1
|
Wang PY, Yang Y, Shi XQ, Chen Y, Liu SD, Wang HY, Peng T, Shi Q, Zhang W, Sun C. Distilling functional variations for human UGT2B4 upstream region based on selection signals and implications for phenotypes of Neanderthal and Denisovan. Sci Rep 2023; 13:3134. [PMID: 36823244 PMCID: PMC9950360 DOI: 10.1038/s41598-023-29682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Our previous work identified one region upstream human UGT2B4 (UDP glucuronosyltransferase family 2 member B4) which is associated with breast cancer and under balancing selection. However, the distribution, functional variation and molecular mechanism underlying breast cancer and balancing selection remain unclear. In current study, the two haplotypes with deep divergence are described by analyzing 1000 genomes project data and observed to be with high frequencies in all human populations. Through population genetics analysis and genome annotation, the potential functional region is identified and verified by reporter gene assay. Further mutagenesis indicates that the functional mutations are rs66862535 and rs68096061. Both SNPs can alter the interaction efficiency of transcription factor POU2F1 (POU class 2 homeobox 1). Through chromosome conformation capture, it is identified that the enhancer containing these two SNPs can interact with UGT2B4 promoter. Expression quantitative trait loci analysis indicates that UGT2B4 expression is dependent on the genotype of this locus. The common haplotype in human is lost in four genomes of archaic hominins, which suggests that Neanderthal and Denisovan should present relatively lower UGT2B4 expression and further higher steroid hormone level. This study provides new insight into the contribution of ancient population structure to human phenotypes.
Collapse
Affiliation(s)
- Pin-Yi Wang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China ,grid.440773.30000 0000 9342 2456State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 Yunnan People’s Republic of China
| | - Yuan Yang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Xiao-Qian Shi
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Ying Chen
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Shao-Dong Liu
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Hong-Yan Wang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Tao Peng
- grid.440773.30000 0000 9342 2456State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 Yunnan People’s Republic of China
| | - Qiang Shi
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Wei Zhang
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, Jining, 272067 Shandong People’s Republic of China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Leng XF, Wang GF, Yin H, Wei F, Zeng KK, Zhang YQ. Comprehensive Analysis Identifies the PPAR-Targeted Genes Associated with Ovarian Cancer Prognosis and Tumor Microenvironment. PPAR Res 2023; 2023:6637414. [PMID: 37213709 PMCID: PMC10195182 DOI: 10.1155/2023/6637414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
Background There is a significant role for peroxisome proliferator-activated receptors (PPARs) in the development of cancer. Nevertheless, the role of PPARs-related genes in ovarian cancer (OC) remains unclear. Methods The open-accessed data used for analysis were downloaded from The Cancer Genome Atlas database, which was analyzed using the R software. Results In our study, we comprehensively investigated the PPAR target genes in OC, including their biological role. Meanwhile, a prognosis signature consisting of eight PPAR target genes was established, including apolipoprotein A-V, UDP glucuronosyltransferase 2 family, polypeptide B4, TSC22 domain family, member 1, growth hormone inducible transmembrane protein, renin, dedicator of cytokinesis 4, enoyl CoA hydratase 1, peroxisomal (ECH1), and angiopoietin-like 4, which showed a good prediction efficiency. A nomogram was constructed by combining the clinical feature and risk score. Immune infiltration and biological enrichment analysis were applied to investigate the difference between high- and low-risk patients. Immunotherapy analysis indicated that low-risk patients might respond better to immunotherapy. Drug sensitivity analysis indicated that high-risk patients might respond better to bleomycin, nilotinib, pazopanib, pyrimethamine, and vinorelbine, yet worse to cisplatin and gefitinib. Furthermore, the gene ECH1 was selected for further analysis. Conclusions Our study identified a prognosis signature that could effectively indicates patients survival. Meanwhile, our study can provide the direction for future studies focused on the PPARs in OC.
