1
|
Sowińska-Seidler A, Socha M, Szoszkiewicz A, Materna-Kiryluk A, Jamsheer A. A genotype-phenotype correlation in split-hand/foot malformation type 1: further refinement of the phenotypic subregions within the 7q21.3 locus. Front Mol Biosci 2023; 10:1250714. [PMID: 37916192 PMCID: PMC10616856 DOI: 10.3389/fmolb.2023.1250714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background: Split-hand/foot malformation type 1 (SHFM1) refers to the group of rare congenital limb disorders defined by the absence or hypoplasia of the central rays of the autopods with or without accompanying anomalies, such as hearing loss, craniofacial malformation, and ectodermal dysplasia. Consequently, the condition is characterized by clinical variability that hinders diagnostic and counseling procedures. SHFM1 is caused by pathogenic variants affecting the DLX5/6 genes and/or their tissue-specific enhancers at the 7q21.3 locus. Herein, we report on seven patients from five unrelated Polish families affected by variable symptoms of the SHFM1 spectrum, all harboring 7q21.3 or 7q21.2-q21.3 rearrangements, and provide a genotype-phenotype correlation in the studied cohort. Methods: We applied GTG banding, array-based comparative genomic hybridization (aCGH), and whole-genome sequencing (WGS) in order to identify the causative aberrations in all affected patients. Results: The identified pathogenic structural variants included deletions and/or translocations involving the 7q21.3 locus, i.e., t(7;10)(q21.3;q22.2) and t(7;12)(q21.3;q21.2) in all affected individuals. Interestingly, a sporadic carrier of the latter aberration presented the SHFM1 phenotype with additional features overlapping with Baker-Gordon syndrome (BAGOS), which resulted from the translocation breakpoint at chromosome 12 within the SYT1 gene. Conclusion: Clinical variability of the studied cohort reflects the composition of the DLX5/6 regulatory elements that were dislocated from their target genes by chromosomal rearrangements. The correlation of our data with the previously published observations enabled us to update the phenotypic subregions and regulatory units within the SHFM1 locus. In addition, we present the first case of SHFM1 and BAGOS-like phenotype that resulted from translocation breakpoints at chromosomes 7 and 12, both of which were pathogenic, and consequently, we show the first evidence that BAGOS can also result from the regulatory loss-of-function SYT1 mutations. In this paper, we emphasize the utility of sequence-based approaches in molecular diagnostics of disorders caused by regulatory structural variants.
Collapse
Affiliation(s)
- Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Socha
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Anna Szoszkiewicz
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
2
|
Ambrosetti I, Bernardini L, Pollazzon M, Giuffrida MG, Guida V, Peluso F, Baroni MC, Polizzi V, Napoli M, Rosato S, Trimarchi G, Gelmini C, Caraffi SG, Wischmeijer A, Frattini D, Novelli A, Garavelli L. Split Hand-Foot and Deafness in a Patient with 7q21.13-q21.3 Deletion Not Including the DLX5/6 Genes. Genes (Basel) 2023; 14:1526. [PMID: 37628577 PMCID: PMC10454356 DOI: 10.3390/genes14081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Split Hand-Foot Malformation (SHFM) is a congenital limb defect characterized by a median cleft of the hands and/or feet due to the absence/hypoplasia of the central rays. It may occur as part of a syndromic condition or as an isolated malformation. The most common of the six genetic loci identified for this condition is correlated to SHFM1 and maps in the 7q21q22 region. SHFM1 is characterized by autosomal dominant transmission, incomplete penetrance and variable expressivity. Associated features often include hearing loss, intellectual disability/developmental delay and craniofacial abnormalities. Disruption of the DLX5/DLX6 genes, mapping within the SHFM1 locus, is now known to be responsible for the phenotype. Through SNP array, we analyzed a patient affected by SHFM1 associated with deafness and an abnormality of the inner ear (incomplete partition type I); we identified a deletion in 7q21, not involving the DLX5/6 genes, but including exons 15 and 17 of DYNC1I1, known to act as exonic enhancers (eExons) of the DLX5/6 genes. We further demonstrated the role of DYNC1I1 eExons in regulating DLX5/6 expression by means of showing a reduced expression of the DLX5/6 genes through RT-PCR in a patient-derived lymphoblastoid cell line. Furthermore, our data and a review of published cases do not support the hypothesis that DLX5/6 are imprinted in humans. This work is an example of how the disruption of regulatory elements can be responsible for congenital malformations.
Collapse
Affiliation(s)
- Irene Ambrosetti
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.A.)
