1
|
Radovic L, Remer V, Rigler D, Bozlak E, Allen L, Brem G, Reissman M, Brockmann GA, Ropka-Molik K, Stefaniuk-Szmukier M, Kalinkova L, Kalashnikov VV, Zaitev AM, Raudsepp T, Castaneda C, von Butler-Wemken I, Patterson Rosa L, Brooks SA, Novoa‐Bravo M, Kostaras N, Abdurasulov A, Antczak DF, Miller DC, Lopes MS, da Câmara Machado A, Lindgren G, Juras R, Cothran G, Wallner B. The global spread of Oriental Horses in the past 1,500 years through the lens of the Y chromosome. Proc Natl Acad Sci U S A 2024; 121:e2414408121. [PMID: 39556761 PMCID: PMC11626155 DOI: 10.1073/pnas.2414408121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Since their domestication, horses have accompanied mankind, and humans have constantly shaped horses according to their needs through stallion-centered breeding. Consequently, the male-specific portion of the Y chromosome (MSY) is extremely uniform in modern horse breeds. The majority of stallions worldwide carry MSY haplotypes (HT) attributed to an only ~1,500-y-old, so-called, "Crown" haplogroup. The predominance of the Crown in modern horse breeds is thought to represent a footprint of the vast impact of stallions of "Oriental origin" in the past millennium. Here, we report the results of a fine-scaled MSY haplotyping of large datasets of patrilines comprising 1,517 males of 189 modern horse breeds, covering a broad phenotypic and geographic spectrum. We can disentangle the multilayered influence of Oriental stallions over the last few hundred years, exposing the intense linebreeding and the wide-ranging impact of Arabian, English Thoroughbred, and Coldblood sires. Iberian and New World horse breeds contain a wide range of diversified Crown lineages. Their broad HT spectrum illustrates the spread of horses of Oriental origin via the Iberian Peninsula after the Middle Ages, which is commonly referred to as the "Spanish influence." Our survey also revealed a second major historical dissemination of horses from Western Asia, attributed to the expansion of the Ottoman Empire. Our analysis shows that MSY analysis can uncover the complex history of horse breeds and can be used to establish the paternal ancestry of modern horse breeds.
Collapse
Affiliation(s)
- Lara Radovic
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| | - Viktoria Remer
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| | - Doris Rigler
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| | - Elif Bozlak
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| | - Lucy Allen
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| | - Gottfried Brem
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| | - Monika Reissman
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, Berlin10099, Germany
| | - Gudrun A. Brockmann
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, Berlin10099, Germany
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice32-083, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice32-083, Poland
| | - Liliya Kalinkova
- All-Russian Research Institute for Horse Breeding, Ryazan391105, Russia
| | | | | | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | | | - Laura Patterson Rosa
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY11548
| | - Samantha A. Brooks
- Department of Animal Science, University of Florida Genetics Institute, University of Florida, Gainesville, FL32610
| | | | | | - Abdugani Abdurasulov
- Department of Veterinary Medicine and Biotechnology, Faculty of Natural Science, Tourism and Agricultural Technology, Osh State University, Osh723500, Kyrgyzstan
| | - Douglas F. Antczak
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Donald C. Miller
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Maria Susana Lopes
- Biotechnology Centre of Azores, University of Azores, Angra do Heroísmo9700-042, Portugal
| | | | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala75007, Sweden
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Gus Cothran
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Barbara Wallner
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna1210, Austria
| |
Collapse
|
2
|
Zhabagin M, Bukayev A, Dyussenova Z, Zhuraliyeva A, Tashkarayeva A, Zhunussova A, Aidarov B, Darmenov A, Akilzhanova A, Schamiloglu U, Sabitov Z. Y-Chromosomal insights into the paternal genealogy of the Kerey tribe have called into question their descent from the Stepfather of Genghis Khan. PLoS One 2024; 19:e0309080. [PMID: 39231100 PMCID: PMC11373838 DOI: 10.1371/journal.pone.0309080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The Kerey is one of the prominent Kazakh tribes and has long been a subject of ethnographic scrutiny, with a lack of consensus on its origin and traditional genealogy. Their historical significance, intertwined with the emergence of the empire established by Genghis Khan, necessitates a comprehensive understanding of their genetic history. This study focuses on unraveling the genetic heritage of the Kerey tribe. We conducted a comprehensive analysis of Y-chromosome data from genetic genealogy as citizen science and genetic screening of 23 Y-STRs and 37 Y-SNPs on 207 males from the Kerey tribe within academic science. Our results reveal two prevalent phylogenetic lineages within the C2a1a3a-F3796 haplogroup, also known as the C2*-Star Cluster (C2*-ST), which is one of the founding paternal lineages of the ancient Niru'un clan of the Mongols: C2-FT411734 and C2-FT224144, corresponding to the Abak and Ashamaily clans. While indicating a common male ancestry for them, our findings challenge the notion that they are full siblings. Additionally, genetic diversity analysis of the Y-chromosomes in the Kerey tribe and Kazakhs confirms their kinship with the Uissun tribe but refutes the claim of the Abak clan's progenitor originating from this tribe. Furthermore, genetic evidence fails to support popular historical and ethnographic hypotheses regarding the Kerey tribe's kinship with the Uak, Sirgeli, Adai, Törtkara, Karakerey, and Kereyit Kazakh tribes. The absence of a genetic paternal connection with the Kereyt tribe raises doubts about the genealogical link between the Kerey tribe and the stepfather of Genghis Khan.
