1
|
Srivastava P, Bhardwaj C, Mandal K. Developmental and Epileptic Encephalopathies: Need for Bridging the Gaps Between Clinical Syndromes and Underlying Genetic Etiologies. Indian J Pediatr 2025; 92:52-60. [PMID: 39511116 DOI: 10.1007/s12098-024-05308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Advancement in genetic testing has become increasingly important in diagnosing and managing developmental and epileptic encephalopathies (DEEs), a group of rare neurodevelopmental disorders characterized by early-onset seizures, developmental delay, and electroencephalographic (EEG) abnormalities. These early epileptic encephalopathies are often described as various syndromes as per their clearly defined, relatively uniform, and distinct clinical phenotypes with consistent EEG and/or neuroimaging findings. Finding the underlying molecular mechanisms can cause a definitive change in the management strategy. With the evolving overlapping phenotypes, advent of technologies, and discovery of new genes, it is exceedingly becoming challenging to correctly characterise these disorders and plan subsequent evidence-based management. Cytogenetic microarray (CMA) and next generation sequencing (NGS) with improved data analysis pipe-lines and algorithms have revamped the diagnostic yield dramatically. However, as of now, there is a big lacuna in step-wise evaluation guideline or consensus on integration of genetic testing results with management plan. Understanding the genetic etiologies of such syndromes timely has three major implications: (1) Knowing the outcome of such a syndrome, (2) Therapeutic implications including licensing of drugs for certain forms (e.g. genetic syndromes involving ion channels) and (3) Genetic counseling, prenatal testing and choosing reproductive options in future pregnancies in such families. The focus of this review is to provide an understanding of different types of causative variants and their step-wise genetic testing approach; the most pressing clinical need and to develop an optimal diagnostic pathway for this group of patients.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Chitra Bhardwaj
- Genetic Metabolic Unit, Department of Paediatrics, Advanced Paediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
2
|
Xu S, Egli D. Genome organization and stability in mammalian pre-implantation development. DNA Repair (Amst) 2024; 144:103780. [PMID: 39504608 DOI: 10.1016/j.dnarep.2024.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
3
|
Yucesan E, Goncu B, Ozgul C, Kebapci A, Aslanger AD, Akyuz E, Yesil G. Functional characterization of KCNMA1 mutation associated with dyskinesia, seizure, developmental delay, and cerebellar atrophy. Int J Neurosci 2024; 134:1098-1103. [PMID: 37269313 DOI: 10.1080/00207454.2023.2221814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
KCNMA1 located on chromosome 10q22.3, encodes the pore-forming α subunit of the 'Big K+' (BK) large conductance calcium and voltage-activated K + channel. Numerous evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with different symptoms, such as paroxysmal non kinesigenic dyskinesia with gain of function and ataxia with loss of function. Functional classifications revealed two major patterns, gain of function and loss of function effects on channel properties in different cell lines. In the literature, two mutations have been shown to confer gain of function properties to BK channels: D434G and N995S. In this study, we report the functional characterization of a variant which was previously reported the whole exome sequencing revealed bi-allelic nonsense variation of the cytoplasmic domain of calcium-activated potassium channel subunit alpha-1 protein. To detect functional consequences of the variation, we parallely conducted two independent approaches. One is immunostaining using and the other one is electrophysiological recording using patch-clamp on wild-type and R458X mutant cells to detect the differences between wild-type and the mutant cells. We detected the gain of function effect for the mutation (NM_001161352.1 (ENST00000286628.8):c.1372C > T;Arg458*) using two parallel approaches. According to the result we found, the reported mutation causes the loss of function in the cell. It should be noted that in future studies, it can be thought that the functions of genes associated with channelopathies may have a dual effect such as loss and gain.
Collapse
Affiliation(s)
- Emrah Yucesan
- Department of Neurogenetics, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyza Goncu
- Department of Medical Services and Techniques, Vocational School of Health Services, Bezmialem Vakif University, Istanbul, Turkey
- Experimental Research Center, Bezmialem Vakif University, Istanbul, Turkey
| | - Cemil Ozgul
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA, Istanbul Medipol University, Istanbul, Turkey)
| | - Arda Kebapci
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA, Istanbul Medipol University, Istanbul, Turkey)
| | - Ayca Dilruba Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Moldenhauer HJ, Tammen K, Meredith AL. Structural mapping of patient-associated KCNMA1 gene variants. Biophys J 2024; 123:1984-2000. [PMID: 38042986 PMCID: PMC11309989 DOI: 10.1016/j.bpj.2023.11.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryoelectron microscopy-resolved structures, including 21 classified as either gain of function (GOF) or loss of function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUSs), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 meta score (KMS)), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca2+-bound and unbound BK channels. KMS assessment differed from the highest-performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUSs, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.
Collapse
Affiliation(s)
- Hans J Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kelly Tammen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Shin HJ, Ko A, Kim SH, Lee JS, Kang HC. Unusual Voltage-Gated Sodium and Potassium Channelopathies Related to Epilepsy. J Clin Neurol 2024; 20:402-411. [PMID: 38951973 PMCID: PMC11220354 DOI: 10.3988/jcn.2023.0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE There is extensive literature on monogenic epilepsies caused by mutations in familiar channelopathy genes such as SCN1A. However, information on other less-common channelopathy genes is scarce. This study aimed to explore the genetic and clinical characteristics of patients diagnosed with unusual voltage-gated sodium and potassium channelopathies related to epilepsy. METHODS This observational, retrospective study analyzed pediatric patients with epilepsy who carried pathogenic variants of unusual voltage-gated sodium and potassium channelopathy genes responsible for seizure-associated phenotypes. Targeted next-generation sequencing (NGS) panel tests were performed between November 2016 and June 2022 at Severance Children's Hospital, Seoul, South Korea. Clinical characteristics and the treatment responses to different types of antiseizure medications were further analyzed according to different types of gene mutation. RESULTS This study included 15 patients with the following unusual voltage-gated sodium and potassium channelopathy genes: SCN3A (n=1), SCN4A (n=1), KCNA1 (n=1), KCNA2 (n=4), KCNB1 (n=6), KCNC1 (n=1), and KCNMA1 (n=1). NGS-based genetic testing identified 13 missense mutations (87%), 1 splice-site variant (7%), and 1 copy-number variant (7%). Developmental and epileptic encephalopathy was diagnosed in nine (60%) patients. Seizure freedom was eventually achieved in eight (53%) patients, whereas seizures persisted in seven (47%) patients. CONCLUSIONS Our findings broaden the genotypic and phenotypic spectra of less-common voltage-gated sodium and potassium channelopathies associated with epilepsy.
