ferguson D, Graw SL, Zhu X, Cavanaugh J, Sucharov CC, Long CS, Bristow MR, Lavori P, Mestroni L. Prevalence of Desmin Mutations in Dilated Cardiomyopathy. Circulation 2007; 115:1244-51. [PMID: 17325244 DOI: 10.1161/circulationaha.106.646778] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Desmin-related myofibrillar myopathy (DRM) is a cardiac and skeletal muscle disease caused by mutations in the desmin (DES) gene. Mutations in the central 2B domain of DES cause skeletal muscle disease that typically precedes cardiac involvement. However, the prevalence of DES mutations in dilated cardiomyopathy (DCM) without skeletal muscle disease is not known. METHODS AND RESULTS Denaturing high-performance liquid chromatography was used to screen DES for mutations in 116 DCM families from the Familial Dilated Cardiomyopathy Registry and in 309 subjects with DCM from the Beta-Blocker Evaluation of Survival Trial (BEST). DES mutations were transfected into SW13 and human smooth muscle cells and neonatal rat cardiac myocytes, and the effects on cytoskeletal desmin network architecture were analyzed with confocal microscopy. Five novel missense DES mutations, including the first localized to the highly conserved 1A domain, were detected in 6 subjects (1.4%). Transfection of DES mutations in the 2B domain severely disrupted the fine intracytoplasmic staining of desmin, causing clumping of the desmin protein. A tail domain mutation (Val459Ile) showed milder effects on desmin cytoplasmic network formation and appears to be a low-penetrant mutation restricted to black subjects. CONCLUSIONS The prevalence of DES mutations in DCM is between 1% and 2%, and mutations in the 1A helical domain, as well as the 2B rod domain, are capable of causing a DCM phenotype. The lack of severe disruption of cytoskeletal desmin network formation seen with mutations in the 1A and tail domains suggests that dysfunction of seemingly intact desmin networks is sufficient to cause DCM.
Collapse
Affiliation(s)
- Matthew R G Taylor
- University of Colorado at Denver and Health Sciences Center, Denver, Colo, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bär H, Mücke N, Katus HA, Aebi U, Herrmann H. Assembly defects of desmin disease mutants carrying deletions in the alpha-helical rod domain are rescued by wild type protein. J Struct Biol 2006; 158:107-15. [PMID: 17188893 DOI: 10.1016/j.jsb.2006.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/30/2006] [Indexed: 11/16/2022]
Abstract
Most mutations of desmin that cause severe autosomal dominant forms of myofibrillar myopathy are point mutations and locate in the central alpha-helical coiled-coil rod domain. Recently, two in-frame deletions of one and three amino acids, respectively, in the alpha-helix have been described and discussed to drastically interfere with the architecture of the desmin dimer and possibly also the formation of tetramers and higher order complexes [Kaminska, A., Strelkov, S.V., Goudeau, B., Olive, M., Dagvadorj, A., Fidzianska, A., Simon-Casteras, M., Shatunov, A., Dalakas, M.C., Ferrer, I., Kwiecinski, H., Vicart, P., Goldfarb, L.G., 2004. Small deletions disturb desmin architecture leading to breakdown of muscle cells and development of skeletal or cardioskeletal myopathy. Hum. Genet. 114, 306-313.]. Therefore, it was proposed that they may poison intermediate filament (IF) assembly. We have now recombinantly synthesized both mutant proteins and subjected them to comprehensive in vitro assembly experiments. While exhibiting assembly defects when analyzed on their own, both one-to-one mixtures of the respective mutant protein with wild type desmin facilitated proper filament formation. Transient transfection studies complemented this fundamental finding by demonstrating that wild type desmin is also rescuing these assembly defects in vivo. In summary, our findings strongly question the previous hypothesis that it is assembly incompetence due to molecular rearrangements caused by the mutations, which triggers the development of disease. As an alternative, we propose that these mutations cause subtle age-dependent structural alterations of desmin IFs that eventually lead to disease.