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Laura Bernardini
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Marzia Pollazzon
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Grazia Giuffrida
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Valentina Guida
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Francesca Peluso
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Chiara Baroni
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.A.)
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valeria Polizzi
- Department of Audiology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Simonetta Rosato
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Chiara Gelmini
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | | | - Anita Wischmeijer
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, 39100 Bolzano, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Azienda AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
3
|
Sifre-Ruiz A, Sagasta A, Santos E, Perez de Nanclares G, Heath KE. New pathogenic variant in DLX5: New clues for a clinical spectrum from split-hand-foot malformation to fibular aplasia, tibial campomelia and oligosyndactyly. Front Genet 2023; 14:1165780. [PMID: 37124614 PMCID: PMC10133553 DOI: 10.3389/fgene.2023.1165780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: FATCO (Fibular Aplasia, Tibial Campomelia and Oligosyndactyly) is a very infrequent skeletal dysplasia classified within the limb hypoplasia-reduction defects group whose genetic cause has not yet been identified. The advent of next-generation sequencing is enabling the diagnosis of diseases with no previously known genetic cause. Methods: We performed a thorough autopsy on a fetus whose pregnancy was legally terminated due to severe malformations detected by ultrasound. A trio exome was run to identify the genetic cause and risk of recurrence. Previous literature of similar cases was systematically searched. Results: Anatomopathological analyses revealed complete fibular aplasia, shortened and campomelic tibia, absent ankle joint, club right foot and a split foot malformation, leading to the diagnosis of FATCO. Exome sequencing showed that the female fetus carried a de novo nonsense variant in DLX5. The literature search permitted the collection of information on 43 patients with FATCO, the majority of whom were males diagnosed postnatally. In most cases, lower limbs were affected exclusively, but in 39.5% of cases the upper limbs were also affected. Conclusion: The pathologies associated with DLX5 variants encompass a wide spectrum of manifestations ranging from abnormalities exclusively in the hands and feet to long bones such as the tibia and fibula.
Collapse
Affiliation(s)
- Anna Sifre-Ruiz
- Pathology Service, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Amaia Sagasta
- Pathology Service, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Erika Santos
- Radiodiagnostic Service, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), ERN-BOND, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Aouci R, El Soudany M, Maakoul Z, Fontaine A, Kurihara H, Levi G, Narboux-Nême N. Dlx5/6 Expression Levels in Mouse GABAergic Neurons Regulate Adult Parvalbumin Neuronal Density and Anxiety/Compulsive Behaviours. Cells 2022; 11:cells11111739. [PMID: 35681437 PMCID: PMC9179869 DOI: 10.3390/cells11111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal circuits integrating Parvalbumin-positive GABAergic inhibitory interneurons (PV) are essential for normal brain function and are often altered in psychiatric conditions. During development, Dlx5 and Dlx6 (Dlx5/6) genes are involved in the differentiation of PV-interneurons. In the adult, Dlx5/6 continue to be expressed at low levels in most telencephalic GABAergic neurons, but their importance in determining the number and distribution of adult PV-interneurons is unknown. Previously, we have shown that targeted deletion of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in altered behavioural and metabolic profiles. Here we evaluate the consequences of targeted Dlx5/6 gene dosage alterations in adult GABAergic neurons. We compare the effects on normal brain of homozygous and heterozygous (Dlx5/6VgatCre and Dlx5/6VgatCre/+ mice) Dlx5/6 deletions to those of Dlx5 targeted overexpression (GABAergicDlx5/+ mice). We find a linear correlation between Dlx5/6 allelic dosage and the density of PV-positive neurons in the adult prelimbic cortex and in the hippocampus. In parallel, we observe that Dlx5/6 expression levels in GABAergic neurons are also linearly associated with the intensity of anxiety and compulsivity-like behaviours. Our findings reinforce the notion that regulation of Dlx5/6 expression is involved in individual cognitive variability and, possibly, in the genesis of certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Mey El Soudany
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Zakaria Maakoul
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Anastasia Fontaine
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
- Correspondence: ; Tel.: +33-140-798-027
| |
Collapse
|
5
|