Collapse
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Iyyappan R, Scatolin GN, Jiang Z, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat Commun 2024; 15:5247. [PMID: 38898078 PMCID: PMC11187207 DOI: 10.1038/s41467-024-49565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that late replicating regions are established in association with the B compartment and the nuclear lamina from the first cell cycle after fertilization on both maternal and paternal genomes. Late replicating regions contain a relative paucity of active origins and few but long genes and low G/C content. In both bovine and mouse embryos, replication timing patterns are established prior to embryonic genome activation. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to separation of soma and germ cell lineages. Our studies show that the segregation of early and late replicating regions is among the first layers of genome organization established after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York, NY, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical School, New York, NY, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Amnon Koren
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Meredith AL. BK Channelopathies and KCNMA1-Linked Disease Models. Annu Rev Physiol 2024; 86:277-300. [PMID: 37906945 DOI: 10.1146/annurev-physiol-030323-042845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
8
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.25.573304. [PMID: 38234839 PMCID: PMC10793403 DOI: 10.1101/2023.12.25.573304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that both bovine and mouse cleavage stage embryos progress through S-phase in a defined pattern. Late replicating regions are associated with the nuclear lamina from the first cell cycle after fertilization, and contain few active origins, and few but long genes. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to segregation of soma and germ line. Our studies show that the formation of early and late replicating regions is among the first layers of epigenetic regulation established on the mammalian genome after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York
| | | | - Timour Baslan
- Department of Biomedical Sciences, The University of Pennsylvania, Philadelphia, PA, 19104
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, 14853, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
9
|
Moldenhauer HJ, Tammen K, Meredith AL. Structural mapping of patient-associated KCNMA1 gene variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550850. [PMID: 37546746 PMCID: PMC10402178 DOI: 10.1101/2023.07.27.550850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
KCNMA1-linked channelopathy is a neurological disorder characterized by seizures, motor abnormalities, and neurodevelopmental disabilities. The disease mechanisms are predicted to result from alterations in KCNMA1-encoded BK K+ channel activity; however, only a subset of the patient-associated variants have been functionally studied. The localization of these variants within the tertiary structure or evaluation by pathogenicity algorithms has not been systematically assessed. In this study, 82 nonsynonymous patient-associated KCNMA1 variants were mapped within the BK channel protein. Fifty-three variants localized within cryo-EM resolved structures, including 21 classified as either gain-of-function (GOF) or loss-of-function (LOF) in BK channel activity. Clusters of LOF variants were identified in the pore, the AC region (RCK1), and near the Ca 2+ bowl (RCK2), overlapping with sites of pharmacological or endogenous modulation. However, no clustering was found for GOF variants. To further understand variants of uncertain significance (VUS), assessments by multiple standard pathogenicity algorithms were compared, and new thresholds for sensitivity and specificity were established from confirmed GOF and LOF variants. An ensemble algorithm was constructed (KCNMA1 Meta Score), consisting of a weighted summation of this trained dataset combined with a structural component derived from the Ca 2+ bound and unbound BK channels. KMS assessment differed from the highest performing individual algorithm (REVEL) at 10 VUS residues, and a subset were studied further by electrophysiology in HEK293 cells. M578T, E656A, and D965V (KMS+;REVEL-) were confirmed to alter BK channel properties in voltage-clamp recordings, and D800Y (KMS-;REVEL+) was assessed as benign under the test conditions. However, KMS failed to accurately assess K457E. These combined results reveal the distribution of potentially disease-causing KCNMA1 variants within BK channel functional domains and pathogenicity evaluation for VUS, suggesting strategies for improving channel-level predictions in future studies by building on ensemble algorithms such as KMS.
Collapse
|
10
|
Geraghty RM, Orr S, Olinger E, Neatu R, Barroso-Gil M, Mabillard H, Consortium GER, Wilson I, Sayer JA. Use of whole genome sequencing to determine the genetic basis of visceral myopathies including Prune Belly syndrome. JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2023; 2:9. [PMID: 37288276 PMCID: PMC10241726 DOI: 10.1007/s44162-023-00012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Objectives/aims The visceral myopathies (VM) are a group of disorders characterised by poorly contractile or acontractile smooth muscle. They manifest in both the GI and GU tracts, ranging from megacystis to Prune Belly syndrome. We aimed to apply a bespoke virtual genetic panel and describe novel variants associated with this condition using whole genome sequencing data within the Genomics England 100,000 Genomes Project. Methods We screened the Genomics England 100,000 Genomes Project rare diseases database for patients with VM-related phenotypes. These patients were screened for sequence variants and copy number variants (CNV) in ACTG2, ACTA2, MYH11, MYLK, LMOD1, CHRM3, MYL9, FLNA and KNCMA1 by analysing whole genome sequencing data. The identified variants were analysed using variant effect predictor online tool, and any possible segregation in other family members and novel missense mutations was modelled using in silico tools. The VM cohort was also used to perform a genome-wide variant burden test in order to identify confirm gene associations in this cohort. Results We identified 76 patients with phenotypes consistent with a diagnosis of VM. The range of presentations included megacystis/microcolon hypoperistalsis syndrome, Prune Belly syndrome and chronic intestinal pseudo-obstruction. Of the patients in whom we identified heterozygous ACTG2 variants, 7 had likely pathogenic variants including 1 novel likely pathogenic allele. There were 4 patients in whom we identified a heterozygous MYH11 variant of uncertain significance which leads to a frameshift and a predicted protein elongation. We identified one family in whom we found a heterozygous variant of uncertain significance in KCNMA1 which in silico models predicted to be disease causing and may explain the VM phenotype seen. We did not find any CNV changes in known genes leading to VM-related disease phenotypes. In this phenotype selected cohort, ACTG2 is the largest monogenic cause of VM-related disease accounting for 9% of the cohort, supported by a variant burden test approach, which identified ACTG2 variants as the largest contributor to VM-related phenotypes. Conclusions VM are a group of disorders that are not easily classified and may be given different diagnostic labels depending on their phenotype. Molecular genetic analysis of these patients is valuable as it allows precise diagnosis and aids understanding of the underlying disease manifestations. We identified ACTG2 as the most frequent genetic cause of VM. We recommend a nomenclature change to 'autosomal dominant ACTG2 visceral myopathy' for patients with pathogenic variants in ACTG2 and associated VM phenotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s44162-023-00012-z.
Collapse
Affiliation(s)
- Robert M. Geraghty
- Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne, NE7 7DN UK
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Sarah Orr
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Eric Olinger
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Ruxandra Neatu
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Miguel Barroso-Gil
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Holly Mabillard
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Genomics England Research Consortium
- Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne, NE7 7DN UK
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Upon Tyne, NE4 5PL UK
| | - Ian Wilson
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - John A. Sayer
- Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne, NE7 7DN UK
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Upon Tyne, NE4 5PL UK
| |
Collapse
|
11
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
12
|
Kim YE, Kim YS, Lee HE, So KH, Choe Y, Suh BC, Kim JH, Park SK, Mathern GW, Gleeson JG, Rah JC, Baek ST. Reversibility and developmental neuropathology of linear nevus sebaceous syndrome caused by dysregulation of the RAS pathway. Cell Rep 2023; 42:112003. [PMID: 36641749 DOI: 10.1016/j.celrep.2023.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yong-Seok Kim
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Gary W Mathern
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Jong-Cheol Rah
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
13
|
Zahra A, Liu R, Han W, Meng H, Wang Q, Wang Y, Campbell SL, Wu J. K Ca-Related Neurological Disorders: Phenotypic Spectrum and Therapeutic Indications. Curr Neuropharmacol 2023; 21:1504-1518. [PMID: 36503451 PMCID: PMC10472807 DOI: 10.2174/1570159x21666221208091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although potassium channelopathies have been linked to a wide range of neurological conditions, the underlying pathogenic mechanism is not always clear, and a systematic summary of clinical manifestation is absent. Several neurological disorders have been associated with alterations of calcium-activated potassium channels (KCa channels), such as loss- or gain-of-function mutations, post-transcriptional modification, etc. Here, we outlined the current understanding of the molecular and cellular properties of three subtypes of KCa channels, including big conductance KCa channels (BK), small conductance KCa channels (SK), and the intermediate conductance KCa channels (IK). Next, we comprehensively reviewed the loss- or gain-of-function mutations of each KCa channel and described the corresponding mutation sites in specific diseases to broaden the phenotypic-genotypic spectrum of KCa-related neurological disorders. Moreover, we reviewed the current pharmaceutical strategies targeting KCa channels in KCa-related neurological disorders to provide new directions for drug discovery in anti-seizure medication.
