1
|
Stellacci E, Carter JN, Pannone L, Stevenson D, Moslehi D, Venanzi S, Bernstein JA, Tartaglia M, Martinelli S. Immunological and hematological findings as major features in a patient with a new germline pathogenic CBL variant. Am J Med Genet A 2024; 194:e63627. [PMID: 38613168 PMCID: PMC11223960 DOI: 10.1002/ajmg.a.63627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.
Collapse
Affiliation(s)
- Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| | - Jennefer N. Carter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- These authors equally contributed to this work
| | - Luca Pannone
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - David Stevenson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dorsa Moslehi
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Serenella Venanzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- These authors equally contributed to this work
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| |
Collapse
|
2
|
Mason G, Aghajani R, Dance B, Othman J, Goodwin L, Stevenson W, Mackinlay N. Chronic myeloproliferative neoplasm in adulthood in CBL syndrome harboring a splice-site CBL variant alongside a novel constitutional CSF3R variant. EJHAEM 2024; 5:397-402. [PMID: 38633130 PMCID: PMC11020124 DOI: 10.1002/jha2.864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/19/2024]
Abstract
Casitas B-cell lineage (CBL) syndrome is a rare RASopathy known to predispose to CBL-mutated juvenile myelomonocytic leukemia (JMML) in childhood. Adulthood acute myeloid leukemia arising out of a genetic aberrancies consistent with prior CBL-mutated JMML has been twice previously described, but chronic myeloproliferative neoplasia has not. We present a case of progressive myeloproliferative neoplasm in adulthood in the context of CBL syndrome alongside a novel CSF3R variant. We also review pathogenic splice-site mutations in CBL-mutated JMML.
Collapse
Affiliation(s)
- George Mason
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rhian Aghajani
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Brieanna Dance
- Department of Clinical GeneticsChildren's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jad Othman
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Linda Goodwin
- Department of Clinical GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - William Stevenson
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Naomi Mackinlay
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Feng X, Yang L, Liu X, Liu M, Liu L, Liu J, Luo J. Long non-coding RNA small nucleolar RNA host gene 29 drives chronic myeloid leukemia progression via microRNA-483-3p/Casitas B-lineage Lymphoma axis-mediated activation of the phosphoinositide 3-kinase/Akt pathway. Med Oncol 2024; 41:60. [PMID: 38252204 DOI: 10.1007/s12032-023-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The aberrant expression of the long non-coding RNA (lncRNA) Small Nucleolar RNA Host Gene 29 (SNHG29) has been associated with various human cancers. However, the role of SNHG29 in chronic myeloid leukemia (CML) remains elusive. Therefore, this study aimed to investigate the function of SNHG29 in CML and unveil its potential underlying mechanisms. Herein, peripheral blood samples from 44 CML patients and 17 healthy subjects were collected. The expressions of SNHG29, microRNA-483-3p (miR-483-3p), and Casitas B-lineage Lymphoma (CBL) were measured using quantitative polymerase chain reaction (qPCR) or Western Blot. Cell viability, apoptosis, and cell cycle progression were evaluated using the Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine incorporation, and flow cytometry, respectively. Western Blot analysis was employed to assess protein expressions related to cellular proliferation, apoptosis, and oncogenesis. RNA immunoprecipitation and dual-luciferase reporter assays were utilized to verify the interactions among SNHG29, miR-483-3p, and CBL. SNHG29 was significantly overexpressed in both blood samples of CML patients and CML cell lines. In CML, increased expression of SNHG29 was positively correlated with clinical staging, and patients with high SNHG29 expression had poorer survival outcomes. Functionally, knocking down SNHG29 effectively inhibited CML cell proliferation and promoted apoptosis. Mechanistically, SNHG29 acted as a competing endogenous RNA for miR-483-3p to modulate CBL expression, thereby activating the Phosphoinositide 3-Kinase/Akt signaling pathway and mediating CML progression. In summary, these findings reveal that SNHG29 promotes tumorigenesis in CML, offering a potential therapeutic strategy for CML treatment.