Collapse
Affiliation(s)
- Xiao-Fei Leng
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Gao-Fa Wang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hao Yin
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Feng Wei
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kang-Kang Zeng
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi-Qun Zhang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No. 251, Yaojiayuan Road, Chaoyang District, Beijing, China
| |
Collapse
|
3
|
Saitou M, Resendez S, Pradhan AJ, Wu F, Lie NC, Hall NJ, Zhu Q, Reinholdt L, Satta Y, Speidel L, Nakagome S, Hanchard NA, Churchill G, Lee C, Atilla-Gokcumen GE, Mu X, Gokcumen O. Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor. SCIENCE ADVANCES 2021; 7:eabi4476. [PMID: 34559564 PMCID: PMC8462886 DOI: 10.1126/sciadv.abi4476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The common deletion of the third exon of the growth hormone receptor gene (GHRd3) in humans is associated with birth weight, growth after birth, and time of puberty. However, its evolutionary history and the molecular mechanisms through which it affects phenotypes remain unresolved. We present evidence that this deletion was nearly fixed in the ancestral population of anatomically modern humans and Neanderthals but underwent a recent adaptive reduction in frequency in East Asia. We documented that GHRd3 is associated with protection from severe malnutrition. Using a novel mouse model, we found that, under calorie restriction, Ghrd3 leads to the female-like gene expression in male livers and the disappearance of sexual dimorphism in weight. The sex- and diet-dependent effects of GHRd3 in our mouse model are consistent with a model in which the allele frequency of GHRd3 varies throughout human evolution as a response to fluctuations in resource availability.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Skyler Resendez
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Fuguo Wu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Natasha C. Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Kanagawa Prefecture, Japan
| | - Leo Speidel
- University College London, Genetics Institute, London, UK
- The Francis Crick Institute, London, UK
| | | | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | | | - Xiuqian Mu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Hande SH, Krishna SM, Sahote KK, Dev N, Erl TP, Ramakrishna K, Ravidhran R, Das R. Population genetic variation of SLC6A4 gene, associated with neurophysiological development. J Genet 2021. [DOI: 10.1007/s12041-021-01266-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Zeng T, Fedeli MA, Tanda F, Wang Y, Yang D, Xue B, Jia L, Palmieri G, Sechi LA, Kelvin DJ. Whole-exome Sequencing of Prostate Cancer in Sardinian Identify Recurrent UDP-glucuronosyltransferase Amplifications. J Cancer 2021; 12:438-450. [PMID: 33391440 PMCID: PMC7738997 DOI: 10.7150/jca.48433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/25/2020] [Indexed: 02/05/2023] Open
Abstract
Globally, prostate cancer is the third most common cancer in the world, and the second most common cancer in men. However, rates for incidence and mortality vary considerably with race, ethnicity, and geography. Over 97 significantly mutated genes that have been identified in prostate cancer; however, a lack of genomic prostate cancer studies focusing on different racial and ethnic groups and racial mixing pose a serious challenge to universalize these findings. The Sardinian population is an isolated Mediterranean population that has a high frequency of centenarians and a much lower incidence of prostate cancer than found in males in mainland Europe. Here, we conducted a genomic prostate cancer study on a Sardinian cohort diagnosed with local prostate cancer. Our data reveals a low rate of ERG fusion in Sardinian prostate cancer. Interestingly, we identified a novel BTBD7-SLC2A5 fusion that occurred in 13% of the patients. We also found that the UGT2B4 on 4q13.2 was amplified in 20% of the Sardinian patients but rarely amplified in patients of other population. These observations underscore the importance of the inter-population molecular heterogeneity of prostate cancer. In addition, we examined the expression of UGT2B4 in 497 prostate cancer patients derived from The Cancer Genome Atlas database. We found that high expression of UGT2B4 was associated with low-grade prostate cancer and upregulation of UGT2B4 in tumors was associated with upregulation of metabolism pathways such as 'de novo' IMP biosynthetic process, glutamine and monocarboxylic acid metabolism. These data provide insight into clinical relevance and functional mechanism of UGT2B4. Further understanding functional mechanism of UGT2B4 amplification and BTBD7-SLC2A5 fusion will aid in developing drugs to benefit the prostate cancer patients.