Collapse
Affiliation(s)
- Harald Bär
- Department of Cardiology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
34
|
Sokolova AV, Kreplak L, Wedig T, Mücke N, Svergun DI, Herrmann H, Aebi U, Strelkov SV. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc Natl Acad Sci U S A 2006; 103:16206-11. [PMID: 17050693 PMCID: PMC1637561 DOI: 10.1073/pnas.0603629103] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermediate filaments (IFs), along with microtubules, microfilaments, and associated cross-bridging proteins, constitute the cytoskeleton of metazoan cells. While crystallographic data on the dimer representing the elementary IF "building block" have recently become available, little structural detail is known about both the mature IF architecture and its assembly pathway. Here, we have applied solution small-angle x-ray scattering to investigate the in vitro assembly of a 53-kDa human IF protein vimentin at pH 8.4 by systematically varying the ionic strength conditions, and complemented these experiments by electron microscopy and analytical ultracentrifugation. While a vimentin solution in 5 mM Tris.HCl (pH 8.4) contains predominantly tetramers, addition of 20 mM NaCl induces further lateral assembly evidenced by the shift of the sedimentation coefficient and yields a distinct octameric intermediate. Four octamers eventually associate into unit-length filaments (ULFs) that anneal longitudinally. Based on the small-angle x-ray scattering experiments supplemented by crystallographic data and additional structural constraints, 3D molecular models of the vimentin tetramer, octamer, and ULF were constructed. Within each of the three oligomers, the adjacent dimers are aligned exclusively in an approximately half-staggered antiparallel A(11) mode with a distance of 3.2-3.4 nm between their axes. The ULF appears to be a dynamic and a relatively loosely packed structure with a roughly even mass distribution over its cross-section.
Collapse
Affiliation(s)
- Anna V. Sokolova
- *Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry and
- Institute of Crystallography, Russian Academy of Sciences, Moscow 119991, Russia
| | - Laurent Kreplak
- Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Tatjana Wedig
- Division of Cell Biology, German Cancer Research Centre, 69120 Heidelberg, Germany; and
| | - Norbert Mücke
- Division of Cell Biology, German Cancer Research Centre, 69120 Heidelberg, Germany; and
| | - Dmitri I. Svergun
- Institute of Crystallography, Russian Academy of Sciences, Moscow 119991, Russia
- European Molecular Biology Laboratory, Hamburg Outstation, 22603 Hamburg, Germany
| | - Harald Herrmann
- Division of Cell Biology, German Cancer Research Centre, 69120 Heidelberg, Germany; and
| | - Ueli Aebi
- Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Sergei V. Strelkov
- *Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry and
- Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
- To whom correspondence should be sent at the present address:
Department of Pharmaceutical Sciences, Catholic University of Leuven, Herestraat 49 Bus 822, B-3000 Leuven, Belgium. E-mail:
| |
Collapse
|
35
|
Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, Repetto A, Bellini O, Azan G, Scaffino M, Campana C, Piccolo G, Viganò M, Tavazzi L. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail 2006; 8:477-83. [PMID: 16376610 DOI: 10.1016/j.ejheart.2005.11.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Primary desminopathies are caused by desmin gene [DES (MIM*125660)] mutations. The clinical spectrum includes pure myopathies, cardiomuscular diseases and cardiomyopathies. Patients with restrictive cardiomyopathy (RCM) plus atrioventricular block (AVB) due to DES defects are frequently unrecognized unless desmin accumulation is specifically investigated in endomyocardial biopsy (EMB) by ultrastructural study. AIMS To describe a cardiological phenotype characterized by RCM plus AVB due to desmin accumulation caused by DES defects. METHODS AND RESULTS Desmin accumulation was diagnosed by means of ultrastructural and immunocytochemical studies of EMB in four unrelated probands with RCM and AVB. Candidate genes [DES and alphaB-crystallin (CRYAB)] were screened using sequence analysis. Four DES gene mutations were identified: three new (R16C, T453I and a 10 bp deletion at the exon-intron boundary of exon 3 disrupting the donor splice site) and one known (R406W). The disease was autosomal dominant in two families, recessive in one and associated with a de novo mutation in one. The mutations cosegregated with phenotype in all patients. CRYAB gene screening was negative. CONCLUSIONS A cardiac phenotype characterized by RCM and AVB caused by desmin accumulation is associated with DES mutations. Although the mutations affected different domains, the cardiac phenotype was identical.