Collapse
Affiliation(s)
- XueFeng Feng
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Lin Yang
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Xiaojun Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Menghan Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Lu Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Jing Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - JianMin Luo
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China.
| |
Collapse
|
4
|
Yoshida T, Muramatsu H, Wakamatsu M, Sajiki D, Murakami N, Kitazawa H, Okamoto Y, Taniguchi R, Kataoka S, Narita A, Hama A, Okuno Y, Takahashi Y. Clinical and molecular features of CBL-mutated juvenile myelomonocytic leukemia. Haematologica 2023; 108:3115-3119. [PMID: 37226702 PMCID: PMC10620587 DOI: 10.3324/haematol.2022.282385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Taro Yoshida
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya.
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Hironobu Kitazawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Graduate school of Medical and Dental Sciences, Kagoshima
| | - Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya.
| |
Collapse
|
5
|
Yepes S, Tucker MA, Koka H, Xiao Y, Zhang T, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Hutchinson A, Yeager M, Hicks B, Brown KM, Freedman ND, Chanock SJ, Goldstein AM, Yang XR. Integrated Analysis of Coexpression and Exome Sequencing to Prioritize Susceptibility Genes for Familial Cutaneous Melanoma. J Invest Dermatol 2022; 142:2464-2475.e5. [PMID: 35181301 PMCID: PMC9378750 DOI: 10.1016/j.jid.2022.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The application of whole-exome sequencing has led to the identification of high- and moderate-risk variants that contribute to cutaneous melanoma susceptibility. However, confirming disease-causing variants remains challenging. We applied a gene coexpression network analysis to prioritize the candidate genes identified from whole-exome sequencing of 34 melanoma-prone families, with at least three affected members sequenced per family (N = 119 cases). A coexpression network was constructed from genotype-tissue expression project, skin melanoma from the cancer genome atlas, and primary melanocyte cultures. We performed module-specific enrichment and focused on modules associated with pigmentation processes because they are the best-studied and most well-known risk factors for melanoma susceptibility. We found that pigmentation-associated modules across the four expression datasets examined were enriched for well-known melanoma susceptibility genes plus genes associated with pigmentation. We also used network properties to prioritize genes within pigmentation modules as candidate susceptibility genes. Integrating information from coexpression network analysis and variant prioritization, we identified 36 genes (such as DCT, TPCN2, TRPM1, ATP10A, and EPHA5) as potential melanoma risk genes in the families. Our approach also allowed us to link families with private gene mutations on the basis of gene coexpression patterns and thereby may provide an innovative perspective in gene identification in high-risk families.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Margaret A Tucker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers (Basel) 2022; 14:cancers14030839. [PMID: 35159106 PMCID: PMC8833995 DOI: 10.3390/cancers14030839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CBL mutations are progressively being described as involved in different clinical manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that includes multisystemic involvement characterized by variable phenotypic expression and expressivity. In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of the molecular mechanisms in which CBL exerts its pathogenic role. Abstract CBL plays a key role in different cell pathways, mainly related to cancer onset and progression, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement characterized by variable phenotypic expression and expressivity. This review provides a comprehensive overview of the molecular mechanisms in which CBL exerts its function and describes the clinical manifestation of CBL mutations in humans.
Collapse
|
7
|
Melas M, Mathew MT, Mori M, Jayaraman V, Wilson SA, Martin C, Jacobson-Kelly AE, Kelly BJ, Magrini V, Mardis ER, Cottrell CE, Lee K. Somatic Variation as an Incidental Finding in the Pediatric Next Generation Sequencing Era. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006135. [PMID: 34716204 PMCID: PMC8751410 DOI: 10.1101/mcs.a006135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
The methodologic approach used in next-generation sequencing (NGS) affords a high depth of coverage in genomic analysis. Inherent in the nature of genomic testing, there exists potential for identifying genomic findings that are incidental or secondary to the indication for clinical testing, with the frequency dependent on the breadth of analysis and the tissue sample under study. The interpretation and management of clinically meaningful incidental genomic findings is a pressing issue particularly in the pediatric population. Our study describes a 16-mo-old male who presented with profound global delays, brain abnormality, progressive microcephaly, and growth deficiency, as well as metopic craniosynostosis. Clinical exome sequencing (ES) trio analysis revealed the presence of two variants in the proband. The first was a de novo variant in the PPP2R1A gene (c.773G > A, p.Arg258His), which is associated with autosomal dominant (AD) intellectual disability, accounting for the proband's clinical phenotype. The second was a recurrent hotspot variant in the CBL gene (c.1111T > C, p.Tyr371His), which was present at a variant allele fraction of 11%, consistent with somatic variation in the peripheral blood sample. Germline pathogenic variants in CBL are associated with AD Noonan syndrome–like disorder with or without juvenile myelomonocytic leukemia. Molecular analyses using a different tissue source, buccal epithelial cells, suggest that the CBL alteration may represent a clonal population of cells restricted to leukocytes. This report highlights the laboratory methodologic and interpretative processes and clinical considerations in the setting of acquired variation detected during clinical ES in a pediatric patient.