1
|
Dang X, Song M, Lv L, Yang Y, Luo XJ. Proteome-wide Mendelian randomization reveals the causal effects of immune-related plasma proteins on psychiatric disorders. Hum Genet 2023; 142:809-818. [PMID: 37085628 DOI: 10.1007/s00439-023-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Immune dysregulation has been consistently reported in psychiatric disorders, however, the causes and mechanisms underlying immune dysregulation in psychiatric disorders remain largely unclear. Here we conduct a Mendelian randomization study by integrating plasma proteome and GWASs of schizophrenia, bipolar disorder and depression. The primate-specific immune-related protein BTN3A3 showed the most significant associations with all three psychiatric disorders. In addition, other immune-related proteins, including AIF1, FOXO3, IRF3, CFHR4, IGLON5, FKBP2, and PI3, also showed significant associations with psychiatric disorders. Our study showed that a proportion of psychiatric risk variants may contribute to disease risk by regulating immune-related plasma proteins, providing direct evidence that connect the genetic risk of psychiatric disorders to immune system.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, Henan, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
2
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Mumps virus-specific immune response outcomes and sex-based differences in a cohort of healthy adolescents. Clin Immunol 2022; 234:108912. [PMID: 34968746 PMCID: PMC8760162 DOI: 10.1016/j.clim.2021.108912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Despite high levels of MMR-II usage in the US, mumps outbreaks continue to occur. Evidence suggests that mumps vaccine-induced humoral immunity wanes over time. Relatively few studies have examined cell-mediated immunity or reported on sex-based differences. To better understand sex-based differences in the immune response to mumps vaccine, we measured neutralizing antibody titers and mumps-specific cytokine/chemokine responses in a cohort of 748 adolescents and young adults after two doses of MMR vaccine. We observed significantly higher neutralizing antibody titers in females than in males (120.8 IU/mL, 98.7 IU/mL, p = 0.038) but significantly higher secretion levels of MIP-1α, MIP-1β, TNFα, IL-6, IFNγ, and IL-1β in males compared to females. These data demonstrate that sex influences mumps-specific humoral and cell-mediated immune response outcomes, a phenomenon that should be considered during efforts to improve vaccines and prevent future outbreaks.
Collapse
|
4
|
Haralambieva IH, Eberhard KG, Ovsyannikova IG, Grill DE, Schaid DJ, Kennedy RB, Poland GA. Transcriptional signatures associated with rubella virus-specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. Eur J Immunol 2021; 51:1824-1838. [PMID: 33818775 PMCID: PMC9841595 DOI: 10.1002/eji.202049054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Multiple factors linked to host genetics/inherent biology play a role in interindividual variability in immune response outcomes after rubella vaccination. In order to identify these factors, we conducted a study of rubella-specific humoral immunity before (Baseline) and after (Day 28) a third dose of MMR-II vaccine in a cohort of 109 women of childbearing age. We performed mRNA-Seq profiling of PBMCs after rubella virus in vitro stimulation to delineate genes associated with post-vaccination rubella humoral immunity and to define genes mediating the association between prior immune response status (high or low antibody) and subsequent immune response outcome. Our study identified novel genes that mediated the association between prior immune response and neutralizing antibody titer after a third MMR vaccine dose. These genes included the following: CDC34; CSNK1D; APOBEC3F; RAD18; AAAS; SLC37A1; FAS; and JAK2. The encoded proteins are involved in innate antiviral response, IFN/cytokine signaling, B cell repertoire generation, the clonal selection of B lymphocytes in germinal centers, and somatic hypermutation/antibody affinity maturation to promote optimal antigen-specific B cell immune function. These data advance our understanding of how subjects' prior immune status and/or genetic propensity to respond to rubella/MMR vaccination ultimately affects innate immunity and humoral immune outcomes after vaccination.