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Molecular Diagnostic Laboratory, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pruszczyk P, Kostera-Pruszczyk A, Shatunov A, Goudeau B, Dramiñska A, Takeda K, Sambuughin N, Vicart P, Strelkov SV, Goldfarb LG, Kamiñska A. Restrictive cardiomyopathy with atrioventricular conduction block resulting from a desmin mutation. Int J Cardiol 2006; 117:244-53. [PMID: 16890305 DOI: 10.1016/j.ijcard.2006.05.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/28/2006] [Accepted: 05/18/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND According to the predominant view, desmin mutations cause dilated cardiomyopathy (DCM). We evaluated a family with restrictive cardiomyopathy (RCM) associated with a novel desmin mutation and reviewed recent reports regarding the frequency of RCM in patients with desmin myopathy. METHODS Cardiovascular examination was performed in three affected and five at-risk members of a family from Poland, histopathologic study of skeletal muscle biopsy was done in a single patient, and functional analysis of mutant desmin protein was carried out in cultured cells. RESULTS Cardiovascular assessment led to the diagnosis of RCM in affected family members. Histopathological study of skeletal muscle biopsy revealed features characteristic of desmin myopathy. A novel desmin E413K mutation was identified in each affected family member, but not unrelated controls. The pathogenicity of the E413K mutation was confirmed in transfected cell cultures showing inability of mutant desmin to form a cellular filamentous network or support a pre-existing network formed by other intermediate filaments. Three-dimensional modeling and electrostatic calculations indicated that the E413K mutation located in a functionally unique domain of desmin molecule potentially disrupts intramolecular interactions. Analysis of previously reported observations indicates that RCM in desminopathy patients may be as frequent as DCM. CONCLUSIONS A novel E413K mutation in desmin caused autosomal dominant RCM rather than DCM. The location of the E413K mutation at a highly conserved end of the alpha-helical rod domain may be related to the phenotypic differences from the previously described DCM-associated desmin mutations. Functional and structural analyses of mutant desmin allowed to identify likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Piotr Pruszczyk
- Department of Internal Medicine, Hypertension and Angiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Melkani GC, Cammarato A, Bernstein SI. αB-Crystallin Maintains Skeletal Muscle Myosin Enzymatic Activity and Prevents its Aggregation under Heat-shock Stress. J Mol Biol 2006; 358:635-45. [PMID: 16546210 DOI: 10.1016/j.jmb.2006.02.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
Here, we provide functional and direct structural evidence that alphaB-crystallin, a member of the small heat-shock protein family, suppresses thermal unfolding and aggregation of the myosin II molecular motor. Chicken skeletal muscle myosin was thermally unfolded at heat-shock temperature (43 degrees C) in the absence and in the presence of alphaB-crystallin. The ATPase activity of myosin at 25 degrees C was used as a parameter to monitor its unfolding. Myosin retained only 65% and 8% of its ATPase activity when incubated at heat-shock temperature for 15 min and 30 min, respectively. However, 84% and 58% of the myosin ATPase activity was maintained when it was incubated with alphaB-crystallin under the same conditions. Furthermore, actin-stimulated ATPase activity of myosin was reduced by approximately 90%, when myosin was thermally unfolded at 43 degrees C for 30 min, but was reduced by only approximately 42% when it was incubated with alphaB-crystallin under the same conditions. Light-scattering assays and bound thioflavin T fluorescence indicated that myosin aggregates when incubated at 43 degrees C for 30 min, while alphaB-crystallin suppressed this thermal aggregation. Photo-labeled bis-ANS alphaB-crystallin fluorescence studies confirmed the transient interaction of alphaB-crystallin with myosin. These findings were further