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State Univ; Dept of Pediatrics, The Ohio State University
| | - Mari Mori
- Dept of Pediatrics, The Ohio State University; Genetic and Genomic Medicine, Nationwide Children's Hospital
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Sarah A Wilson
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | | | - Amanda E Jacobson-Kelly
- Dept of Pediatrics, The Ohio State University; Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Ben J Kelly
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| | - Kristy Lee
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| |
Collapse
|
8
|
Cardoso L, Galán‐Gómez V, Corral‐Sánchez MD, Pérez‐Martínez A, Riesco S, Isidoro‐García M, Escudero A. Juvenile myelomonocytic leukemia in CBL syndrome associated with germline splice-site mutations: Two case reports and a literature review. Clin Case Rep 2021; 9:e04260. [PMID: 34026204 PMCID: PMC8123759 DOI: 10.1002/ccr3.4260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/05/2022] Open
Abstract
The clinical and laboratory criteria for hemophagocytic lymphohistiocytosis should be taken into account during the juvenile myelomonocytic leukemia diagnosis, specifically in CBL syndrome, to reveal the presence of primary rather than secondary associated hemophagocytosis.
Collapse
Affiliation(s)
- Leila Cardoso
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell TherapyHospital La Paz Institute for Health Research (INGEMM‐IdiPAZ)MadridSpain
| | - Víctor Galán‐Gómez
- Paediatric Haematology and Oncology ServiceLa Paz University HospitalMadridSpain
| | | | - Antonio Pérez‐Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell TherapyHospital La Paz Institute for Health Research (INGEMM‐IdiPAZ)MadridSpain
- Paediatric Haematology and Oncology ServiceLa Paz University HospitalMadridSpain
| | - Susana Riesco
- Department of Paediatric OncohaematologyUniversity Hospital of SalamancaSalamancaSpain
| | | | - Adela Escudero
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell TherapyHospital La Paz Institute for Health Research (INGEMM‐IdiPAZ)MadridSpain
- Institute of Medical and Molecular Genetics (INGEMM)La Paz University HospitalMadridSpain
| |
Collapse
|
9
|
Yepes S, Tucker MA, Koka H, Xiao Y, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Hutchinson A, Yeager M, Hicks B, Freedman ND, Chanock SJ, Goldstein AM, Yang XR. Using whole-exome sequencing and protein interaction networks to prioritize candidate genes for germline cutaneous melanoma susceptibility. Sci Rep 2020; 10:17198. [PMID: 33057211 PMCID: PMC7560829 DOI: 10.1038/s41598-020-74293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Although next-generation sequencing has demonstrated great potential for novel gene discovery, confirming disease-causing genes after initial discovery remains challenging. Here, we applied a network analysis approach to prioritize candidate genes identified from whole-exome sequencing analysis of 98 cutaneous melanoma patients from 27 families. Using a network propagation method, we ranked candidate genes by their similarity to known disease genes in protein-protein interaction networks and identified gene clusters with functional connectivity. Using this approach, we identified several new candidate susceptibility genes that warrant future investigations such as NGLY1, IL1RN, FABP2, PRKDC, and PROSER2. The propagated network analysis also allowed us to link families that did not have common underlying genes but that carried variants in genes that interact on protein-protein interaction networks. In conclusion, our study provided an analysis perspective for gene prioritization in the context of genetic heterogeneity across families and prioritized top potential candidate susceptibility genes in our dataset.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
A Case of Uveitis in a Patient With Juvenile Myelomonocytic Leukemia Successfully Treated With Adalimumab. J Pediatr Hematol Oncol 2020; 42:e373-e376. [PMID: 30807392 DOI: 10.1097/mph.0000000000001448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patients with juvenile myelomonocytic leukemia due to germline CBL mutation (10% to 15%) may have a subacute course occasionally associated with autoimmune disorders, which may resemble RAS-associated autoimmune lymphoproliferative disorder. In both conditions, prognosis and standard treatment for autoimmune phenomena remain poorly understood. We report the case of a 7-year-old boy with juvenile myelomonocytic leukemia with severe steroid-dependent uveitis, who did not respond to several therapeutic attempts with immunosuppressant agents, including sirolimus, and was finally successfully treated with adalimumab. This case offers further insight into the management of autoimmune disorders in the context of predisposing genetic conditions.