Collapse
Affiliation(s)
- Tiansheng Zeng
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Antonietta Fedeli
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
| | - Francesco Tanda
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
| | - Yuyong Wang
- Department of Urology, affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Dongsheng Yang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Bei Xue
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Lisha Jia
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Giuseppe Palmieri
- Institute of Genetic and Biomedical Research (IRGB), Head, National Research Council (CNR), 07100 Sassari, Italy
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- ✉ Corresponding authors: J. Kelvin, E-mail: ; and Leonardo A. Sechi, E-mail: . Co-corresponding authors equally contributed to this work
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Canadian Center for Vaccinology, IWK, Halifax, Nova Scotia, Canada
- ✉ Corresponding authors: J. Kelvin, E-mail: ; and Leonardo A. Sechi, E-mail: . Co-corresponding authors equally contributed to this work
| |
Collapse
|
6
|
Song MJ, Lee SH, Kim EY, Chang YS. Increased number of subclones in lung squamous cell carcinoma elicits overexpression of immune related genes. Transl Lung Cancer Res 2020; 9:659-669. [PMID: 32676328 PMCID: PMC7354124 DOI: 10.21037/tlcr-19-589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Intratumoral heterogeneity is a cause of drug resistance that leads to treatment failure. We investigated the clinical implication of intratumoral heterogeneity inferred from the number of subclones that constituted a tumor and reasoned the etiology of subclonal expansion using RNA sequencing data. Methods Simple nucleotide variation, clinical data, copy number variation, and RNA-sequencing data from 481 The Cancer Genome Atlas-Lung Squamous Cell Carcinoma (TCGA-LUSC) cases were obtained from the Genomic Data Commons data portal. Clonal status was estimated from the allele frequency of the mutated genes using the SciClone package. Results The number of subclones that comprised a tumor had a positive correlation with the total mutations in a tumor (σ=0.477, P-value <0.001) and tumor stage (σ=0.111, P-value <0.015). Male LUSC tumors had a higher probability of having more subclones than female tumors (2.28 vs. 1.89, P-value =0.002, Welch Two Sample t-test). On comparing the gene expression in the tumors that were comprised of five subclones with those of a single clone, 291 genes were found to be upregulated and 102 genes were found to be downregulated in the five subclone tumors. The upregulated genes included UGT1A10, SRY, FDCSP, MRLM, and EREG, in order of magnitude of upregulation, and the biologic function of the upregulated genes was strongly enriched for the positive regulation of immune processes and inflammatory responses. Conclusions Male LUSC tumors were composed of a greater number of subclones than female tumors. The tumors with large numbers of subclones had overexpressed genes that positively regulated the immune processes and inflammatory responses more than tumors that consisted of a single clone.
Collapse
Affiliation(s)
- Myung Jin Song
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chen H, Jiao L, Zhou J, Bai H, Lyu M, Wu T, Wu L, Song J, Liu T, Yan H, Ying B. Absence of significant association between UGT2B4 genetic variants and the susceptibility to anti-tuberculosis drug-induced liver injury in a Western Chinese population. J Clin Pharm Ther 2020; 46:66-73. [PMID: 32170986 DOI: 10.1111/jcpt.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/11/2020] [Accepted: 02/24/2020] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Combination regimens of six-month duration may increase the incidence of anti-tuberculosis drug-induced liver injury (ATLI), which is clinically characterized by mild cholestasis and hepatocanalicular lesions. UGT2B4 is a predominant UDP-glucuronosyltransferase enzyme in the human liver that plays an important role in the detoxification of bile acids, which yields water-soluble inactive compounds that can easily be excreted in the bile or urine. This study aimed to investigate the potential association between UGT2B4 variants and the susceptibility to ATLI. METHODS Genomic DNA was extracted from whole blood sample of each patient, and all SNPs were genotyped using an improved multiplex ligation detection reaction method. Clinical symptoms and laboratory results were recorded regularly. Five genetic variants at UGT2B4(rs1131878, rs1966151, rs28361541, rs4557343 and rs79407331) were identified in a prospective study of 118 ATLI cases and 628 non-ATLI controls. All participants were treated by first-line anti-TB drugs in Western China Hospital. The potential association between SNPs, ATLI risk and clinical phenotypes were determined based on the distribution of allelic frequencies and different genetic models. RESULTS AND DISCUSSION Statistical comparisons of cases and controls after correction for multiple testing did not yield any significant association between genetic variants at UGT2B4 and risk of ATLI via the analyses of single locus and subgroup differences. WHAT IS NEW AND CONCLUSION This is the first study aimed to investigate the association of UGT2B4 polymorphisms with ATLI risk. Our results revealed that UGT2B4 genetic variants are unlikely to confer susceptibility to ATLI in the Western Chinese Han population.