supported by electron microscopy of rotary shadowed molecules. This revealed that approximately 94% of myosin molecules formed inter and intra-molecular aggregates when incubated at 43 degrees C for 30 min. alphaB-Crystallin, however, protected approximately 48% of the myosin molecules from thermal aggregation, with protected myosin appearing identical to unheated molecules. These results are the first to show that alphaB-crystallin maintains myosin enzymatic activity and prevents the aggregation of the motor under heat-shock conditions. Thus, alphaB-crystallin may be critical for nascent myosin folding, promoting myofibrillogenesis, maintaining cytoskeletal integrity and sustaining muscle performance, since heat-shock temperatures can be produced during multiple stress conditions or vigorous exercise.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Biology and the Molecular Biology Institute, San Diego State University, 5550 Campanile Drive, San Diego, CA 92182-4614, USA
| | | | | |
Collapse
|
38
|
Fidziańska A, Kotowicz J, Sadowska M, Goudeau B, Walczak E, Vicart P, Hausmanowa-Petrusewicz I. A novel desmin R355P mutation causes cardiac and skeletal myopathy. Neuromuscul Disord 2005; 15:525-31. [PMID: 16009553 DOI: 10.1016/j.nmd.2005.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/16/2005] [Accepted: 05/20/2005] [Indexed: 11/24/2022]
Abstract
A novel desmin R355P mutation has been identified in a patient with familial cardiac and skeletal myopathy. Two types of desmin storage were observed in the skeletal muscles. The spheroid-like bodies dominated in type 2 fibres while extensive accumulation of granulofilamentous material was found in type 1 fibres and in cardiomyocytes. A novel missense mutation R355P in the rod domain located in the C-terminal part of the 2B subunit is the eighth missense mutation, which changes the original aminoacid into proline. Proline is known to disrupt the alpha-helix and distort a unique stutter sequence that is critically important for proper filament assembly.
Collapse
Affiliation(s)
- Anna Fidziańska
- Neuromuscular Unit, MRC, Polish Academy of Science, Pawinskiego 5, Warsaw 02-106, Poland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ferrer I, Carmona M, Blanco R, Moreno D, Torrejón-Escribano B, Olivé M. Involvement of clusterin and the aggresome in abnormal protein deposits in myofibrillar myopathies and inclusion body myositis. Brain Pathol 2005; 15:101-8. [PMID: 15912881 PMCID: PMC8095801 DOI: 10.1111/j.1750-3639.2005.tb00504.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myofibrillar myopathies (MM) are characterized morphologically by the presence of non-hyaline structures corresponding to foci of dissolution of myofibrils, and hyaline lesions composed of aggregates of compacted and degraded myofibrillar elements. Inclusion body myositis (IBM) is characterized by the presence of rimmed vacuoles, eosinophilic inclusions in the cytoplasm, rare intranuclear inclusions, and by the accumulation of several abnormal proteins. Recent studies have demonstrated impaired proteasomal expression and activity in MM and IBM, thus accounting, in part, for the abnormal protein accumulation in these diseases. The present study examines other factors involved in protein aggregation in MM and IBM. Clusterin is a multiple-function protein which participates in Abeta-amyloid, PrP(res) and a-synuclein aggregation in Alzheimer disease, prionopathies and a-synucleinopathies, respectively. gamma-Tubulin is present in the centrosome and is an intracellular marker of the aggresome. Moderate or strong clusterin immunoreactivity has been found in association with abnormal protein deposits, as revealed by immunohistochemistry, single and double-labeling immunofluorescence and confocal microscopy, in MM and IBM, and in target structures in denervation atrophy. Gamma-Tubulin has also been observed in association with abnormal protein deposits in MM, IBM, and in target fibers in denervation atrophy. These morphological findings are accompanied by increased expression of clusterin and gamma-tubulin in muscle homogenates of MM and IBM cases, as revealed by gel electrophoresis and Western blots. Together, these observations demonstrate involvement of clusterin in protein aggregates, and increased expression of aggresome markers in association with abnormal protein inclusions in MM and IBM and in targets, as crucial events related to the pathogenesis of abnormal protein accumulation and degradation in these muscular diseases.