Levi G, de Lombares C, Giuliani C, Iannuzzi V, Aouci R, Garagnani P, Franceschi C, Grimaud-Hervé D, Narboux-Nême N. DLX5/6 GABAergic Expression Affects Social Vocalization: Implications for Human Evolution. Mol Biol Evol 2021; 38:4748-4764. [PMID: 34132815 PMCID: PMC8557472 DOI: 10.1093/molbev/msab181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DLX5 and DLX6 are two closely related transcription factors involved in brain development and in GABAergic differentiation. The DLX5/6 locus is regulated by FoxP2, a gene involved in language evolution and has been associated with neurodevelopmental disorders and mental retardation. Targeted inactivation of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in behavioral and metabolic phenotypes notably increasing lifespan by 33%. Here, we show that Dlx5/6VgatCre mice present a hyper-vocalization and hyper-socialization phenotype. While only 7% of control mice emitted more than 700 vocalizations/10 min, 30% and 56% of heterozygous or homozygous Dlx5/6VgatCre mice emitted more than 700 and up to 1,400 calls/10 min with a higher proportion of complex and modulated calls. Hyper-vocalizing animals were more sociable: the time spent in dynamic interactions with an unknown visitor was more than doubled compared to low-vocalizing individuals. The characters affected by Dlx5/6 in the mouse (sociability, vocalization, skull, and brain shape…) overlap those affected in the "domestication syndrome". We therefore explored the possibility that DLX5/6 played a role in human evolution and "self-domestication" comparing DLX5/6 genomic regions from Neanderthal and modern humans. We identified an introgressed Neanderthal haplotype (DLX5/6-N-Haplotype) present in 12.6% of European individuals that covers DLX5/6 coding and regulatory sequences. The DLX5/6-N-Haplotype includes the binding site for GTF2I, a gene associated with Williams-Beuren syndrome, a hyper-sociability and hyper-vocalization neurodevelopmental disorder. The DLX5/6-N-Haplotype is significantly underrepresented in semi-supercentenarians (>105 years of age), a well-established human model of healthy aging and longevity, suggesting their involvement in the coevolution of longevity, sociability, and speech.
Collapse
Affiliation(s)
- Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Camille de Lombares
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| | - Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Dominique Grimaud-Hervé
- Histoire Naturelle de l’Homme Préhistorique, CNRS UMR 7194, Département H&E, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
6
|
Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet Med 2020; 23:34-46. [PMID: 32973355 PMCID: PMC7790743 DOI: 10.1038/s41436-020-00974-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of novel sequencing technologies has greatly improved the identification of structural variation, revealing that a human genome harbors tens of thousands of structural variants (SVs). Since these SVs primarily impact noncoding DNA sequences, the next challenge is one of interpretation, not least to improve our understanding of human disease etiology. However, this task is severely complicated by the intricacy of the gene regulatory landscapes embedded within these noncoding regions, their incomplete annotation, as well as their dependence on the three-dimensional (3D) conformation of the genome. Also in the context of neurodevelopmental disorders (NDDs), reports of putatively causal, noncoding SVs are accumulating and understanding their impact on transcriptional regulation is presenting itself as the next step toward improved genetic diagnosis.
Collapse
|
7
|
Camilleri M, Sandler RS, Peery AF. Etiopathogenetic Mechanisms in Diverticular Disease of the Colon. Cell Mol Gastroenterol Hepatol 2019; 9:15-32. [PMID: 31351939 PMCID: PMC6881605 DOI: 10.1016/j.jcmgh.2019.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
This article reviews epidemiological evidence of heritability and putative mechanisms in diverticular disease, with greatest attention to 3 recent studies of genetic associations with diverticular disease based on genome-wide or whole-genome sequencing studies in large patient cohorts. We provide an analysis of the biological plausibility of the significant associations with gene variants reported and highlight the relevance of ANO1, CPI-17 (aka PPP1R14A), COLQ6, COL6A1, CALCB or CALCA, COL6A1, ARHGAP15, and S100A10 to colonic neuromuscular function and tissue properties that may result in altered compliance and predispose to the development of diverticular disease. Such studies also identify candidate genes for future studies.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Robert S Sandler
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anne F Peery
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
8
|
Maguire LH, Handelman SK, Du X, Chen Y, Pers TH, Speliotes EK. Genome-wide association analyses identify 39 new susceptibility loci for diverticular disease. Nat Genet 2018; 50:1359-1365. [PMID: 30177863 PMCID: PMC6168378 DOI: 10.1038/s41588-018-0203-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Diverticular disease is common and has a high morbidity. Treatments are limited owing to the poor understanding of its pathophysiology. Here, to elucidate its etiology, we performed a genome-wide association study of diverticular disease (27,444 cases; 382,284 controls) from the UK Biobank and tested for replication in the Michigan Genomics Initiative (2,572 cases; 28,649 controls). We identified 42 loci associated with diverticular disease; 39 of these loci are novel. Using data-driven expression-prioritized integration for complex traits (DEPICT), we show that genes in these associated regions are significantly enriched for expression in mesenchymal stem cells and multiple connective tissue cell types and are co-expressed with genes that have a role in vascular and mesenchymal biology. Genes in these associated loci have roles in immunity, extracellular matrix biology, cell adhesion, membrane transport and intestinal motility. Phenome-wide association analysis of the 42 variants shows a common etiology of diverticular disease with obesity and hernia. These analyses shed light on the genomic landscape of diverticular disease.