Collapse
Affiliation(s)
- Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Yan
- Department of Laboratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Bitarello BD, de Filippo C, Teixeira JC, Schmidt JM, Kleinert P, Meyer D, Andrés AM. Signatures of Long-Term Balancing Selection in Human Genomes. Genome Biol Evol 2018; 10:939-955. [PMID: 29608730 PMCID: PMC5952967 DOI: 10.1093/gbe/evy054] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Balancing selection maintains advantageous diversity in populations through various mechanisms. Although extensively explored from a theoretical perspective, an empirical understanding of its prevalence and targets lags behind our knowledge of positive selection. Here, we describe the Non-central Deviation (NCD), a simple yet powerful statistic to detect long-term balancing selection (LTBS) that quantifies how close frequencies are to expectations under LTBS, and provides the basis for a neutrality test. NCD can be applied to a single locus or genomic data, and can be implemented considering only polymorphisms (NCD1) or also considering fixed differences with respect to an outgroup (NCD2) species. Incorporating fixed differences improves power, and NCD2 has higher power to detect LTBS in humans under different frequencies of the balanced allele(s) than other available methods. Applied to genome-wide data from African and European human populations, in both cases using chimpanzee as an outgroup, NCD2 shows that, albeit not prevalent, LTBS affects a sizable portion of the genome: ∼0.6% of analyzed genomic windows and 0.8% of analyzed positions. Significant windows (P < 0.0001) contain 1.6% of SNPs in the genome, which disproportionally fall within exons and change protein sequence, but are not enriched in putatively regulatory sites. These windows overlap ∼8% of the protein-coding genes, and these have larger number of transcripts than expected by chance even after controlling for gene length. Our catalog includes known targets of LTBS but a majority of them (90%) are novel. As expected, immune-related genes are among those with the strongest signatures, although most candidates are involved in other biological functions, suggesting that LTBS potentially influences diverse human phenotypes.
Collapse
Affiliation(s)
- Bárbara D Bitarello
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - João C Teixeira
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Joshua M Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philip Kleinert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Computational Molecular Biology Department, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
10
|
Nye J, Laayouni H, Kuhlwilm M, Mondal M, Marques-Bonet T, Bertranpetit J. Selection in the Introgressed Regions of the Chimpanzee Genome. Genome Biol Evol 2018; 10:1132-1138. [PMID: 29635458 PMCID: PMC5905441 DOI: 10.1093/gbe/evy077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
During the demographic history of the Pan clade, there has been gene-flow between species, likely >200,000 years ago. Bonobo haplotypes in three subspecies of chimpanzee have been identified to be segregating in modern-day chimpanzee populations, suggesting that these haplotypes, with increased differentiation, may be a target of natural selection. Here, we investigate signatures of adaptive introgression within the bonobo-like haplotypes in chimpanzees using site frequency spectrum-based tests. We find evidence for subspecies-specific adaptations in introgressed regions involved with male reproduction in central chimpanzees, the immune system in eastern chimpanzees, female reproduction and the nervous system in Nigeria-Cameroon chimpanzees. Furthermore, our results indicate signatures of balancing selection in some of the putatively introgressed regions. This might be the product of long-term balancing selection resulting in a similar genomic signature as introgression, or possibly balancing selection acting on alleles reintroduced through gene flow.