Collapse
Affiliation(s)
- Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenzhe Han
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hui Meng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - YunFu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
14
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
15
|
Genetic and genomic signatures in ethanol withdrawal seizure-prone and seizure-resistant mice implicate genes involved in epilepsy and neuronal excitability. Mol Psychiatry 2022; 27:4611-4623. [PMID: 36198764 DOI: 10.1038/s41380-022-01799-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol withdrawal is a clinically important consequence and potential driver of Alcohol Use Disorder. However, susceptibility to withdrawal symptoms, ranging from craving and anxiety to seizures and delirium, varies greatly. Selectively bred Withdrawal Seizure-Prone (WSP) and Seizure-Resistant (WSR) mice are an animal model of differential susceptibility to withdrawal and phenotypes with which withdrawal severity correlates. To identify innate drivers of alcohol withdrawal severity, we performed a multi-omic study of the WSP and WSR lines and F2 mice derived from them, using genomic, genetic, and transcriptomic analyses. Genes implicated in seizures and epilepsy were over-represented among those that segregated between WSP and WSR mice and that displayed differential expression in F2 mice high and low in withdrawal. Quantitative trait locus (QTL) analysis of ethanol withdrawal convulsions identified several genome-wide significant loci and pointed to genes that modulate potassium channel function and neural excitability. Perturbations of expression of genes involved in synaptic transmission, including GABAergic and glutamatergic genes, were prominent in prefrontal cortex transcriptome. Expression QTL (eQTL) analysis fine mapped genes within the peak ethanol withdrawal QTL regions. Genetic association analysis in human subjects provided converging evidence for the involvement of those genes in severity of alcohol withdrawal and dependence. Our results reveal a polygenic network and neural signaling pathways contributing to ethanol withdrawal seizures and related phenotypes that overlap with genes modulating epilepsy and neuronal excitability.
Collapse
|
16
|
Park SM, Roache CE, Iffland PH, Moldenhauer HJ, Matychak KK, Plante AE, Lieberman AG, Crino PB, Meredith A. BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models. eLife 2022; 11:e77953. [PMID: 35819138 PMCID: PMC9275823 DOI: 10.7554/elife.77953] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.
Collapse
Affiliation(s)
- Su Mi Park
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Cooper E Roache
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Hans J Moldenhauer
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Katia K Matychak
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Abby G Lieberman
- Department of Pharmacology, University of Maryland School of MedicineBaltimoreUnited States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
17
|
Soldovieri MV, Taglialatela M. The long and winding road to personalized medicine in KCNMA1-linked channelopathies revealed by novel variants associated with the Liang-Wang syndrome. Acta Physiol (Oxf) 2022; 235:e13854. [PMID: 35730691 DOI: 10.1111/apha.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Virginia Soldovieri
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | |
Collapse
|
18
|
Liang L, Liu H, Bartholdi D, van Haeringen A, Fernandez‐Jaén A, Peeters EEA, Xiong H, Bai X, Xu C, Ke T, Wang QK. Identification and functional analysis of two new de novo KCNMA1 variants associated with Liang-Wang syndrome. Acta Physiol (Oxf) 2022; 235:e13800. [PMID: 35156297 DOI: 10.1111/apha.13800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
AIM Loss-of-function KCNMA1 variants cause Liang-Wang syndrome (MIM #618729), a newly identified multiple malformation syndrome with a broad spectrum of developmental and neurological phenotypes. However, the full spectrum of clinical features and underlying pathogenic mechanisms need full elucidation. METHODS Exome sequencing was used to identify pathogenic variants. Patch-clamp recordings were performed to access the effects of KCNMA1 variants on BK channels. Total and membrane protein expression levels of BK channels were characterized using Western blotting. RESULTS We report identification and functional characterization of two new de novo loss-of-function KCNMA1 variants p.(A172T) and p.(A314T) with characteristics of Liang-Wang syndrome. Variant p.(A172T) is associated with developmental delay, cognitive impairment and ataxia. Mechanistically, p.(A172T) abolishes BK potassium current, inhibits Mg2+ -dependent gating, but shifts conductance-voltage (G-V) curves to more positive potentials when complexed with WT channels. Variant p.(A314T) is associated with developmental delay, intellectual disability, cognitive impairment, mild ataxia and generalized epilepsy; suppresses BK current amplitude; and shifts G-V curves to more positive potentials when expressed with WT channels. In addition, two new patients with previously reported gain-of-function variants p.(N536H) and p.(N995S) are found to show epilepsy and paroxysmal dyskinesia as reported previously, but also exhibit additional symptoms of cognitive impairment and dysmorphic features. Furthermore, variants p.(A314T) and p.(N536H) reduced total and membrane levels of BK proteins. CONCLUSION Our findings identified two new loss-of-function mutations of KCNMA1 associated with Liang-Wang syndrome, expanded the spectrum of clinical features associated with gain-of-function KCNMA1 variants and emphasized the overlapping features shared by gain-of-function and loss-of-function mutations.
Collapse
Affiliation(s)
- Lina Liang
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Huihui Liu
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Deborah Bartholdi
- Department of Human Genetics, Inselspital University Hospital Bern Bern Switzerland
| | - Arie van Haeringen
- Department of Clinical Genetics Leiden University Medical Center Leiden the Netherlands
| | - Alberto Fernandez‐Jaén
- Hospital Universitario Quirónsalud School of Medicine Universidad Europea de Madrid Madrid Spain
| | - Els E. A. Peeters
- Department of Child Neurology Juliana Children’s Hospital HAGA Medical Center The Hague the Netherlands
| | - Hongbo Xiong
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xuemei Bai
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Chengqi Xu
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Tie Ke
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Qing K. Wang
- Center for Human Genome Research Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
19
|
Dong P, Zhang Y, Hunanyan AS, Mikati MA, Cui J, Yang H. Neuronal mechanism of a BK channelopathy in absence epilepsy and dyskinesia. Proc Natl Acad Sci U S A 2022; 119:e2200140119. [PMID: 35286197 PMCID: PMC8944272 DOI: 10.1073/pnas.2200140119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
A growing number of gain-of-function (GOF) BK channelopathies have been identified in patients with epilepsy and movement disorders. Nevertheless, the underlying pathophysiology and corresponding therapeutics remain obscure. Here, we utilized a knock-in mouse model carrying human BK-D434G channelopathy to investigate the neuronal mechanism of BK GOF in the pathogenesis of epilepsy and dyskinesia. The BK-D434G mice manifest the clinical features of absence epilepsy and exhibit severe motor deficits and dyskinesia-like behaviors. The cortical pyramidal neurons and cerebellar Purkinje cells from the BK-D434G mice show hyperexcitability, which likely contributes to the pathogenesis of absence seizures and paroxysmal dyskinesia. A BK channel blocker, paxilline, potently suppresses BK-D434G–induced hyperexcitability and effectively mitigates absence seizures and locomotor deficits in mice. Our study thus uncovered a neuronal mechanism of BK GOF in absence epilepsy and dyskinesia. Our findings also suggest that BK inhibition is a promising therapeutic strategy for mitigating BK GOF-induced neurological disorders.
Collapse
Affiliation(s)
- Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Arsen S. Hunanyan
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Mohamad A. Mikati
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
20
|
Yao Y, Qu D, Jing X, Jia Y, Zhong Q, Zhuo L, Chen X, Li G, Tang L, Zhu Y, Zhang X, Ji Y, Li Z, Tao J. Molecular Mechanisms of Epileptic Encephalopathy Caused by KCNMA1 Loss-of-Function Mutations. Front Pharmacol 2022; 12:775328. [PMID: 35095492 PMCID: PMC8793784 DOI: 10.3389/fphar.2021.775328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
The gene kcnma1 encodes the α-subunit of high-conductance calcium- and voltage-dependent K+ (BK) potassium channel. With the development of generation gene sequencing technology, many KCNMA1 mutants have been identified and are more closely related to generalized epilepsy and paroxysmal dyskinesia. Here, we performed a genetic screen of 26 patients with febrile seizures and identified a novel mutation of KCNMA1 (E155Q). Electrophysiological characterization of different KCNMA1 mutants in HEK 293T cells, the previously-reported R458T and E884K variants (not yet determined), as well as the newly-found E155Q variant, revealed that the current density amplitude of all the above variants was significantly smaller than that of the wild-type (WT) channel. All the above variants caused a positive shift of the I-V curve and played a role through the loss-of-function (LOF) mechanism. Moreover, the β4 subunit slowed down the activation of the E155Q mutant. Then, we used kcnma1 knockout (BK KO) mice as the overall animal model of LOF mutants. It was found that BK KO mice had spontaneous epilepsy, motor impairment, autophagic dysfunction, abnormal electroencephalogram (EEG) signals, as well as possible anxiety and cognitive impairment. In addition, we performed transcriptomic analysis on the hippocampus and cortex of BK KO and WT mice. We identified many differentially expressed genes (DEGs). Eight dysregulated genes [i.e., (Gfap and Grm3 associated with astrocyte activation) (Alpl and Nlrp10 associated with neuroinflammation) (Efna5 and Reln associated with epilepsy) (Cdkn1a and Nr4a1 associated with autophagy)] were validated by RT-PCR, which showed a high concordance with transcriptomic analysis. Calcium imaging results suggested that BK might regulate the autophagy pathway from TRPML1. In conclusion, our study indicated that newly-found point E155Q resulted in a novel loss-of-function variant and the dysregulation of gene expression, especially astrocyte activation, neuroinflammation and autophagy, might be the molecular mechanism of BK-LOF meditated epilepsy.