Collapse
Affiliation(s)
- Lillias H Maguire
- Department of Surgery, Division of Colorectal Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Samuel K Handelman
- Department of Internal Medicine, Division of Gastroenterology, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Department of Internal Medicine, Division of Gastroenterology, Ann Arbor, MI, USA
| | - Yanhua Chen
- Department of Internal Medicine, Division of Gastroenterology, Ann Arbor, MI, USA
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Halgren C, Nielsen NM, Nazaryan-Petersen L, Silahtaroglu A, Collins RL, Lowther C, Kjaergaard S, Frisch M, Kirchhoff M, Brøndum-Nielsen K, Lind-Thomsen A, Mang Y, El-Schich Z, Boring CA, Mehrjouy MM, Jensen PK, Fagerberg C, Krogh LN, Hansen J, Bryndorf T, Hansen C, Talkowski ME, Bak M, Tommerup N, Bache I. Risks and Recommendations in Prenatally Detected De Novo Balanced Chromosomal Rearrangements from Assessment of Long-Term Outcomes. Am J Hum Genet 2018; 102:1090-1103. [PMID: 29805044 DOI: 10.1016/j.ajhg.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
The 6%-9% risk of an untoward outcome previously established by Warburton for prenatally detected de novo balanced chromosomal rearrangements (BCRs) does not account for long-term morbidity. We performed long-term follow-up (mean 17 years) of a registry-based nationwide cohort of 41 individuals carrying a prenatally detected de novo BCR with normal first trimester screening/ultrasound scan. We observed a significantly higher frequency of neurodevelopmental and/or neuropsychiatric disorders than in a matched control group (19.5% versus 8.3%, p = 0.04), which was increased to 26.8% upon clinical follow-up. Chromosomal microarray of 32 carriers revealed no pathogenic imbalances, illustrating a low prognostic value when fetal ultrasound scan is normal. In contrast, mate-pair sequencing revealed disrupted genes (ARID1B, NPAS3, CELF4), regulatory domains of known developmental genes (ZEB2, HOXC), and complex BCRs associated with adverse outcomes. Seven unmappable autosomal-autosomal BCRs with breakpoints involving pericentromeric/heterochromatic regions may represent a low-risk group. We performed independent phenotype-aware and blinded interpretation, which accurately predicted benign outcomes (specificity = 100%) but demonstrated relatively low sensitivity for prediction of the clinical outcome in affected carriers (sensitivity = 45%-55%). This sensitivity emphasizes the challenges associated with prenatal risk prediction for long-term morbidity in the absence of phenotypic data given the still immature annotation of the morbidity genome and poorly understood long-range regulatory mechanisms. In conclusion, we upwardly revise the previous estimates of Warburton to a morbidity risk of 27% and recommend sequencing of the chromosomal breakpoints as the first-tier diagnostic test in pregnancies with a de novo BCR.
Collapse
|
10
|
Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 2018; 208:1165-1179. [PMID: 29301908 DOI: 10.1534/genetics.117.300447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022] Open
Abstract
Distal enhancers are thought to play important roles in the spatiotemporal regulation of gene expression during embryonic development, but few predicted enhancer elements have been shown to affect transcription of their endogenous genes or to alter phenotypes when disrupted. Here, we demonstrate that a 123.6-kb deletion within the mouse Slc25a13 gene is associated with reduced transcription of Dlx5, a gene located 660 kb away. Mice homozygous for the Slc25a13 deletion mutation [named hyperspin (hspn)] have malformed inner ears and are deaf with balance defects, whereas previously reported Slc25a13 knockout mice showed no phenotypic abnormalities. Inner ears of Slc25a13hspn/hspn mice have malformations similar to those of Dlx5-/- embryos, and Dlx5 expression is severely reduced in the otocyst but not the branchial arches of Slc25a13hspn/hspn embryos, indicating that the Slc25a13hspn deletion affects otic-specific enhancers of Dlx5 In addition, transheterozygous Slc25a13+/hspn Dlx5+/- mice exhibit noncomplementation with inner ear dysmorphologies similar to those of Slc25a13hspn/hspn and Dlx5-/-embryos, verifying a cis-acting effect of the Slc25a13hspn deletion on Dlx5 expression. CRISPR/Cas9-mediated deletions of putative enhancer elements located within the Slc25a13hspn deleted region failed to phenocopy the defects of Slc25a13hspn/hspn mice, suggesting the possibility of multiple enhancers with redundant functions. Our findings in mice suggest that analogous enhancer elements in the human SLC25A13 gene may regulate DLX5 expression and underlie the hearing loss that is associated with split-hand/-foot malformation 1 syndrome. Slc25a13hspn/hspn mice provide a new animal model for studying long-range enhancer effects on Dlx5 expression in the developing inner ear.