Collapse
Affiliation(s)
| | | | | | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll JJ, Peytavi R, Lu HW, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2021; 5:713-725. [PMID: 33820980 DOI: 10.1038/s41551-021-00706-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
Collapse
Affiliation(s)
- Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | - Kandace Fung
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | | | - Kasey Smith
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | - Giedrius Gasiunas
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daehwan Kim
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | | | | | - Virginijus Siksnys
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Cardea, San Diego, CA, USA.
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O'Connell MA. ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 2021; 46:758-771. [PMID: 33736931 DOI: 10.1016/j.tibs.2021.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.
Collapse
Affiliation(s)
- Jaclyn Quin
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| |
Collapse
|
7
|
de Weerd NA, Vivian JP, Lim SS, Huang SUS, Hertzog PJ. Structural integrity with functional plasticity: what type I IFN receptor polymorphisms reveal. J Leukoc Biol 2021; 108:909-924. [PMID: 33448473 DOI: 10.1002/jlb.2mr0420-152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/β receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and Australian Research Council Centre for Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Crooke SN, Ovsyannikova IG, Kennedy RB, Warner ND, Poland GA. Associations between markers of cellular and humoral immunity to rubella virus following a third dose of measles-mumps-rubella vaccine. Vaccine 2020; 38:7897-7904. [PMID: 33158591 DOI: 10.1016/j.vaccine.2020.10.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Rubella virus (RV) was eliminated in the United States in 2004, although a small portion of the population fails to develop long-term immunity against RV even after two doses of the measles-mumps-rubella (MMR) vaccine. We hypothesized that inherent biological differences in cytokine and chemokine signaling likely govern an individual's response to a third dose of the vaccine. METHODS Healthy young women (n = 97) were selected as study participants if they had either low or high extremes of RV-specific antibody titer after two previous doses of MMR vaccine. We measured cytokine and chemokine secretion from RV-stimulated PBMCs before and 28 days after they received a third dose of MMR vaccine and assessed correlations with humoral immune response outcomes. RESULTS High and low antibody vaccine responders exhibited a strong pro-inflammatory cellular response, with an underlying Th1-associated signature (IL-2, IFN-γ, MIP-1β, IP-10) and suppressed production of most Th2-associated cytokines (IL-4, IL-10, IL-13). IL-10 and IL-4 exhibited significant negative associations with neutralizing antibody titers and memory B cell ELISpot responses among low vaccine responders. CONCLUSION IL-4 and IL-10 signaling pathways may be potential targets for understanding and improving the immune response to rubella vaccination or for designing new vaccines that induce more durable immunity.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | | | - Nathaniel D Warner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Sindura KP, Banerjee M. An Immunological Perspective to Non-syndromic Sensorineural Hearing Loss. Front Immunol 2019; 10:2848. [PMID: 31921123 PMCID: PMC6919260 DOI: 10.3389/fimmu.2019.02848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Conventionally the etiology of congenital Non-Syndromic Hearing Loss has been attributed to mutations in the genes involved in ion homeostasis or the structural compartments of the inner ear. However, this contributes to only a part of the problem, as still the determinants for a large majority of the Non-Syndromic Hearing loss seems to be an enigma. Evidences indicate that pathogens like Rubella, Cytomegalovirus, and many other infections can also result in congenital hearing loss. Additionally, there are variety of factors other than the viral mediators, that can act as stressors to trigger an altered immune response, during the gestational period of the mother. It is also known that non-specific stimulation of the immune system can mimic an infection status. This indicates a strong role for environmental factors toward their contribution to the pathology, possibly by influencing the host immune response. These varieties of known or unknown environmental factors interact with the susceptible variants in immune response genes in defining the threshold for protection or infection in an individual. Considering this background we propose to present this perspective that threshold of the host immune response during the prenatal conditions, in response to environmental stimulus, might be determined by the susceptible variants in immune response genes. This in turn can directly or indirectly influence the genes involved in maintaining the structural components or ion homeostasis, resulting in hearing loss. The threshold of immune response alterations may be heavily dependent on the immunogenetic profile of the mother or the fetus.