Collapse
|
11
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
12
|
Sewduth RN, Baietti MF, Sablina AA. Cracking the Monoubiquitin Code of Genetic Diseases. Int J Mol Sci 2020; 21:ijms21093036. [PMID: 32344852 PMCID: PMC7246618 DOI: 10.3390/ijms21093036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination is a versatile and dynamic post-translational modification in which single ubiquitin molecules or polyubiquitin chains are attached to target proteins, giving rise to mono- or poly-ubiquitination, respectively. The majority of research in the ubiquitin field focused on degradative polyubiquitination, whereas more recent studies uncovered the role of single ubiquitin modification in important physiological processes. Monoubiquitination can modulate the stability, subcellular localization, binding properties, and activity of the target proteins. Understanding the function of monoubiquitination in normal physiology and pathology has important therapeutic implications, as alterations in the monoubiquitin pathway are found in a broad range of genetic diseases. This review highlights a link between monoubiquitin signaling and the pathogenesis of genetic disorders.
Collapse
Affiliation(s)
- Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anna A. Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (R.N.S.); (M.F.B.)
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
13
|
After 95 years, it's time to eRASe JMML. Blood Rev 2020; 43:100652. [PMID: 31980238 DOI: 10.1016/j.blre.2020.100652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a rare clonal disorder of early childhood. Constitutive activation of the RAS pathway is the initial event in JMML. Around 90% of patients diagnosed with JMML carry a mutation in the PTPN11, NRAS, KRAS, NF1 or CBL genes. It has been demonstrated that after this first genetic event, an additional somatic mutation or epigenetic modification is involved in disease progression. The available genetic and clinical data have enabled researchers to establish relationships between JMML and several clinical conditions, including Noonan syndrome, Ras-associated lymphoproliferative disease, and Moyamoya disease. Despite scientific progress and the development of more effective treatments, JMML is still a deadly disease: the 5-year survival rate is ~50%. Here, we report on recent research having led to a better understanding of the genetic and molecular mechanisms involved in JMML.
Collapse
|
14
|
An W, Mohapatra BC, Zutshi N, Bielecki TA, Goez BT, Luan H, Iseka F, Mushtaq I, Storck MD, Band V, Band H. VAV1-Cre mediated hematopoietic deletion of CBL and CBL-B leads to JMML-like aggressive early-neonatal myeloproliferative disease. Oncotarget 2018; 7:59006-59016. [PMID: 27449297 PMCID: PMC5312291 DOI: 10.18632/oncotarget.10638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022] Open
Abstract
CBL and CBL-B ubiquitin ligases play key roles in hematopoietic stem cell homeostasis and their aberrations are linked to leukemogenesis. Mutations of CBL, often genetically-inherited, are particularly common in Juvenile Myelomonocytic Leukemia (JMML), a disease that manifests early in children. JMML is fatal unless corrected by bone marrow transplant, which is effective in only half of the recipients, stressing the need for animal models that recapitulate the key clinical features of this disease. However, mouse models established so far only develop hematological malignancy in adult animals. Here, using VAV1-Cre-induced conditional CBL/CBL-B double knockout (DKO) in mice, we established an animal model that exhibits a neonatal myeloproliferative disease (MPD). VAV1-Cre induced DKO mice developed a strong hematological phenotype at postnatal day 10, including severe leukocytosis and hepatomegaly, bone marrow cell hypersensitivity to cytokines including GM-CSF, and rapidly-progressive disease and invariable lethality. Interestingly, leukemic stem cells were most highly enriched in neonatal liver rather than bone marrow, which, along with the spleen and thymus, were hypo-cellular. Nonetheless, transplantation assays showed that both DKO bone marrow and liver cells can initiate leukemic disease in the recipient mice with seeding of both spleen and bone marrow. Together, our results support the usefulness of the new hematopoietic-specific CBL/CBL-B double KO animal model to study JMML-related pathogenesis and to further understand the function of CBL family proteins in regulating fetal and neonatal hematopoiesis. To our knowledge, this is the first mouse model that exhibits neonatal MPD in infancy, by day 10 of postnatal life.