Collapse
Affiliation(s)
- I Ferrer
- Institut Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Clemen CS, Fischer D, Roth U, Simon S, Vicart P, Kato K, Kaminska AM, Vorgerd M, Goldfarb LG, Eymard B, Romero NB, Goudeau B, Eggermann T, Zerres K, Noegel AA, Schröder R. Hsp27-2D-gel electrophoresis is a diagnostic tool to differentiate primary desminopathies from myofibrillar myopathies. FEBS Lett 2005; 579:3777-82. [PMID: 15978589 DOI: 10.1016/j.febslet.2005.05.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/10/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Small heat shock proteins prevent abnormal protein folding and accumulation. We analyzed the expression of hsp27 and alphaB-crystallin in skeletal muscle specimens of patients with desminopathies, plectinopathies, myotilinopathy, and other myofibrillar myopathies by means of differential centrifugation, 2D-gel electrophoresis, Western blotting, and mass spectrometry. Hsp27-P82 and -P15 as well as alphaB-crystallin-P59 and -P45 are the major serine phosphorylation isoforms in normal and diseased human skeletal muscle. 2D-gel-electrophoresis revealed spots of hsp27 in a range of pH 5.3-6.4 in samples of all skeletal muscle specimens, except for the seven desminopathies. They indicated a shift of the main hsp27-spot to alkaline pH degrees, which may help to differentiate primary desminopathies from other myopathies with structural pathology of the desmin cytoskeleton.
Collapse
Affiliation(s)
- Christoph S Clemen
- Department of Neurology, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53127 Bonn, FRG
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mücke N, Kirmse R, Wedig T, Leterrier JF, Kreplak L. Investigation of the morphology of intermediate filaments adsorbed to different solid supports. J Struct Biol 2005; 150:268-76. [PMID: 15890275 DOI: 10.1016/j.jsb.2005.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 02/17/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Morphologically, glutaraldehyde-fixed and -dried intermediate filaments (IFs) appear flexible, and with a width of 8-12 nm when observed by electron microscopy. Sometimes, the filaments are even unraveled on the carbon-coated grid and reveal a protofilamentous architecture. In this study, we have used atomic force microscopy to further investigate the morphology of IFs in a more physiological environment. First, we have imaged hydrated glutaraldehyde-fixed IFs adsorbed to a graphite support. In such conditions, human vimentin and desmin IFs appeared compact with a height of 5-8 nm and revealed either a beading repeat or a helical morphology. Second, we have analyzed the architecture of hydrated vimentin, desmin, and neurofilament IFs adsorbed to mica, graphite, and hydrophilic glass without the presence of fixative. On mica, vimentin IFs had a height of only 3-5 nm, whereas desmin IFs appeared as 8-10 nm height filaments with a helical twist. Neurofilaments were 10-12 nm in height with a pronounced 30-50 nm beading along their length. On graphite, the different IFs were either not adsorbing properly or their architecture was modified yielding, for example, broad, flattened filaments. Finally, hydrophilic glass was the surface which seemed to best preserve the architecture of the three IFs, even if, in some cases, unraveled vimentin filaments were observed on this support. These results are straightening the idea that mature IFs are dynamic polymers in vitro and that IFs can be distinguished from each others by their physicochemical properties.
Collapse
Affiliation(s)
- N Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 2005; 148:137-52. [PMID: 15477095 DOI: 10.1016/j.jsb.2004.04.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Indexed: 12/31/2022]
Abstract
Desmin, the major intermediate filament (IF) protein of muscle, is evolutionarily highly conserved from shark to man. Recently, an increasing number of mutations of the desmin gene has been described to be associated with human diseases such as certain skeletal and cardiac myopathies. These diseases are histologically characterised by intracellular aggregates containing desmin and various associated proteins. Although there is progress regarding our knowledge on the cellular function of desmin within the cytoskeleton, the impact of each distinct mutation is currently not understood at all. In order to get insight into how such mutations affect filament assembly and their integration into the cytoskeleton we need to establish IF structure at atomic detail. Recent progress in determining the dimer structure of the desmin-related IF-protein vimentin allows us to assess how such mutations may affect desmin filament architecture.