Collapse
Affiliation(s)
- Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Estonian Biocentre, Tartu, Estonia
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Chen X, Wang YW, Gao P. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:100. [PMID: 29743122 PMCID: PMC5944004 DOI: 10.1186/s13046-018-0748-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Background Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. Methods SPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1. Results We showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients. Conclusions Our results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter. Electronic supplementary material The online version of this article (10.1186/s13046-018-0748-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Chen
- Department of Pathology, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Ya-Wen Wang
- Department of Pathology, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Peng Gao
- Department of Pathology, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
12
|
Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genet 2018; 14:e1007358. [PMID: 29791436 PMCID: PMC5988309 DOI: 10.1371/journal.pgen.1007358] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Collapse
Affiliation(s)
- Mark Ravinet
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kohta Yoshida
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
13
|
He BX, Qiao B, Lam AKY, Zhao XL, Zhang WZ, Liu H. Association between UDP-glucuronosyltransferase 2B7 tagSNPs and breast cancer risk in Chinese females. Clin Exp Pharmacol Physiol 2018; 45:437-443. [PMID: 29272031 DOI: 10.1111/1440-1681.12908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/18/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Bao-Xia He
- Department of Pharmacy; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| | - Bin Qiao
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology; School of Medicine; Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - Xiu-Li Zhao
- Department of Pharmacy; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| | - Wen-Zhou Zhang
- Department of Pharmacy; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| | - Hui Liu
- Department of Breast Surgery; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
14
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
15
|
Yermachenko A, Dvornyk V. UGT2B4 previously implicated in the risk of breast cancer is associated with menarche timing in Ukrainian females. Gene 2016; 590:85-9. [PMID: 27282283 DOI: 10.1016/j.gene.2016.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 06/05/2016] [Indexed: 11/25/2022]
Abstract
Age at menarche (AAM) is a multifactorial trait that is regulated by dozens environmental and genetic factors. Recent meta-analysis of GWAS showed significant association of 106 loci with AAM. These polymorphisms need replicating in different ethnic populations in order to confirm their association with menarche timing. This study was aimed to replicate 53 polymorphisms that were previously associated with AAM. DNA samples were collected from 416 Ukrainian young females for further genotyping. After data quality control 47 polymorphisms remained for the association analysis using the linear regression model. SNP rs13111134 located in UGT2B4 showed the most significant association with AAM (0.431years per allele A, padj=0.044 after the Bonferroni correction). Polymorphisms rs7589318 in POMC, rs11724758 in FABP2, rs7753051 in IGF2R, rs2288696 in FGFR1 and rs12444979 in GPRC5B may also contribute to menarche timing. However, none of these associations remained significant after the Bonferroni correction for multiple testing. The obtained results provide evidence that UGT2B4, which was previously associated with predisposition to breast cancer, may play a role in the onset of menarche.
Collapse
Affiliation(s)
- Anna Yermachenko
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Volodymyr Dvornyk
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Saeb ATM, Al-Naqeb D. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach. SCIENTIFICA 2016; 2016:2079704. [PMID: 27313952 PMCID: PMC4904122 DOI: 10.1155/2016/2079704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.
Collapse
Affiliation(s)
- Amr T. M. Saeb
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
| | - Dhekra Al-Naqeb
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
| |
Collapse
|
17
|
Sato MP, Makino T, Kawata M. Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions. BMC Evol Biol 2016; 16:35. [PMID: 26860869 PMCID: PMC4748610 DOI: 10.1186/s12862-016-0606-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background Understanding the evolutionary forces that influence variation in gene regulatory regions in natural populations is an important challenge for evolutionary biology because natural selection for such variations could promote adaptive phenotypic evolution. Recently, whole-genome sequence analyses have identified regulatory regions subject to natural selection. However, these studies could not identify the relationship between sequence variation in the detected regions and change in gene expression levels. We analyzed sequence variations in core promoter regions, which are critical regions for gene regulation in higher eukaryotes, in a natural population of Drosophila melanogaster, and identified core promoter sequence variations associated with differences in gene expression levels subjected to natural selection. Results Among the core promoter regions whose sequence variation could change transcription factor binding sites and explain differences in expression levels, three core promoter regions were detected as candidates associated with purifying selection or selective sweep and seven as candidates associated with balancing selection, excluding the possibility of linkage between these regions and core promoter regions. CHKov1, which confers resistance to the sigma virus and related insecticides, was identified as core promoter regions that has been subject to selective sweep, although it could not be denied that selection for variation in core promoter regions was due to linked single nucleotide polymorphisms in the regulatory region outside core promoter regions. Nucleotide changes in core promoter regions of CHKov1 caused the loss of two basal transcription factor binding sites and acquisition of one transcription factor binding site, resulting in decreased gene expression levels. Of nine core promoter regions regions associated with balancing selection, brat, and CG9044 are associated with neuromuscular junction development, and Nmda1 are associated with learning, behavioral plasticity, and memory. Diversity of neural and behavioral traits may have been maintained by balancing selection. Conclusions Our results revealed the evolutionary process occurring by natural selection for differences in gene expression levels caused by sequence variation in core promoter regions in a natural population. The sequences of core promoter regions were diverse even within the population, possibly providing a source for natural selection. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0606-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitsuhiko P Sato