Collapse
Affiliation(s)
- K P Sindura
- Neurobiology and Genetics Division, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Moinak Banerjee
- Neurobiology and Genetics Division, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
11
|
Haralambieva IH, Ovsyannikova IG, Kennedy RB, Goergen KM, Grill DE, Chen MH, Hao L, Icenogle J, Poland GA. Rubella virus-specific humoral immune responses and their interrelationships before and after a third dose of measles-mumps-rubella vaccine in women of childbearing age. Vaccine 2019; 38:1249-1257. [PMID: 31732325 DOI: 10.1016/j.vaccine.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023]
Abstract
In the U.S., measles, mumps, and rubella vaccination is recommended as two vaccine doses. A third dose of measles-mumps-rubella (MMR) vaccine is being administered in certain situations (e.g., identified seronegativity and during outbreaks). We studied rubella-specific humoral immunity (neutralizing antibody, enzyme-linked immunosorbent assay/ELISA IgG titer and antibody avidity) and the frequencies of antigen-specific memory B cells before and after a third dose of MMR-II in 109 female participants of childbearing age (median age, 34.5 years old) from Olmsted County, MN, with two documented prior MMR vaccine doses. The participants were selected from a cohort of 1117 individuals if they represented the high and the low ends of the rubella-specific antibody response spectrum. Of the 109 participants, we identified four individuals (3.67% of all study participants; 7.14% of the low-responder group) that were seronegative at Baseline (rubella-specific ELISA IgG titers <10 IU/mL), suggesting a lack of protection against rubella before receipt of a third MMR vaccine dose. The peak geometric mean neutralizing antibody titer one month following the third dose of MMR vaccine for the cohort was 243 NT50 (CI; 241, 245), which is expected for a cohort with two doses of MMR, and the peak geometric mean IgG titer was 150 IU/mL (CI; 148, 152) with no seronegative individuals at Day 28. One-third of all subjects (31.8% for the neutralizing antibody; 30.8% for the IgG titer) experienced a significant boost (≥4-fold) of antibody titers one month following vaccination. Antibody titers and other tested immune-response variables were significantly higher in the high-responder group compared to the low-responder group. The frequencies of rubella-specific memory B cells were modestly associated with the antibody titers. Our study suggests the importance of yet unknown inherent biologic and immune factors for the generation and maintenance of rubella-vaccine-induced humoral immune responses.
Collapse
Affiliation(s)
| | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Krista M Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Min-Hsin Chen
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta 30333, Georgia
| | - Lijuan Hao
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta 30333, Georgia
| | - Joseph Icenogle
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta 30333, Georgia
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
12
|
Atti del 52° Congresso Nazionale: Società Italiana di Igiene, Medicina Preventiva e Sanità Pubblica (SItI). JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E1-E384. [PMID: 31777763 PMCID: PMC6865078 DOI: 10.15167/2421-4248/jpmh2019.60.3s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Abstract
There is substantial variation between individuals in the immune response to vaccination. In this review, we provide an overview of the plethora of studies that have investigated factors that influence humoral and cellular vaccine responses in humans. These include intrinsic host factors (such as age, sex, genetics, and comorbidities), perinatal factors (such as gestational age, birth weight, feeding method, and maternal factors), and extrinsic factors (such as preexisting immunity, microbiota, infections, and antibiotics). Further, environmental factors (such as geographic location, season, family size, and toxins), behavioral factors (such as smoking, alcohol consumption, exercise, and sleep), and nutritional factors (such as body mass index, micronutrients, and enteropathy) also influence how individuals respond to vaccines. Moreover, vaccine factors (such as vaccine type, product, adjuvant, and dose) and administration factors (schedule, site, route, time of vaccination, and coadministered vaccines and other drugs) are also important. An understanding of all these factors and their impacts in the design of vaccine studies and decisions on vaccination schedules offers ways to improve vaccine immunogenicity and efficacy.