Collapse
Affiliation(s)
- Yu Yao
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxiang Jia
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Zhong
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lele Tang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yonghua Ji
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Zou D, Wang L, Liao J, Xiao H, Duan J, Zhang T, Li J, Yin Z, Zhou J, Yan H, Huang Y, Zhan N, Yang Y, Ye J, Chen F, Zhu S, Wen F, Guo J. Genome sequencing of 320 Chinese children with epilepsy: a clinical and molecular study. Brain 2021; 144:3623-3634. [PMID: 34145886 PMCID: PMC8719847 DOI: 10.1093/brain/awab233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to evaluate the diagnostic value of genome sequencing in children with epilepsy, and to provide genome sequencing-based insights into the molecular genetic mechanisms of epilepsy to help establish accurate diagnoses, design appropriate treatments and assist in genetic counselling. We performed genome sequencing on 320 Chinese children with epilepsy, and interpreted single-nucleotide variants and copy number variants of all samples. The complete pedigree and clinical data of the probands were established and followed up. The clinical phenotypes, treatments, prognoses and genotypes of the patients were analysed. Age at seizure onset ranged from 1 day to 17 years, with a median of 4.3 years. Pathogenic/likely pathogenic variants were found in 117 of the 320 children (36.6%), of whom 93 (29.1%) had single-nucleotide variants, 22 (6.9%) had copy number variants and two had both single-nucleotide variants and copy number variants. Single-nucleotide variants were most frequently found in SCN1A (10/95, 10.5%), which is associated with Dravet syndrome, followed by PRRT2 (8/95, 8.4%), which is associated with benign familial infantile epilepsy, and TSC2 (7/95, 7.4%), which is associated with tuberous sclerosis. Among the copy number variants, there were three with a length <25 kilobases. The most common recurrent copy number variants were 17p13.3 deletions (5/24, 20.8%), 16p11.2 deletions (4/24, 16.7%), and 7q11.23 duplications (2/24, 8.3%), which are associated with epilepsy, developmental retardation and congenital abnormalities. Four particular 16p11.2 deletions and two 15q11.2 deletions were considered to be susceptibility factors contributing to neurodevelopmental disorders associated with epilepsy. The diagnostic yield was 75.0% in patients with seizure onset during the first postnatal month, and gradually decreased in patients with seizure onset at a later age. Forty-two patients (13.1%) were found to be specifically treatable for the underlying genetic cause identified by genome sequencing. Three of them received corresponding targeted therapies and demonstrated favourable prognoses. Genome sequencing provides complete genetic diagnosis, thus enabling individualized treatment and genetic counselling for the parents of the patients. Genome sequencing is expected to become the first choice of methods for genetic testing of patients with epilepsy.
Collapse
Affiliation(s)
- Dongfang Zou
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | - Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | | | | | - Jing Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | - Ying Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jingyu Ye
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Correspondence may also be addressed to: Feiqiu Wen Shenzhen Children’s Hospital No. 7019 Yitian Road, Shenzhen 518038 Guangdong, China E-mail:
| | - Jian Guo
- BGI-Shenzhen, Shenzhen 518083, China
- Correspondence to: Jian Guo BGI-Shenzhen, Beishan Industry Zone Shenzhen 518083, Guangdong, China E-mail:
| |
Collapse
|
22
|
Miller JP, Moldenhauer HJ, Keros S, Meredith AL. An emerging spectrum of variants and clinical features in KCNMA1-linked channelopathy. Channels (Austin) 2021; 15:447-464. [PMID: 34224328 PMCID: PMC8259716 DOI: 10.1080/19336950.2021.1938852] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
KCNMA1-linked channelopathy is an emerging neurological disorder characterized by heterogeneous and overlapping combinations of movement disorder, seizure, developmental delay, and intellectual disability. KCNMA1 encodes the BK K+ channel, which contributes to both excitatory and inhibitory neuronal and muscle activity. Understanding the basis of the disorder is an important area of active investigation; however, the rare prevalence has hampered the development of large patient cohorts necessary to establish genotype-phenotype correlations. In this review, we summarize 37 KCNMA1 alleles from 69 patients currently defining the channelopathy and assess key diagnostic and clinical hallmarks. At present, 3 variants are classified as gain-of-function with respect to BK channel activity, 14 loss-of-function, 15 variants of uncertain significance, and putative benign/VUS. Symptoms associated with these variants were curated from patient-provided information and prior publications to define the spectrum of clinical phenotypes. In this newly expanded cohort, seizures showed no differential distribution between patients harboring GOF and LOF variants, while movement disorders segregated by mutation type. Paroxysmal non-kinesigenic dyskinesia was predominantly observed among patients with GOF alleles of the BK channel, although not exclusively so, while additional movement disorders were observed in patients with LOF variants. Neurodevelopmental and structural brain abnormalities were prevalent in patients with LOF mutations. In contrast to mutations, disease-associated KCNMA1 single nucleotide polymorphisms were not predominantly related to neurological phenotypes but covered a wider set of peripheral physiological functions. Together, this review provides additional evidence exploring the genetic and biochemical basis for KCNMA1-linked channelopathy and summarizes the clinical repository of patient symptoms across multiple types of KCNMA1 gene variants.
Collapse
Affiliation(s)
- Jacob P. Miller
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hans J. Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sotirios Keros
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Cui J. BK Channel Gating Mechanisms: Progresses Toward a Better Understanding of Variants Linked Neurological Diseases. Front Physiol 2021; 12:762175. [PMID: 34744799 PMCID: PMC8567085 DOI: 10.3389/fphys.2021.762175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, United States
| |
Collapse
|
24
|
Rodrigues Bento J, Feben C, Kempers M, van Rij M, Woiski M, Devriendt K, De Catte L, Baldewijns M, Alaerts M, Meester J, Verstraeten A, Hendson W, Loeys B. Two novel presentations of KCNMA1-related pathology--Expanding the clinical phenotype of a rare channelopathy. Mol Genet Genomic Med 2021; 9:e1797. [PMID: 34499417 PMCID: PMC8580096 DOI: 10.1002/mgg3.1797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/19/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND KCNMA1 mutations have recently been associated with a wide range of dysmorphological, gastro-intestinal, cardiovascular, and neurological manifestations. METHODS Whole exome sequencing was performed in order to identify the underlying pathogenic mutation in two cases presenting with diverse phenotypical manifestations that did not fit into well-known clinical entities. RESULTS In an 8-year-old boy presenting with severe aortic dilatation, facial dysmorphism, and overgrowth at birth a de novo p.Gly375Arg KCNMA1 mutation was identified which has been reported previously in association with gingival hypertrophy, aortic dilatation, and developmental delay. Additionally, in a 30-week-old fetus with severe growth retardation and duodenal atresia a de novo p.Pro805Leu KCNMA1 mutation was identified. The latter has also been reported before in a boy with severe neurological manifestations, including speech delay, developmental delay, and cerebellar dysfunction. CONCLUSION The current report presents the first antenatal presentation of a pathogenic KCNMA1 mutation and confirms the specific association of the p.Gly375Arg variant with early onset aortic root dilatation, gingival hypertrophy, and neonatal overgrowth.