Collapse
Affiliation(s)
- Harald Bär
- Department of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | | | | | | | | |
Collapse
|
43
|
Vrabie A, Goldfarb LG, Shatunov A, Nägele A, Fritz P, Kaczmarek I, Goebel HH. The enlarging spectrum of desminopathies: new morphological findings, eastward geographic spread, novel exon 3 desmin mutation. Acta Neuropathol 2005; 109:411-7. [PMID: 15759133 DOI: 10.1007/s00401-005-0980-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 01/25/2023]
Abstract
A 52-year-old man, who had developed distal muscle weakness in legs and arms, was found to have distal muscle atrophy as well as cardiac arrhythmia. His 10-year younger brother developed restrictive cardiomyopathy at the age of 20 years, which required cardiac transplantation at the age of 41 years. Skeletal muscle biopsy specimens of the older brother revealed granulofilamentous material and plaques containing numerous proteins, foremost desmin, as did cardiac biopsy tissue. The explanted heart of the younger brother showed similar protein-rich plaques and granulofilamentous material within cardiac myocytes. A novel heterozygous Glu245Asp (E245D) missense mutation in exon 3 of the desmin gene (DES) at 2q35 was found in the older brother. While clinical data and muscle biopsy pathology of the older brother conform to the nosological spectrum of desminopathies, the early-onset cardiomyopathy, a similar cardiac pathology as in skeletal muscle tissues and a novel missense mutation in the DES gene, enlarge the nosological spectrum of desminopathies.
Collapse
Affiliation(s)
- Alexandra Vrabie
- Department of Neuropathology, Johannes Gutenberg University Medical Center, Langenbeckstrasse 1, 55101 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
A recently identified class of myopathies is produced by abnormal desmin, and is characterized by a disorganization of the desmin filament network, the accumulation of insoluble desmin-containing aggregates, and destructive changes in the sarcomeric organization of striated muscles. The desmin filaments interact with various other cytoskeletal proteins. The distinct clinical phenotypes are heterogeneous, with progressive skeletal myopathy, cardiomyopathy, and respiratory insufficiency as the most prominent features. Most of the desmin mutations are autosomal dominant. Identification of the causal genetic mutations shows that the desmin gene is not the only gene implicated in desminopathies; other genes encoding desmin-associated proteins, such as alpha-B-crystallin, and synemin may also be involved. Patients with mutations in their alpha-B-crystallin gene, which produce similar skeletal and cardiac myopathies, also have opaque lenses. Knockout mice have helped to reveal the fundamental role of desmin filaments in cell architecture, sarcomere alignment, myofibril organization, and the distribution of mitochondria. Transgenic mice, which accumulate aggregates of desmin and associated proteins in their muscles, show that the loss of desmin intermediate function as a result of mutations in desmin itself, or in the desmin-associated constituents, is important for disease progression.
Collapse
Affiliation(s)
- Denise Paulin
- Université Denis-Diderot Paris 7, Case 7136, Biologie Moleculaire de la Differenciation, 2 Place Jussieu, 75251 Paris Cedex, France.
| | | | | | | |
Collapse
|
45
|
Olivé M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I. Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci 2004; 219:125-37. [PMID: 15050448 DOI: 10.1016/j.jns.2004.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 12/16/2003] [Accepted: 01/05/2004] [Indexed: 11/24/2022]
Abstract
Ten Spanish patients from six unrelated families diagnosed with desmin-related myopathy (DRM) were studied. The pattern of DRM inheritance was autosomal dominant in three families, autosomal recessive in one, and there was no family history in two cases. The disease onset was in early adulthood. Cardiac myopathy was the initial presentation in two patients, respiratory insufficiency in one, and lower limb weakness in all others. Cardiac involvement was observed in four patients. Lens opacities were found in four. CK level was normal or slightly elevated, and electrophysiological examination was consistent with myopathy. Muscle biopsies identified intracytoplasmic desmin-immunoreactive inclusions. In addition to desmin, synemin, actin, gelsolin, ubiquitin, alphaB-crystallin and amyloid betaA4 were also present in the deposits. Ultrastructural examination revealed areas of myofibrillary disruption, abnormal electron-dense structures and accumulations of granulofilamentous material. A missense R406W mutation and a novel single amino acid deletion in the desmin gene were identified in two patients; the other patients did not show mutations in desmin, synemin, syncoilin or alphaB-crystallin genes. Analysis of 10 Spanish DRM cases illustrates a wide clinical, myopathological and genetic spectrum of DRM, reinforcing the need for further exploration of genetic causes for this group of disorders.
Collapse
Affiliation(s)
- Montse Olivé
- Institut de Neuropatologia, Hospital de Bellvitge, C/Feixa Llarga s/n degrees, 08907 Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|