Collapse
|
14
|
Chen L, Liu J, Shi L, Song Y, Song Y, Gao Y, Dong Y, Li L, Shen M, Zhai Y, Cao Z. Seasonal influence on TORCH infection and analysis of multi-positive samples with indirect immunofluorescence assay. J Clin Lab Anal 2019; 33:e22828. [PMID: 30666721 PMCID: PMC6528586 DOI: 10.1002/jcla.22828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Background TORCH including the pathogens of Toxoplasma gondii (TOX), rubella virus (RV), cytomegalovirus (CMV), and herpes simplex virus (HSV) causes intrauterine infections and poses a worldwide threat to women especially in pregnancy. In this study, we described the seasonal difference in TORCH infection and analyzed the anti‐TORCH IgM multipositive serum samples by the indirect immunofluorescence assays (IFA). Methods To observe the seasonal influence of the anti‐TORCH IgG and IgM antibodies, a retrospective study was conducted with 10 669 women (20–40 y old) before pregnancy from August 2016 to July 2017. Totally 199 ELISA anti‐TORCH IgM multipositive serum samples were further tested by IFAs for false‐positive analysis. Results The prevalence of positive HSV1‐IgM, RV‐IgM, HSV2‐IgM, CMV‐IgM, and TOX‐IgM in the present population was 6.30%, 2.55%, 1.94%, 1.24%, and 0.67%, respectively. Additionally, the prevalence of positive RV‐IgM, CMV‐IgM, and HSV1‐IgM was statistically different among four seasons, with the highest positive rates of RV‐IgM (4.12%) in autumn, CMV‐IgM (1.75%) in summer, and HSV1‐IgM (7.53%) in winter. The confirmatory IFAs showed that the positive rates of RUV‐IgM, CMV‐IgM, and HSV2‐IgM were significantly different from those in ELISA screening experiments. Interestingly, only 32.7% (65/199) of the TORCH IgM multipositive results were consistent with those by the IFA, indicating that cross‐reaction caused false positives were common in ELISA IgM antibody screening. Conclusion The TORCH infection displayed different prevalence among four seasons in our 12‐month retrospective study. The IgM multipositives by ELISA screening may need further confirmation analysis due to its relatively high cross‐reaction rate.
Collapse
Affiliation(s)
- Lu Chen
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jingrui Liu
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lei Shi
- Department of Laboratory Medicine, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Song
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yujie Song
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yang Gao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd., Ningbo, China
| | - Yanhong Zhai
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Haralambieva IH, Kennedy RB, Simon WL, Goergen KM, Grill DE, Ovsyannikova IG, Poland GA. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination. PLoS One 2018; 13:e0191812. [PMID: 29381765 PMCID: PMC5790242 DOI: 10.1371/journal.pone.0191812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. Methods We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. Results We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Conclusion Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response.
Collapse
Affiliation(s)
- Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Whitney L. Simon
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Krista M. Goergen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
Haralambieva IH, Gibson MJ, Kennedy RB, Ovsyannikova IG, Warner ND, Grill DE, Poland GA. Characterization of rubella-specific humoral immunity following two doses of MMR vaccine using proteome microarray technology. PLoS One 2017; 12:e0188149. [PMID: 29145521 PMCID: PMC5690594 DOI: 10.1371/journal.pone.0188149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction//Background The lack of standardization of the currently used commercial anti-rubella IgG antibody assays leads to frequent misinterpretation of results for samples with low/equivocal antibody concentration. The use of alternative approaches in rubella serology could add new information leading to a fuller understanding of rubella protective immunity and neutralizing antibody response after vaccination. Methods We applied microarray technology to measure antibodies to all rubella virus proteins in 75 high and 75 low rubella virus-specific antibody responders after two MMR vaccine doses. These data were used in multivariate penalized logistic regression modeling of rubella-specific neutralizing antibody response after vaccination. Results We measured antibodies to all rubella virus structural proteins (i.e., the glycoproteins E1 and E2 and the capsid C protein) and to the non-structural protein P150. Antibody levels to each of these proteins were: correlated with the neutralizing antibody titer (p<0.006); demonstrated differences between the high and the low antibody responder groups (p<0.008); and were components of the model associated with/predictive of vaccine-induced rubella virus-specific neutralizing antibody titers (misclassification error = 0.2). Conclusion Our study supports the use of this new technology, as well as the use of antibody profiles/patterns (rather than single antibody measures) as biomarkers of neutralizing antibody response and correlates of protective immunity in rubella virus serology.