Collapse
|
11
|
Split-Hand Malformation in a 4-Year-Old Child. Case Rep Pediatr 2017; 2017:6073619. [PMID: 28840051 PMCID: PMC5559908 DOI: 10.1155/2017/6073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
Split-hand deformity is one of the milder manifestations of a congenital disorder called split-hand/split-foot malformation. We present a case of a 4-year-old child with split-hand malformation in his left hand since birth. A median cleft was present in the affected hand with absence of the 3rd and 4th digits, giving rise to a characteristic lobster-claw appearance. Functionality of the affected hand was modestly impaired. As none of the close family members of the patient had similar limb malformations, the deformity was postulated to arise most likely from a de novo mutation. The patient was discharged after the parents were provided with genetic counseling.
Collapse
|
12
|
Abstract
The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.
Collapse
Affiliation(s)
- Florence Petit
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,University of Lille, CHU Lille, EA 7364-RADEME, F-59000 Lille, France
| | - Karen E Sears
- School of Integrative Biology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,Institute for Human Genetics, University of California San Francisco, California 94158, USA
| |
Collapse
|
13
|
Ullah A, Ullah MF, Khalid ZM, Ahmad W. Novel heterozygous frameshift mutation in distal-less homeobox 5 underlies isolated split hand/foot malformation type 1. Pediatr Int 2016; 58:1348-1350. [PMID: 27085093 DOI: 10.1111/ped.13023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/19/2016] [Accepted: 04/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Farhat Ullah
- Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Islamabad, Pakistan
| | - Zafar Mahmood Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Marques F, Tenney J, Duran I, Martin J, Nevarez L, Pogue R, Krakow D, Cohn DH, Li B. Altered mRNA Splicing, Chondrocyte Gene Expression and Abnormal Skeletal Development due to SF3B4 Mutations in Rodriguez Acrofacial Dysostosis. PLoS Genet 2016; 12:e1006307. [PMID: 27622494 PMCID: PMC5021280 DOI: 10.1371/journal.pgen.1006307] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023] Open
Abstract
The acrofacial dysostoses (AFD) are a genetically heterogeneous group of inherited disorders with craniofacial and limb abnormalities. Rodriguez syndrome is a severe, usually perinatal lethal AFD, characterized by severe retrognathia, oligodactyly and lower limb abnormalities. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We identified heterozygosity for SF3B4 mutations in Rodriguez syndrome, confirming that the phenotype is a dominant disorder that is allelic with Nager syndrome. The mutations led to reduced SF3B4 synthesis and defects in mRNA splicing, primarily exon skipping. The mutations also led to reduced expression in growth plate chondrocytes of target genes, including the DLX5, DLX6, SOX9, and SOX6 transcription factor genes, which are known to be important for skeletal development. These data provide mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses. The acrofacial dysostoses (AFD) are inherited disorders with abnormalities of the facial and limb bones. Rodriguez syndrome is a severe type of AFD that is usually lethal in the immediate perinatal period. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of mRNA splicing machinery needed for proper maturation of primary transcripts. Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We found that mutations in SF3B4 produce Rodriguez syndrome, further demonstrating that it is allelic with Nager syndrome. The consequences of the mutations include abnormal splicing and reduced expression in growth plate chondrocytes of genes that are important for proper development of the skeleton, providing mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses.
Collapse
Affiliation(s)
- Felipe Marques
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Laboratório de Biotecnologia, Universidade CEUMA, Campus Renascença, São Luís-MA, Brazil
| | - Jessica Tenney
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jorge Martin
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisette Nevarez
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DK); (DHC)
| | - Daniel H. Cohn
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DK); (DHC)
| | - Bing Li
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|