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
18
|
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev 2016; 48:47-69. [DOI: 10.3109/03602532.2015.1131292] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Correlations between ASCC3 Gene Polymorphisms and Chronic Hepatitis B in a Chinese Han Population. PLoS One 2015; 10:e0141861. [PMID: 26536629 PMCID: PMC4633062 DOI: 10.1371/journal.pone.0141861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
We have previously identified 8 SNPs in Han Chinese HBV carriers that are associated with disease progression. Although not well studied, genetic factors may also play a significant role in developing chronic HBV disease after exposure. We extend the effect of these eight SNPs on persistent HBV infection in this study. A total of 875 unrelated Han Chinese, 493 chronic hepatitis B subjects (CHB) and 382 HBV clearance individuals (Clear), were recruited from Hubei Province from September 2007 to March 2010. SNPs were verified by using TaqMan 7900HT Sequence Detection System. By using multiple logistic regression analysis, each of the 8 SNP associations was tested using 3 different genetic models (Dominant, Recessive and Additive model), in 4 types of analyses (full sample, men, women, age stratified). A Bonferroni correction was used to account for multiple statistical tests for each SNP association (P<0.05/8 = 0.0063). A significant correlation was observed at SNP rs10485138 located in ASCC3 gene in female patients (OR, 0.445; 95% CI, 0.253–0.784; P = 0.005). Females bearing C allele infected by HBV had an increased susceptibility to CHB compared with those T allele carriers. Our results indicated that SNP rs10485138 located in ASCC3 gene was associated with persistent HBV infection in Han Chinese.
Collapse
|
20
|
Tsang SY, Mei L, Wan W, Li J, Li Y, Zhao C, Ding X, Pun FW, Hu X, Wang J, Zhang J, Luo R, Cheung ST, Leung GKK, Poon WS, Ng HK, Zhang L, Xue H. Glioma Association and Balancing Selection of ZFPM2. PLoS One 2015. [PMID: 26207917 PMCID: PMC4514883 DOI: 10.1371/journal.pone.0133003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350), non-glioma cancer (n = 354) and healthy control (n = 463) by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69) of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016), and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005) or non-glioma cancers (P = 0.020). ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002), with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028). In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.
Collapse
Affiliation(s)
- Shui-Ying Tsang
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lingling Mei
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Weiqing Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Li
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cunyou Zhao
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaofan Ding
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Frank W. Pun
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoxia Hu
- Department of Hematology, Institute of Hematology, PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junyi Zhang
- Cancer Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongcheng Luo
- Cancer Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siu-Tim Cheung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Gilberto K. K. Leung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail: (HX); (LZ)
| | - Hong Xue
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail: (HX); (LZ)
| |
Collapse
|
21
|
Árnason E, Halldórsdóttir K. Nucleotide variation and balancing selection at the Ckma gene in Atlantic cod: analysis with multiple merger coalescent models. PeerJ 2015; 3:e786. [PMID: 25755922 PMCID: PMC4349156 DOI: 10.7717/peerj.786] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 01/11/2023] Open
Abstract
High-fecundity organisms, such as Atlantic cod, can withstand substantial natural selection and the entailing genetic load of replacing alleles at a number of loci due to their excess reproductive capacity. High-fecundity organisms may reproduce by sweepstakes leading to highly skewed heavy-tailed offspring distribution. Under such reproduction the Kingman coalescent of binary mergers breaks down and models of multiple merger coalescent are more appropriate. Here we study nucleotide variation at the Ckma (Creatine Kinase Muscle type A) gene in Atlantic cod. The gene shows extreme differentiation between the North (Canada, Greenland, Iceland, Norway, Barents Sea) and the South (Faroe Islands, North-, Baltic-, Celtic-, and Irish Seas) with FST > 0.8 between regions whereas neutral loci show no differentiation. This is evidence of natural selection. The protein sequence is conserved by purifying selection whereas silent and non-coding sites show extreme differentiation. The unfolded site-frequency spectrum has three modes, a mode at singleton sites and two high frequency modes at opposite frequencies representing divergent branches of the gene genealogy that is evidence for balancing selection. Analysis with multiple-merger coalescent models can account for the high frequency of singleton sites and indicate reproductive sweepstakes. Coalescent time scales vary with population size and with the inverse of variance in offspring number. Parameter estimates using multiple-merger coalescent models show that times scales are faster than under the Kingman coalescent.