Collapse
Affiliation(s)
- Iana H. Haralambieva
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Michael J. Gibson
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Richard B. Kennedy
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Inna G. Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Nathaniel D. Warner
- Division of Biomedical Statistics and Informatics- Department of Health Science Research, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Diane E. Grill
- Division of Biomedical Statistics and Informatics- Department of Health Science Research, Mayo Clinic and Foundation, Rochester, MN, United States of America
| | - Gregory A. Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
17
|
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2017; 36:5350-5357. [PMID: 28774561 PMCID: PMC5792371 DOI: 10.1016/j.vaccine.2017.07.062] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public health paradigm of “the same dose for everyone for every disease” model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. “systems serology”), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.
Collapse
Affiliation(s)
- G A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - I G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - R B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
La Torre G, Saulle R, Unim B, Meggiolaro A, Barbato A, Mannocci A, Spadea A. The effectiveness of measles-mumps-rubella (MMR) vaccination in the prevention of pediatric hospitalizations for targeted and untargeted infections: A retrospective cohort study. Hum Vaccin Immunother 2017; 13:1879-1883. [PMID: 28604255 DOI: 10.1080/21645515.2017.1330733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To evaluate the effectiveness of the measles-mumps-rubella (MMR) vaccine in reducing hospitalizations for infectious disease, targeted and not targeted, as well as from respiratory diseases in children in Rome. METHODS The cohort was recomposed through record linkage of 2 archives (vaccination register and hospital discharge records. RESULTS The analysis included 11,004 children. 20.9% did not receive the MMR vaccination, 49% and 30.1% received one and 2 doses. There were no hospitalizations for rubella, 2 for mumps, and 12 for measles. The vaccine was highly protective against measles and mumps hospitalizations (HR = 0.10; 95% CI: 0.03.0.34). Regarding all infectious diseases there were 414 hospitalizations, and the vaccine was protective (HR = 0.29; 95% CI: 0.25 to 0.34). Concerning respiratory diseases, there were 809 admissions (7.4%), and the vaccine was highly protective (HR: 0.18; 95% CI: 0.07 to 0.48). CONCLUSIONS MMR vaccination is effective for the primary prevention of target and not targeted infectious diseases and may also limit hospitalizations for respiratory diseases.
Collapse
Affiliation(s)
- Giuseppe La Torre
- a Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , Rome , Italy
| | - Rosella Saulle
- a Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , Rome , Italy
| | - Brigid Unim
- a Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , Rome , Italy
| | - Angela Meggiolaro
- a Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , Rome , Italy
| | | | - Alice Mannocci
- a Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , Rome , Italy
| | | |
Collapse
|
19
|
Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family. Immunogenetics 2017; 69:379-390. [PMID: 28382515 DOI: 10.1007/s00251-017-0980-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.