Collapse
Affiliation(s)
- Jotte Rodrigues Bento
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Candice Feben
- Division of Human Genetics, National Health Laboratory Service & The School of Pathology, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van Rij
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mallory Woiski
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Koenraad Devriendt
- Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Luc De Catte
- Department of Gynaecology and Obstetrics, Catholic University of Leuven, Leuven, Belgium
| | - Marcella Baldewijns
- Department of Gynaecology and Obstetrics, Catholic University of Leuven, Leuven, Belgium
| | - Maaike Alaerts
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Josephina Meester
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Willy Hendson
- Department of Paediatrics, Rahima Moosa Mother and Child Hospital & The University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Harvey S, King MD, Gorman KM. Paroxysmal Movement Disorders. Front Neurol 2021; 12:659064. [PMID: 34177764 PMCID: PMC8232056 DOI: 10.3389/fneur.2021.659064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal movement disorders (PxMDs) are a clinical and genetically heterogeneous group of movement disorders characterized by episodic involuntary movements (dystonia, dyskinesia, chorea and/or ataxia). Historically, PxMDs were classified clinically (triggers and characteristics of the movements) and this directed single-gene testing. With the advent of next-generation sequencing (NGS), how we classify and investigate PxMDs has been transformed. Next-generation sequencing has enabled new gene discovery (RHOBTB2, TBC1D24), expansion of phenotypes in known PxMDs genes and a better understanding of disease mechanisms. However, PxMDs exhibit phenotypic pleiotropy and genetic heterogeneity, making it challenging to predict genotype based on the clinical phenotype. For example, paroxysmal kinesigenic dyskinesia is most commonly associated with variants in PRRT2 but also variants identified in PNKD, SCN8A, and SCL2A1. There are no radiological or biochemical biomarkers to differentiate genetic causes. Even with NGS, diagnosis rates are variable, ranging from 11 to 51% depending on the cohort studied and technology employed. Thus, a large proportion of patients remain undiagnosed compared to other neurological disorders such as epilepsy, highlighting the need for further genomic research in PxMDs. Whole-genome sequencing, deep-sequencing, copy number variant analysis, detection of deep-intronic variants, mosaicism and repeat expansions, will improve diagnostic rates. Identifying the underlying genetic cause has a significant impact on patient care, modification of treatment, long-term prognostication and genetic counseling. This paper provides an update on the genetics of PxMDs, description of PxMDs classified according to causative gene rather than clinical phenotype, highlighting key clinical features and providing an algorithm for genetic testing of PxMDs.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Cheng P, Qiu Z, Du Y. Potassium channels and autism spectrum disorder: An overview. Int J Dev Neurosci 2021; 81:479-491. [PMID: 34008235 DOI: 10.1002/jdn.10123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted, repetitive patterns of behaviors, interests, or activities. It had been demonstrated that potassium channels played a key role in regulating neuronal excitability, which was closely associated with neurological diseases including epilepsy, ataxia, myoclonus, and psychiatric disorders. In recent years, a growing body of evidence from whole-genome sequencing and whole-exome sequencing had identified several ASD susceptibility genes of potassium channels in ASD subjects. Genetically dysfunction of potassium channels may be involved in altered neuronal excitability and abnormal brain function in the pathogenesis of ASD. This review summarizes current findings on the features of ASD-risk genes (KCND2, KCNQ2, KCNQ3, KCNH5, KCNJ2, KCNJ10, and KCNMA1) and further expatiate their potential role in the pathogenicity of ASD.
Collapse
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Mencacci NE, Brockmann MM, Dai J, Pajusalu S, Atasu B, Campos J, Pino G, Gonzalez-Latapi P, Patzke C, Schwake M, Tucci A, Pittman A, Simon-Sanchez J, Carvill GL, Balint B, Wiethoff S, Warner TT, Papandreou A, Soo A, Rein R, Kadastik-Eerme L, Puusepp S, Reinson K, Tomberg T, Hanagasi H, Gasser T, Bhatia KP, Kurian MA, Lohmann E, Õunap K, Rosenmund C, Südhof TC, Wood NW, Krainc D, Acuna C. Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. J Clin Invest 2021; 131:140625. [PMID: 33539324 DOI: 10.1172/jci140625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jinye Dai
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher Patzke
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Schwake
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arianna Tucci
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Wiethoff
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, Münster, Germany
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Audrey Soo
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Tiiu Tomberg
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Manju A Kurian
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom.,Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | - Thomas C Südhof
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.,Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| |
Collapse
|
29
|
Status Dystonicus, Oculogyric Crisis and Paroxysmal Dyskinesia in a 25 Year-Old Woman with a Novel KCNMA1 Variant, K457E. Tremor Other Hyperkinet Mov (N Y) 2020; 10:49. [PMID: 33178487 PMCID: PMC7597580 DOI: 10.5334/tohm.549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diagnosis of a paroxysmal dyskinesia is difficult and status dystonicus is a rare life threatening movement disorder characterised by severe, frequent or continuous episodes of dystonic spasms. A 25 year old woman with chronic ataxia and paroxysmal dyskinesia presented with facial twitching, writhing of arms, oculogyric crisis and visual and auditory hallucinations. She developed respiratory failure and was ventilated. No cause was found so whole exome sequencing was performed and this revealed a novel, non-synonymous heterozygous variant in exon 11 of the KCNMA1 gene, K457E (c 1369A>G) in the patient but not her parents. This variant has not been previously reported in gnomAD or ClinVar. The finding of a de novo variant in a potassium channel gene guided a trial of the potassium channel antagonist 3,4 diaminopyridine resulting in significant improvement, discharge from the intensive care unit and ultimately home.
Collapse
|
30
|
Matsushita T, Masaki K, Isobe N, Sato S, Yamamoto K, Nakamura Y, Watanabe M, Suenaga T, Kira JI. Genetic factors for susceptibility to and manifestations of neuromyelitis optica. Ann Clin Transl Neurol 2020; 7:2082-2093. [PMID: 32979043 PMCID: PMC7664265 DOI: 10.1002/acn3.51147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/15/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To identify genetic factors associated with susceptibility to and clinical features of neuromyelitis optica spectrum disorders (NMOSD). METHODS Genome-wide single nucleotide polymorphism (SNP) genotyping was conducted in 211 Japanese patients with NMOSD fulfilling the 2006 criteria with or without anti-aquaporin-4 (AQP4) antibody and 1,919 Japanese healthy controls (HCs). HLA-DRB1 and HLA-DPB1 alleles were genotyped in 184 NMOSD cases and 317 HCs. Multiple sclerosis (MS) risk alleles outside the major histocompatibility complex (MHC) region were tested in NMOSD and MS genetic burden (MSGB) scores were compared between HCs and NMOSD. RESULTS A SNP (rs1964995) in the MHC region was associated with NMOSD susceptibility (odds ratio (OR) = 2.33, P = 4.07 × 10-11 ). HLA-DRB1*08:02 (OR = 2.86, P = 3.03 × 10-4 ) and HLA-DRB1*16:02 (OR = 8.39, P = 1.92 × 10-3 ) were risk alleles for NMOSD susceptibility whereas HLA-DRB1*09:01 was protective (OR = 0.27, P = 1.06 × 10-5 ). Three MS risk variants were associated with susceptibility and MSGB scores were significantly higher in NMOSD than in HCs (P = 0.0095). A SNP in the KCNMA1 (potassium calcium-activated channel subfamily M alpha 1) gene was associated with disability score with genome-wide significance (rs1516512, P = 2.33 × 10-8 ) and transverse myelitis (OR = 1.77, P = 0.011). KCNMA1 was immunohistochemically detected in the perivascular endfeet of astrocytes and its immunoreactivity was markedly diminished in active spinal cord lesions in NMOSD. INTERPRETATION Specific HLA-DRB1 alleles confer NMOSD susceptibility and KCNMA1 is associated with disability and transverse myelitis in NMOSD.