Collapse
Affiliation(s)
- Einar Árnason
- Institute of Life and Environmental Sciences, University of Iceland , Reykjavík , Iceland
| | - Katrín Halldórsdóttir
- Institute of Life and Environmental Sciences, University of Iceland , Reykjavík , Iceland
| |
Collapse
|
22
|
Che X, Yu D, Wu Z, Zhang J, Chen Y, Han Y, Wang C, Qi J. Polymorphisms in UGT2B4 and susceptibility to pancreatic cancer. Int J Clin Exp Med 2015; 8:2702-2710. [PMID: 25932223 PMCID: PMC4402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
As an important enzyme in the conjugation phase of drug clearance, UGT2B4 helps metabolize various endogenous and exogenous substances, and polymorphisms in the corresponding gene can influence enzyme activity. This study investigated the association between polymorphisms in UGT2B4 and the risk of developing pancreatic cancer in Han Chinese individuals. A hospital-based case-control study was conducted with 1579 healthy controls and 406 pancreatic cancer patients from China. Genomic DNA was obtained from peripheral blood lymphocytes. Time-of-flight mass spectrometry was used to genotype polymorphic loci in UGT2B4, and the association between these polymorphisms and susceptibility to pancreatic cancer was expressed as odds ratios (ORs) with 95% confidence intervals (CIs), as calculated using multivariable logistic regression analysis. The rs1131878C > T polymorphism (NT_016354.20: g.10558805C > T) in UGT2B4 was associated with an increased pancreatic cancer risk. Compared to the C/C genotype, the C/T genotype conferred 1.39 times higher the pancreatic cancer risk (95% CI = 1.09-1.77; P = 0.007), and the T/T genotype conferred 2.97 times higher the pancreatic cancer risk (95% CI = 1.24-7.08; P = 0.014). In contrast, compared with the A/A genotype, the A/C genotype at the rs3822179 locus in UGT2B4 (NT_016354.20: g.10569096C > A) bestowed a 20% risk reduction (OR = 0.80, 95% CI = 0.67-0.95; P = 0.011). However, the risk was not significantly reduced with the C/C genotype (OR = 0.77, 95% CI = 0.52-1.14, P = 0.191). Polymorphisms in UGT2B4 affect the risk of pancreatic cancer occurrence in Han Chinese individuals.
Collapse
Affiliation(s)
- Xu Che
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021,China
| | - Dianke Yu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zongyong Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jianwei Zhang
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021,China
| | - Yintai Chen
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021,China
| | - Yaling Han
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Chenfeng Wang
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021,China
| | - Jun Qi
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
23
|
Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, Sun C, Cox NJ, Cook E, Das S, Ratain MJ. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet 2014; 23:5558-69. [PMID: 24879639 DOI: 10.1093/hmg/ddu268] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Medicine and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA and
| | | | | | | | | | | | - Chang Sun
- Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Nancy J Cox
- Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Edwin Cook
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Soma Das
- Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
24
|
Gokcumen O, Zhu Q, Mulder LCF, Iskow RC, Austermann C, Scharer CD, Raj T, Boss JM, Sunyaev S, Price A, Stranger B, Simon V, Lee C. Balancing selection on a regulatory region exhibiting ancient variation that predates human-neandertal divergence. PLoS Genet 2013; 9:e1003404. [PMID: 23593015 PMCID: PMC3623772 DOI: 10.1371/journal.pgen.1003404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/07/2013] [Indexed: 11/25/2022] Open
Abstract
Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations. Natural selection shapes the genome in a non-random way, as an allele that contributes more to the reproductive fitness of a species increases in frequency within the population. Under balancing selection, a particular kind of natural selection, more than one allele increases in frequency in the population, likely due to a reproductive advantage of individuals carrying both alleles. Only a handful of loci have been well documented to evolve under balancing selection, with the HBB gene (sickle cell locus) being the best studied. Here, we report a non-coding (but putatively functional) locus that has maintained two divergent alleles in the human population since before the Human–Neandertal divergence and is therefore likely to be under balancing selection. These findings also provide a clear example for ancient African substructure.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qihui Zhu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rebecca C. Iskow