Collapse
|
20
|
Zhu H, Xia W, Mo XB, Lin X, Qiu YH, Yi NJ, Zhang YH, Deng FY, Lei SF. Gene-Based Genome-Wide Association Analysis in European and Asian Populations Identified Novel Genes for Rheumatoid Arthritis. PLoS One 2016; 11:e0167212. [PMID: 27898717 PMCID: PMC5127563 DOI: 10.1371/journal.pone.0167212] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a complex autoimmune disease. Using a gene-based association research strategy, the present study aims to detect unknown susceptibility to RA and to address the ethnic differences in genetic susceptibility to RA between European and Asian populations. Methods Gene-based association analyses were performed with KGG 2.5 by using publicly available large RA datasets (14,361 RA cases and 43,923 controls of European subjects, 4,873 RA cases and 17,642 controls of Asian Subjects). For the newly identified RA-associated genes, gene set enrichment analyses and protein-protein interactions analyses were carried out with DAVID and STRING version 10.0, respectively. Differential expression verification was conducted using 4 GEO datasets. The expression levels of three selected ‘highly verified’ genes were measured by ELISA among our in-house RA cases and controls. Results A total of 221 RA-associated genes were newly identified by gene-based association study, including 71‘overlapped’, 76 ‘European-specific’ and 74 ‘Asian-specific’ genes. Among them, 105 genes had significant differential expressions between RA patients and health controls at least in one dataset, especially for 20 genes including 11 ‘overlapped’ (ABCF1, FLOT1, HLA-F, IER3, TUBB, ZKSCAN4, BTN3A3, HSP90AB1, CUTA, BRD2, HLA-DMA), 5 ‘European-specific’ (PHTF1, RPS18, BAK1, TNFRSF14, SUOX) and 4 ‘Asian-specific’ (RNASET2, HFE, BTN2A2, MAPK13) genes whose differential expressions were significant at least in three datasets. The protein expressions of two selected genes FLOT1 (P value = 1.70E-02) and HLA-DMA (P value = 4.70E-02) in plasma were significantly different in our in-house samples. Conclusion Our study identified 221 novel RA-associated genes and especially highlighted the importance of 20 candidate genes on RA. The results addressed ethnic genetic background differences for RA susceptibility between European and Asian populations and detected a long list of overlapped or ethnic specific RA genes. The study not only greatly increases our understanding of genetic susceptibility to RA, but also provides important insights into the ethno-genetic homogeneity and heterogeneity of RA in both ethnicities.
Collapse
Affiliation(s)
- Hong Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
- Department of Child and Adolescent Health, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xiang Lin
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Ying-Hua Qiu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Neng-Jun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
21
|
Hutton J. Does Rubella Cause Autism: A 2015 Reappraisal? Front Hum Neurosci 2016; 10:25. [PMID: 26869906 PMCID: PMC4734211 DOI: 10.3389/fnhum.2016.00025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
In the 1970s, Stella Chess found a high prevalence of autism in children with congenital rubella syndrome (CRS), 200 times that of the general population at the time. Many researchers quote this fact to add proof to the current theory that maternal infection with immune system activation in pregnancy leads to autism in the offspring. This rubella and autism association is presented with the notion that rubella has been eliminated in today’s world. CRS cases are no longer typically seen; yet, autistic children often share findings of CRS including deafness, congenital heart defects, and to a lesser extent visual changes. Autistic children commonly have hyperactivity and spasticity, as do CRS children. Both autistic and CRS individuals may develop type 1 diabetes as young adults. Neuropathology of CRS infants may reveal cerebral vasculitis with narrowed lumens and cerebral necrosis. Neuroradiological findings of children with CRS show calcifications, periventricular leukomalacia, and dilated perivascular spaces. Neuroradiology of autism has also demonstrated hyperintensities, leukomalacia, and prominent perivascular spaces. PET studies of autistic individuals exhibit decreased perfusion to areas of the brain similarly affected by rubella. In both autism and CRS, certain changes in the brain have implicated the immune system. Several children with autism lack antibodies to rubella, as do children with CRS. These numerous similarities increase the probability of an association between rubella virus and autism. Rubella and autism cross many ethnicities in many countries. Contrary to current belief, rubella has not been eradicated and globally affects up to 5% of pregnant women. Susceptibility continues as vaccines are not given worldwide and are not fully protective. Rubella might still cause autism, even in vaccinated populations.
Collapse
Affiliation(s)
- Jill Hutton
- Department of Obstetrics and Gynecology, The Woman's Hospital of Texas , Houston, TX , USA
| |
Collapse
|
22
|
Pellegrino P, Perrotta C, Clementi E, Radice S. Vaccine–Drug Interactions: Cytokines, Cytochromes, and Molecular Mechanisms. Drug Saf 2015; 38:781-7. [DOI: 10.1007/s40264-015-0330-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|