Collapse
Affiliation(s)
- Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Sato
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
31
|
Ahn H, Ko TS. The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy. ANNALS OF CHILD NEUROLOGY 2020. [DOI: 10.26815/acn.2020.00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Zhang G, Gibson RA, McDonald M, Liang P, Kang PW, Shi J, Yang H, Cui J, Mikati MA. A Gain-of-Function Mutation in KCNMA1 Causes Dystonia Spells Controlled With Stimulant Therapy. Mov Disord 2020; 35:1868-1873. [PMID: 32633875 DOI: 10.1002/mds.28138] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mutations of KCNMA1 BK-type K+ channel have been identified in patients with various movement disorders. The underlying pathophysiology and corresponding therapeutics are lacking. OBJECTIVES To report our clinical and biophysical characterizations of a novel de novo KCNMA1 variant, as well as an effective therapy for the patient's dystonia-atonia spells. METHODS Combination of phenotypic characterization, therapy, and biophysical characterization of the patient and her mutation. RESULTS The patient had >100 dystonia-atonia spells per day with mild cerebellar atrophy. She also had autism spectrum disorder, intellectual disability, and attention deficit hyperactivity disorder. Whole-exome sequencing identified a heterozygous de novo BK N536H mutation. Our biophysical characterization demonstrates that N536H is a gain-of-function mutation with markedly enhanced voltage-dependent activation. Remarkably, administration of dextroamphetamine completely suppressed the dystonia-atonia spells. CONCLUSIONS BK N536H is a gain-of-function that causes dystonia and other neurological symptoms. Our stimulant therapy opens a new avenue to mitigate KCNMA1-linked movement disorders. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rebecca A Gibson
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Marie McDonald
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mohamad A Mikati
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
33
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
34
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
35
|
Abstract
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo variants to DEE and also focus on alternative inheritance models that contribute to DEE. First, autosomal recessive inheritance in outbred populations may have a larger contribution than previously appreciated, accounting for up to 13% of DEEs. A small subset of genes that typically harbor de novo variants have been associated with recessive inheritance, and often these individuals have more severe clinical presentations. Additionally, pathogenic variants in X-linked genes have been identified in both affected males and females, possibly due to a lack of X-chromosome inactivation skewing. Collectively, exome sequencing has resulted in a molecular diagnosis for many individuals with DEE, but this still leaves many cases unsolved. Multiple factors contribute to the missing etiology, including nonexonic variants, mosaicism, epigenetics, and oligogenic inheritance. Here, we focus on the first 2 factors. We discuss the promises and challenges of genome sequencing, which allows for a more comprehensive analysis of the genome, including interpretation of structural and noncoding variants and also yields a high number of de novo variants for interpretation. We also consider the contribution of genetic mosaicism, both what it means for a molecular diagnosis in mosaic individuals and the important implications for genetic counseling.
Collapse
Affiliation(s)
- Hannah C Happ
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Liang L, Li X, Moutton S, Schrier Vergano SA, Cogné B, Saint-Martin A, Hurst ACE, Hu Y, Bodamer O, Thevenon J, Hung CY, Isidor B, Gerard B, Rega A, Nambot S, Lehalle D, Duffourd Y, Thauvin-Robinet C, Faivre L, Bézieau S, Dure LS, Helbling DC, Bick D, Xu C, Chen Q, Mancini GMS, Vitobello A, Wang QK. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum Mol Genet 2020; 28:2937-2951. [PMID: 31152168 DOI: 10.1093/hmg/ddz117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.
Collapse
Affiliation(s)
- Lina Liang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sébastien Moutton
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Samantha A Schrier Vergano
- Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Anne Saint-Martin
- Neuropédiatrie, Centre de Référence des Epilepsies Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg 67098, France
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yushuang Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA.,The Broad Institute of Harvard and MIT, Boston, MA 02115, USA
| | - Julien Thevenon
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Christina Y Hung
- Division of Genetics and Genomics, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Bénédicte Gerard
- Institut de Génétique Médicale d'Alsace, Laboratoires de Diagnostic Génétique, Unité de Génétique Moléculaire, Nouvel Hôpital Civil, Strasbourg 67000, Franc
| | - Adelaide Rega
- Pediatric Radiologist, Département de Radiologie et Imagerie Diagnostique et Thérapeutique, CHU, Dijon 21079, France
| | - Sophie Nambot
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Daphné Lehalle
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Yannis Duffourd
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Christel Thauvin-Robinet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Dijon 21079, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, Dijon 21079, France.,Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Leon S Dure
- Department of Pediatrics and Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Daniel C Helbling
- Clinical Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David Bick
- Clinical Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - Antonio Vitobello
- Inserm UMR 1231 GAD team, Genetics of Developmental Disorders, Université de Bourgogne Franche-Comté, Dijon 21070, France
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
37
|
Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A 2020; 117:6023-6034. [PMID: 32132200 DOI: 10.1073/pnas.1920008117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.
Collapse
|
38
|
Papandreou A, Danti FR, Spaull R, Leuzzi V, Mctague A, Kurian MA. The expanding spectrum of movement disorders in genetic epilepsies. Dev Med Child Neurol 2020; 62:178-191. [PMID: 31784983 DOI: 10.1111/dmcn.14407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
An ever-increasing number of neurogenetic conditions presenting with both epilepsy and atypical movements are now recognized. These disorders within the 'genetic epilepsy-dyskinesia' spectrum are clinically and genetically heterogeneous. Increased clinical awareness is therefore necessary for a rational diagnostic approach. Furthermore, careful interpretation of genetic results is key to establishing the correct diagnosis and initiating disease-specific management strategies in a timely fashion. In this review we describe the spectrum of movement disorders associated with genetically determined epilepsies. We also propose diagnostic strategies and putative pathogenic mechanisms causing these complex syndromes associated with both seizures and atypical motor control. WHAT THIS PAPER ADDS: Implicated genes encode proteins with very diverse functions. Pathophysiological mechanisms by which epilepsy and movement disorder phenotypes manifest are often not clear. Early diagnosis of treatable disorders is essential and next generation sequencing may be required.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Federica Rachele Danti
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Robert Spaull
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Amy Mctague
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
39
|
Plante AE, Lai MH, Lu J, Meredith AL. Effects of Single Nucleotide Polymorphisms in Human KCNMA1 on BK Current Properties. Front Mol Neurosci 2019; 12:285. [PMID: 31849601 PMCID: PMC6901604 DOI: 10.3389/fnmol.2019.00285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
BK Ca2+-activated K+ channels are important regulators of membrane excitability. Multiple regulatory mechanisms tailor BK current properties across tissues, such as alternative splicing, posttranslational modifications, and auxiliary subunits. Another potential mechanism for modulating BK channel activity is genetic variation due to single nucleotide polymorphisms (SNPs). The gene encoding the human BK α subunit, KCNMA1, contains hundreds of SNPs. However, the variation in BK channel activity due to SNPs is not well studied. Here, we screened the effects of four SNPs (A138V, C495G, N599D, and R800W) on BK currents in HEK293T cells, selected based on predicted protein pathogenicity or disease linkage. We found that the SNPs C495G and R800W had the largest effects on BK currents, affecting the conductance-voltage relationship across multiple Ca2+ conditions in the context of two BK channel splice variants. In symmetrical K+, C495G shifted the V1/2 to more hyperpolarized potentials (by -15 to -20 mV) and accelerated activation, indicating C495G confers some gain-of-function properties. R800W shifted the V1/2 to more depolarized potentials (+15 to +35 mV) and slowed activation, conferring loss-of-function properties. Moreover, the C495G and R800W effects on current properties were found to persist with posttranslational modifications. In contrast, A138V and N599D had smaller and more variable effects on current properties. Neither application of alkaline phosphatase to patches, which results in increased BK channel activity attributed to channel dephosphorylation, nor bidirectional redox modulations completely abrogated SNP effects on BK currents. Lastly, in physiological K+, C495G increased the amplitude of action potential (AP)-evoked BK currents, while R800W had a more limited effect. However, the introduction of R800W in parallel with the epilepsy-linked mutation D434G (D434G/R800W) decreased the amplitude of AP-evoked BK currents compared with D434G alone. These results suggest that in a physiological context, C495G could increase BK activation, while the effects of the loss-of-function SNP R800W could oppose the gain-of-function effects of an epilepsy-linked mutation. Together, these results implicate naturally occurring human genetic variation as a potential modifier of BK channel activity across a variety of conditions.