Collapse
Affiliation(s)
- Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T Goez
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fany Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Goldstein AM, Xiao Y, Sampson J, Zhu B, Rotunno M, Bennett H, Wen Y, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Yeager M, Hicks B, Han J, De Vivo I, Koutros S, Andreotti G, Beane-Freeman L, Purdue M, Freedman ND, Chanock SJ, Tucker MA, Yang XR. Rare germline variants in known melanoma susceptibility genes in familial melanoma. Hum Mol Genet 2017; 26:4886-4895. [PMID: 29036293 PMCID: PMC5886297 DOI: 10.1093/hmg/ddx368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Known high-risk cutaneous malignant melanoma (CMM) genes account for melanoma risk in <40% of melanoma-prone families, suggesting the existence of additional high-risk genes or perhaps a polygenic mechanism involving multiple genetic modifiers. The goal of this study was to systematically characterize rare germline variants in 42 established melanoma genes among 144 CMM patients in 76 American CMM families without known mutations using data from whole-exome sequencing. We identified 68 rare (<0.1% in public and in-house control datasets) nonsynonymous variants in 25 genes. We technically validated all loss-of-function, inframe insertion/deletion, and missense variants predicted as deleterious, and followed them up in 1, 559 population-based CMM cases and 1, 633 controls. Several of these variants showed disease co-segregation within families. Of particular interest, a stopgain variant in TYR was present in five of six CMM cases/obligate gene carriers in one family and a single population-based CMM case. A start gain variant in the 5'UTR region of PLA2G6 and a missense variant in ATM were each seen in all three affected people in a single family, respectively. Results from rare variant burden tests showed that familial and population-based CMM patients tended to have higher frequencies of rare germline variants in albinism genes such as TYR, TYRP1, and OCA2 (P < 0.05). Our results suggest that rare nonsynonymous variants in low- or intermediate-risk CMM genes may influence familial CMM predisposition, warranting further investigation of both common and rare variants in genes affecting functionally important pathways (such as melanogenesis) in melanoma risk assessment.
Collapse
Affiliation(s)
- Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Melissa Rotunno
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hunter Bennett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yixuan Wen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jiali Han
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
16
|
Abstract
In this article we discuss the occurrence of myeloid neoplasms in patients with a range of syndromes that are due to germline defects of the RAS signaling pathway and in patients with trisomy 21. Both RAS mutations and trisomy 21 are common somatic events contributing to leukemogenis. Thus, the increased leukemia risk observed in children affected by these conditions is biologically highly plausible. Children with myeloid neoplasms in the context of these syndromes require different treatments than children with sporadic myeloid neoplasms and provide an opportunity to study the role of trisomy 21 and RAS signaling during leukemogenesis and development.
Collapse
Affiliation(s)
- Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | - Shai Izraeli
- The Genes, Development and Environment Institute for Pediatric Research, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Coe RR, McKinnon ML, Tarailo-Graovac M, Ross CJ, Wasserman WW, Friedman JM, Rogers PC, van Karnebeek CDM. A case of splenomegaly in CBL syndrome. Eur J Med Genet 2017; 60:374-379. [PMID: 28414188 DOI: 10.1016/j.ejmg.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
INTRODUCTION We present a child with unexplained splenomegaly to highlight this feature as a presenting sign of the RASopathy CBL syndrome and to draw attention to the power and utility of next generation genomic sequencing for providing rapid diagnosis and critical information to guide care in the pediatric clinical setting. CLINICAL REPORT A 7-year-old boy presented with unexplained splenomegaly, attention deficit hyperactivity disorder, mild learning difficulties, easy bruising, mild thrombocytopenia, and subtle dysmorphic features. Extensive haematological testing including a bone marrow biopsy showed mild megaloblastoid erythropoiesis and borderline fibrosis. There were no haematological cytogenetic anomalies or other haematological pathology to explain the splenomegaly. Metabolic testing and chromosomal microarray were unremarkable. Trio whole-exome sequencing (WES) identified a pathogenic de novo heterozygous germline CBL variant (c.1111T > C, p.Y371H), previously reported to cause CBL syndrome and implicated in development of juvenile myelomonocytic leukemia (JMML). DISCUSSION CBL syndrome (more formally known as "Noonan-syndrome-like disorder with or without juvenile myelomonocytic leukemia") has overlapping features to Noonan syndrome with significant variability. CBL syndrome and other RASopathy disorders-including Noonan syndrome, neurofibromatosis 1, and Costello syndrome-are important to recognize as these are associated with a cancer-predisposition. CBL syndrome carries a very high risk for JMML, thus accurate diagnosis is of utmost importance. The diagnosis of CBL syndrome in this patient would not have been possible based on clinical features alone. Through WES, a specific genetic diagnosis was made, allowing for an optimized management and surveillance plan, illustrating the power of genomics in clinical practice.