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Austermann
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Christopher D. Scharer
- Department of Microbiology, Emory University, Atlanta, Georgia, United States of America
| | - Towfique Raj
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Jeremy M. Boss
- Department of Microbiology, Emory University, Atlanta, Georgia, United States of America
| | - Shamil Sunyaev
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Alkes Price
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Barbara Stranger
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Viviana Simon
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York, New York, United States of America
- * E-mail: (VS); (CL)
| | - Charles Lee
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (VS); (CL)
| |
Collapse
|
25
|
Yang Z, Yang Z. Prediction of heterogeneous differential genes by detecting outliers to a Gaussian tight cluster. BMC Bioinformatics 2013; 14:81. [PMID: 23497043 PMCID: PMC3699364 DOI: 10.1186/1471-2105-14-81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 02/14/2013] [Indexed: 11/12/2022] Open
Abstract
Background Heterogeneously and differentially expressed genes (hDEG) are a common phenomenon due to bio-logical diversity. A hDEG is often observed in gene expression experiments (with two experimental conditions) where it is highly expressed in a few experimental samples, or in drug trial experiments for cancer studies with drug resistance heterogeneity among the disease group. These highly expressed samples are called outliers. Accurate detection of outliers among hDEGs is then desirable for dis- ease diagnosis and effective drug design. The standard approach for detecting hDEGs is to choose the appropriate subset of outliers to represent the experimental group. However, existing methods typically overlook hDEGs with very few outliers. Results We present in this paper a simple algorithm for detecting hDEGs by sequentially testing for potential outliers with respect to a tight cluster of non- outliers, among an ordered subset of the experimental samples. This avoids making any restrictive assumptions about how the outliers are distributed. We use simulated and real data to illustrate that the proposed algorithm achieves a good separation between the tight cluster of low expressions and the outliers for hDEGs. Conclusions The proposed algorithm assesses each potential outlier in relation to the cluster of potential outliers without making explicit assumptions about the outlier distribution. Simulated examples and and breast cancer data sets are used to illustrate the suitability of the proposed algorithm for identifying hDEGs with small numbers of outliers.
Collapse
Affiliation(s)
- Zihua Yang
- Wolfson Institute for Preventive Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | | |
Collapse
|
26
|
Vasseur E, Quintana-Murci L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol Appl 2013; 6:596-607. [PMID: 23789027 PMCID: PMC3684741 DOI: 10.1111/eva.12045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/13/2012] [Indexed: 01/09/2023] Open
Abstract
Investigations of the legacy of natural selection in the human genome have proved particularly informative, pinpointing functionally important regions that have participated in our genetic adaptation to the environment. Furthermore, genetic dissection of the intensity and type of selection acting on human genes can be used to predict involvement in different forms and severities of human diseases. We review here the progress made in population genetics studies toward understanding the effects of selection, in its different forms and intensities, on human genome diversity. We discuss some outstanding, robust examples of genes and biological functions subject to strong dietary, climatic and pathogen selection pressures. We also explore the possible relationship between cancer and natural selection, a topic that has been largely neglected because cancer is generally seen as a late-onset disease. Finally, we discuss how the present-day incidence of some diseases of modern societies may represent a by-product of past adaptation to other selective forces and changes in lifestyle. This perspective thus illustrates the value of adopting a population genetics approach in delineating the biological mechanisms that have played a major evolutionary role in the way humans have genetically adapted to different environments and lifestyles over time.
Collapse
Affiliation(s)
- Estelle Vasseur
- Institut Pasteur, Unit of Human Evolutionary Genetics 75015, Paris, France ; Centre National de la Recherche Scientifique, URA 3012 75015, Paris, France ; Centre National de la Recherche Scientifique, UMR 5174, Evolution et Diversité Biologique 31062, Toulouse, France ; Université de Toulouse 31062, Toulouse, France
| | | |
Collapse
|