Collapse
Affiliation(s)
| | | | | | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Bar C, Barcia G, Jennesson M, Le Guyader G, Schneider A, Mignot C, Lesca G, Breuillard D, Montomoli M, Keren B, Doummar D, Billette de Villemeur T, Afenjar A, Marey I, Gerard M, Isnard H, Poisson A, Dupont S, Berquin P, Meyer P, Genevieve D, De Saint Martin A, El Chehadeh S, Chelly J, Guët A, Scalais E, Dorison N, Myers CT, Mefford HC, Howell KB, Marini C, Freeman JL, Nica A, Terrone G, Sekhara T, Lebre A, Odent S, Sadleir LG, Munnich A, Guerrini R, Scheffer IE, Kabashi E, Nabbout R. Expanding the genetic and phenotypic relevance of
KCNB1
variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Hum Mutat 2019; 41:69-80. [PMID: 31513310 DOI: 10.1002/humu.23915] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Claire Bar
- Department of Pediatric Neurology, Reference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParis France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
| | - Giulia Barcia
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
- Department of genetics, Necker Enfants Malades hospitalAssistance Publique‐Hôpitaux de ParisParis France
| | | | - Gwenaël Le Guyader
- Department of geneticsUniversity hospital PoitiersPoitiers Cedex France
- EA3808‐NEUVACOD Unité Neurovasculaire et Troubles Cognitifs, Pôle Biologie SantéUniversité de PoitiersPoitiers France
| | - Amy Schneider
- Department of Medicine, Epilepsy Research Centre, Austin HealthThe University of MelbourneHeidelberg Victoria Australia
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225Sorbonne Universités UPMC Univ Paris 06 UMR S 1127 Paris France
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié‐SalpêtrièreGRC UPMC (Déficience Intellectuelle et Autisme)Paris France
| | - Gaetan Lesca
- Department of geneticsHospices Civils de LyonLyon France
- Neurosciences centre of Lyon, INSERM U1028, UMR CNRS 5292Université Claude Bernard Lyon 1Bron Cedex France
| | - Delphine Breuillard
- Department of Pediatric Neurology, Reference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParis France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's HospitalUniversity of FlorenceFlorence Italy
| | - Boris Keren
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié‐SalpêtrièreGRC UPMC (Déficience Intellectuelle et Autisme)Paris France
| | - Diane Doummar
- Department of Pediatric Neurology, Hôpital Armand TrousseauAP‐HPParis France
| | | | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, Pathologies Congénitales du Cervelet‐LeucoDystrophies, Centre de Référence déficiences intellectuelles de causes rares, AP‐HP, Hôpital Armand Trousseau, GRC n°19Sorbonne UniversitéParis France
| | - Isabelle Marey
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié‐SalpêtrièreGRC UPMC (Déficience Intellectuelle et Autisme)Paris France
| | | | | | - Alice Poisson
- Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR‐Psy TeamCentre National de la Recherche Scientifique & Lyon 1 Claude Bernard UniversityVilleurbanne France
| | - Sophie Dupont
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225Sorbonne Universités UPMC Univ Paris 06 UMR S 1127 Paris France
- Epileptology and Rehabilitation department, GH Pitie‐Salpêtrière‐Charles FoixAP‐HPParis France
| | - Patrick Berquin
- Department of pediatric neurology Amiens‐Picardie university hospitalUniversité de Picardie Jules VerneAmiens France
| | - Pierre Meyer
- Department of pediatric neurologyMontpellier university hospitalMontpellier France
- PhyMedExp, U1046 INSERMUMR9214 CNRSMontpellier France
| | - David Genevieve
- Service de génétique clinique et du Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de référence maladies rares anomalies du développementCHU MontpellierMontpellier France
| | - Anne De Saint Martin
- Department of Pediatric NeurologyStrasbourg University HospitalStrasbourg France
| | - Salima El Chehadeh
- Department of genetics, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg France
| | - Jamel Chelly
- Department of genetics, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg France
| | - Agnès Guët
- Department of PediatricLouis‐Mourier HospitalColombes France
| | - Emmanuel Scalais
- Department of Pediatric Neurology, Centre Hospitalier de LuxembourgLuxembourg CityLuxembourg City Luxembourg
| | - Nathalie Dorison
- Department of pediatric NeurosurgeryRothschild Foundation HospitalParis France
| | - Candace T. Myers
- Department of PediatricsUniversity of WashingtonSeattle Washington
| | - Heather C. Mefford
- Department of Pediatrics, Division of Genetic MedicineUniversity of WashingtonSeattle Washington
| | - Katherine B. Howell
- Departments of Neurology and Paediatrics, Royal Children's HospitalUniversity of MelbourneMelbourne Victoria Australia
- Murdoch Children's Research InstituteMelbourne Victoria Australia
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's HospitalUniversity of FlorenceFlorence Italy
| | - Jeremy L. Freeman
- Departments of Neurology and Paediatrics, Royal Children's HospitalUniversity of MelbourneMelbourne Victoria Australia
- Murdoch Children's Research InstituteMelbourne Victoria Australia
| | - Anca Nica
- Department of Neurology, Center for Clinical Research (CIC 1414)Rennes University HospitalRennes France
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics‐Child Neurology UnitFederico II UniversityNaples Italy
| | - Tayeb Sekhara
- Department of Pediatric NeurologyC.H.I.R.E.CBrussels Belgium
| | - Anne‐Sophie Lebre
- Department of genetics, Maison Blanche hospitalUniversity hospital, ReimsReims France
| | - Sylvie Odent
- Reference Centre for Rare Developmental AbnormalitiesCLAD‐Ouest, CHU RennesRennes France
- Institute of genetics and developmentCNRS UMR 6290, Rennes universityRennes France
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellington New Zealand
| | - Arnold Munnich
- Université Paris Descartes‐Sorbonne Paris CitéParis France
- Department of genetics, Necker Enfants Malades hospitalAssistance Publique‐Hôpitaux de ParisParis France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's HospitalUniversity of FlorenceFlorence Italy
| | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin HealthThe University of MelbourneHeidelberg Victoria Australia
- Departments of Neurology and Paediatrics, Royal Children's HospitalUniversity of MelbourneMelbourne Victoria Australia
- The Florey Institute of Neurosciences and Mental HealthHeidelberg Victoria Australia
| | - Edor Kabashi
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParis France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163Imagine InstituteParis France
- Université Paris Descartes‐Sorbonne Paris CitéParis France
| |
Collapse
|
41
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
42
|
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol 2019; 151:1173-1189. [PMID: 31427379 PMCID: PMC6785733 DOI: 10.1085/jgp.201912457] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Bailey et al. review a new neurological channelopathy associated with KCNMA1, encoding the BK voltage- and Ca2+-activated K+ channel. KCNMA1 encodes the pore-forming α subunit of the “Big K+” (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1−/−) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as “KCNMA1-linked channelopathy.” These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.