Collapse
Affiliation(s)
- Rachel R Coe
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Margaret L McKinnon
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada; Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia
| | - Colin J Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Paul C Rogers
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplantation, B.C. Children's Hospital and University of British Columbia, Vancouver, Canada
| | - Clara D M van Karnebeek
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Seaby EG, Gilbert RD, Andreoletti G, Pengelly RJ, Mercer C, Hunt D, Ennis S. Unexpected Findings in a Child with Atypical Hemolytic Uremic Syndrome: An Example of How Genomics Is Changing the Clinical Diagnostic Paradigm. Front Pediatr 2017; 5:113. [PMID: 28589114 PMCID: PMC5438966 DOI: 10.3389/fped.2017.00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
CBL is a tumor suppressor gene on chromosome 11 encoding a multivalent adaptor protein with E3 ubiquitin ligase activity. Germline CBL mutations are dominant. Pathogenic de novo mutations result in a phenotype that overlaps Noonan syndrome (1). Some patients with CBL mutations go on to develop juvenile myelomonocytic leukemia (JMML), an aggressive malignancy that usually necessitates bone marrow transplantation. Using whole exome sequencing methods, we identified a known mutation in CBL in a 4-year-old Caucasian boy with atypical hemolytic uremic syndrome, moyamoya phenomenon, and dysmorphology consistent with a mild Noonan-like phenotype. Exome data revealed loss of heterozygosity across chromosome 11q consistent with JMML but in the absence of clinical leukemia. Our finding challenges conventional clinical diagnostics since we have identified a pathogenic variant in the CBL gene previously only ascertained in children presenting with leukemia. The increasing affordability of expansive sequencing is likely to increase the scope of clinical profiles observed for previously identified pathogenic variants and calls into question the interpretability and indications for clinical management.
Collapse
Affiliation(s)
- Eleanor G Seaby
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rodney D Gilbert
- Wessex Regional Paediatric Nephro-Urology Service, Southampton Children's Hospital, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gaia Andreoletti
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Reuben J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Catherine Mercer
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Loud JT, Bremer RC, Mai PL, Peters JA, Giri N, Stewart DR, Greene MH, Alter BP, Savage SA. Research participant interest in primary, secondary, and incidental genomic findings. Genet Med 2016; 18:1218-1225. [PMID: 27101135 PMCID: PMC5074919 DOI: 10.1038/gim.2016.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To define the frequency with which adult research participants consent to be offered clinically validated research genetic test results (RR) and incidental findings (IF). METHODS Consents were obtained from 506 adults enrolled in one of three studies within the National Cancer Institute Clinical Genetics Branch's Familial Cancer Research Program. A cross-sectional analysis was performed involving the choices indicated on study consents regarding receipt of RR and IF. RESULTS Ninety-seven percent opted to receive RR and IF. Participants who declined (n = 16) included two cancer survivors who were mutation-positive (1 = RR and 1 = both), eight who knew their primary mutation status (3 = RR; 4 = IF; 1 = both), three nonbloodline relatives (1 = RR; 2 = both), one untested but with the syndromic phenotype (1 = IF), and two parents of an affected child (2 = both). We speculate that these individuals either already had sufficient information, were not prepared to learn more, or felt that the information would not change their personal health-care decision making. CONCLUSIONS Adult research participants from families at high genetic risk for cancer overwhelmingly indicated their preference to receive both RR and IF. Future research will seek to identify the reasons for declining RR and IF and to study the impact of receipt of RR and IF on personal medical decision making.Genet Med 18 12, 1218-1225.
Collapse
Affiliation(s)
- Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Renee C Bremer
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Phuong L Mai
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - June A Peters
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|