Collapse
Affiliation(s)
- Cole S Bailey
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Hans J Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Su Mi Park
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Sotirios Keros
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Andrea L Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Recent advancements in next-generation sequencing (NGS) have enabled techniques such as whole exome sequencing (WES) and whole genome sequencing (WGS) to be used to study paroxysmal movement disorders (PMDs). This review summarizes how the recent genetic advances have altered our understanding of the pathophysiology and treatment of the PMDs. Recently described disease entities are also discussed. RECENT FINDINGS With the recognition of the phenotypic and genotypic heterogeneity that occurs amongst the PMDs, an increasing number of gene mutations are now implicated to cause the disorders. PMDs can also occur as part of a complex phenotype. The increasing complexity of PMDs challenges the way we view and classify them. The identification of new causative genes and their genotype-phenotype correlation will shed more light on the underlying pathophysiology and will facilitate development of genetic testing guidelines and identification of novel drug targets for PMDs.
Collapse
Affiliation(s)
- Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Che-Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Bukit Merah, Singapore, Singapore
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|
44
|
Jepson JEC, Praschberger R, Krishnakumar SS. Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy. Neuroscience 2019; 420:41-49. [PMID: 30954670 DOI: 10.1016/j.neuroscience.2019.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Successive fusion events between transport vesicles and their target membranes mediate trafficking of secreted, membrane- and organelle-localised proteins. During the initial steps of this process, termed the secretory pathway, COPII vesicles bud from the endoplasmic reticulum (ER) and fuse with the cis-Golgi membrane, thus depositing their cargo. This fusion step is driven by a quartet of SNARE proteins that includes the cis-Golgi t-SNARE Membrin, encoded by the GOSR2 gene. Mis-sense mutations in GOSR2 result in Progressive Myoclonus Epilepsy (PME), a severe neurological disorder characterised by ataxia, myoclonus and seizures in the absence of significant cognitive impairment. However, given the ubiquitous and essential function of ER-to-Golgi transport, why GOSR2 mutations cause neurological dysfunction and not lethality or a broader range of developmental defects has remained an enigma. Here we highlight new work that has shed light on this issue and incorporate insights into canonical and non-canonical secretory trafficking pathways in neurons to speculate as to the cellular and molecular mechanisms underlying GOSR2 PME. This article is part of a Special Issue entitled: SNARE proteins: a long journey of science in brain physiology and pathology: from molecular.
Collapse
Affiliation(s)
- James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | - Roman Praschberger
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Shyam S Krishnakumar
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
45
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
46
|
Feng H, Khalil S, Neubig RR, Sidiropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 2018; 116:131-141. [PMID: 29758257 DOI: 10.1016/j.nbd.2018.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in the GNAO1 gene cause a complex constellation of neurological disorders including epilepsy, developmental delay, and movement disorders. GNAO1 encodes Gαo, the α subunit of Go, a member of the Gi/o family of heterotrimeric G protein signal transducers. Go is the most abundant membrane protein in the mammalian central nervous system and plays major roles in synaptic neurotransmission and neurodevelopment. GNAO1 mutations were first reported in early infantile epileptic encephalopathy 17 (EIEE17) but are also associated with a more common syndrome termed neurodevelopmental disorder with involuntary movements (NEDIM). Here we review a mechanistic model in which loss-of-function (LOF) GNAO1 alleles cause epilepsy and gain-of-function (GOF) alleles are primarily associated with movement disorders. We also develop a signaling framework related to cyclic AMP (cAMP), synaptic vesicle release, and neural development and discuss gene mutations perturbing those mechanisms in a range of genetic movement disorders. Finally, we analyze clinical reports of patients carrying GNAO1 mutations with respect to their symptom onset and discuss pharmacological/surgical treatments in the context of our mechanistic model.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Suad Khalil
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christos Sidiropoulos
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
47
|
Yeşil G, Aralaşmak A, Akyüz E, İçağasıoğlu D, Uygur Şahin T, Bayram Y. Expanding the Phenotype of Homozygous KCNMA1 Mutations; Dyskinesia, Epilepsy, Intellectual Disability, Cerebellar and Corticospinal Tract Atrophy. Balkan Med J 2018; 35:336-339. [PMID: 29545233 PMCID: PMC6060973 DOI: 10.4274/balkanmedj.2017.0986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: The KCNMA1 gene encodes the α-subunit of the large conductance, voltage, and calcium-sensitive potassium channel (BK channels) that plays a critical role in neuronal excitability. Heterozygous mutations in KCNMA1 were first illustrated in a large family with generalized epilepsy and paroxysmal nonkinesigenic dyskinesia. Recent research has established homozygous KCNMA1 mutations accountable for the phenotype of cerebellar atrophy, developmental delay, and seizures. Case Report: Here, we report the case of a patient with a novel homozygous truncating mutation in KCNMA1 (p.Arg458Ter) presenting with both the loss- and gain-of-function phenotype with paroxysmal dyskinesia, epilepsy, intellectual delay, and corticospinal–cerebellar tract atrophy. Conclusion: This report extends the KNCMA1 mutation phenotype with a patient who carries a novel frameshift variant, presenting with both the gain- and loss-of-function phenotypes along with spinal tract involvement as a novel characteristic.
Collapse
Affiliation(s)
- Gözde Yeşil
- Department of Medical Genetics, Bezmialem Vakıf University School of Medicine, İstanbul, Turkey
| | - Ayşe Aralaşmak
- Department of Radiology, Bezmialem Vakıf University School of Medicine, İstanbul, Turkey
| | - Enes Akyüz
- Department of Medical Genetics, Bezmialem Vakıf University School of Medicine, İstanbul, Turkey
| | - Dilara İçağasıoğlu
- Department of Child Disease and Health, Bezmialem Vakıf University School of Medicine, İstanbul, Turkey
| | - Türkan Uygur Şahin
- Department of Child Neurology, Bezmialem Vakıf University School of Medicine, İstanbul, Turkey
| | - Yavuz Bayram
- Mol. & Human Gene/Lupski Lab, Baylor College of Medicine, Texas, USA
| |
Collapse
|
48
|
Wang J, Yu S, Zhang Q, Chen Y, Bao X, Wu X. KCNMA1 mutation in children with paroxysmal dyskinesia and epilepsy: Case report and literature review. ACTA ACUST UNITED AC 2017. [DOI: 10.3233/trd-170018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jiaping Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shujie Yu
- Department of Neurology, Harbin Children’s Hospital, Harbin, Heilongjiang Province, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
49
|
Pratt CP, Kuljis DA, Homanics GE, He J, Kolodieznyi D, Dudem S, Hollywood MA, Barth AL, Bruchez MP. Tagging of Endogenous BK Channels with a Fluorogen-Activating Peptide Reveals β4-Mediated Control of Channel Clustering in Cerebellum. Front Cell Neurosci 2017; 11:337. [PMID: 29163049 PMCID: PMC5671578 DOI: 10.3389/fncel.2017.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianjun He
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dmytro Kolodieznyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, AlZahrani F, Patel N, Ibrahim N, Abdulwahab FM, Hashem M, Alhashmi N, Al Murshedi F, Al Kindy A, Alshaer A, Rumayyan A, Al Tala S, Kurdi W, Alsaman A, Alasmari A, Banu S, Sultan T, Saleh MM, Alkuraya H, Salih MA, Aldhalaan H, Ben-Omran T, Al Musafri F, Ali R, Suleiman J, Tabarki B, El-Hattab AW, Bupp C, Alfadhel M, Al Tassan N, Monies D, Arold ST, Abouelhoda M, Lashley T, Houlden H, Faqeih E, Alkuraya FS. Expanding the genetic heterogeneity of intellectual disability. Hum Genet 2017; 136:1419-1429. [PMID: 28940097 DOI: 10.1007/s00439-017-1843-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Collapse
Affiliation(s)
- Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yasmine T Asi
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema AlZahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nadia Alhashmi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Fathiya Al Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Adila Al Kindy
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ahmad Alshaer
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Rumayyan
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Neurology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics and Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health and The Children's Hospital Lahore, 381-D/2, Lahore, Pakistan
| | - Mohammed M Saleh
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Musafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Rehab Ali
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Caleb Bupp
- Spectrum Health Genetics, Grand Rapids, MI, USA
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Spectrum Health Genetics, Grand Rapids, MI, USA. .,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|