Collapse
Affiliation(s)
- Maxat Zhabagin
- National Center for Biotechnology, Astana, Kazakhstan
- Nazarbayev University, Astana, Kazakhstan
- International Science Complex “Astana”, Astana, Kazakhstan
| | - Alizhan Bukayev
- National Center for Biotechnology, Astana, Kazakhstan
- Nazarbayev University, Astana, Kazakhstan
| | | | | | - Assel Tashkarayeva
- Research Institute for Jochi Ulus Studies, Astana, Kazakhstan
- Astana International University, Astana, Kazakhstan
| | | | | | - Akynkali Darmenov
- Karaganda Academy of the Ministry of Internal Affairs of the Republic of Kazakhstan named after Barimbek Beisenov, Karaganda, Kazakhstan
| | | | | | - Zhaxylyk Sabitov
- International Science Complex “Astana”, Astana, Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Kazak Historical Society, Astana, Kazakhstan
| |
Collapse
|
3
|
Wang M, Chen H, Luo L, Huang Y, Duan S, Yuan H, Tang R, Liu C, He G. Forensic investigative genetic genealogy: expanding pedigree tracing and genetic inquiry in the genomic era. J Genet Genomics 2024:S1673-8527(24)00158-9. [PMID: 38969261 DOI: 10.1016/j.jgg.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Genetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening new investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics. FIGG has been pivotal in revitalizing dormant inquiries and offering new genetic leads in numerous cold cases. Its effectiveness relies on the extensive single-nucleotide polymorphism profiles contributed by individuals from diverse populations to specialized genomic databases. Advances in computational genomics and the growth of human genomic databases have spurred a profound shift in the application of genetic genealogy across forensics, anthropology, and ancient DNA studies. As the field progresses, FIGG is evolving from a nascent practice into a more sophisticated and specialized discipline, shaping the future of forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Hongyu Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
4
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
6
|
Ashirbekov Y, Zhunussova A, Abaildayev A, Bukayeva A, Sabitov Z, Zhabagin M. Genetic polymorphism of 27 Y-STR loci in Kazakh populations from Central Kazakhstan. Ann Hum Biol 2024; 51:2377571. [PMID: 39051547 DOI: 10.1080/03014460.2024.2377571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The haplotypes from Northern, Southern, Eastern, and Western Kazakhstan, analysed for 27 Y-STR loci, have been contributed to the Y-Chromosome STR Haplotype Reference Database, while the genetic profile of Central Kazakhstan remains inadequately explored. AIM To investigate the genetic diversity of 27 Y-STR loci in the Kazakh populations from Central Kazakhstan. SUBJECTS AND METHODS A total of 112 unrelated Central Kazakh males were genotyped via the Yfiler Plus kit. Data analysis yielded haplotype and allele frequencies, and forensic parameters. Genetic distances were graphically represented by a multidimensional scaling plot, with genetic linkages further elucidated through Nei's distance dendrograms and Median-joining networks. RESULTS A total of 102 haplotypes were detected, of which 96 were unique. The haplotype diversity and discrimination capacity were 0.997 and 0.91, respectively. Central Kazakhstan displays a unique cluster in analyses, underscoring its distinct Y-chromosome diversity compared to other Kazakh regions. The analysis of the Naiman tribe, predominantly residing in Central, Southern and Eastern Kazakhstan, revealed three genetic clusters of distinct haplogroups associated with their clans. CONCLUSIONS The identified haplotypes will enhance the existing reference database for Y-chromosomal studies in Kazakhstan, offering a robust tool for future research in population genetics, forensic science and genetic genealogy.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | | | - Arman Abaildayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Ayagoz Bukayeva
- National Center for Biotechnology, Almaty, Republic of Kazakhstan
| | - Zhaxylyk Sabitov
- Research Institute for Jochi Ulus Studies, Republic of Kazakhstan
| | - Maxat Zhabagin
- National Center for Biotechnology, Almaty, Republic of Kazakhstan
- Research Institute for Jochi Ulus Studies, Republic of Kazakhstan
| |
Collapse
|
7
|
Ashirbekov Y, Seidualy M, Abaildayev A, Maxutova A, Zhunussova A, Akilzhanova A, Sharipov K, Sabitov Z, Zhabagin M. Genetic polymorphism of Y-chromosome in Kazakh populations from Southern Kazakhstan. BMC Genomics 2023; 24:649. [PMID: 37891458 PMCID: PMC10612363 DOI: 10.1186/s12864-023-09753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Kazakhs are one of the biggest Turkic-speaking ethnic groups, controlling vast swaths of land from the Altai to the Caspian Sea. In terms of area, Kazakhstan is ranked ninth in the world. Northern, Eastern, and Western Kazakhstan have already been studied in relation to genetic polymorphism 27 Y-STR. However, current information on the genetic polymorphism of the Y-chromosome of Southern Kazakhstan is limited only by 17 Y-STR and no geographical study of other regions has been studied at this variation. RESULTS The Kazakhstan Y-chromosome Haplotype Reference Database was expanded with 468 Kazakh males from the Zhambyl and Turkestan regions of South Kazakhstan by having their 27 Y-STR loci and 23 Y-SNP markers analyzed. Discrimination capacity (DC = 91.23%), haplotype match probability (HPM = 0.0029) and haplotype diversity (HD = 0.9992) are defined. Most of this Y-chromosome variability is attributed to haplogroups C2a1a1b1-F1756 (2.1%), C2a1a2-M48 (7.3%), C2a1a3-F1918 (33.3%) and C2b1a1a1a-M407 (6%). Median-joining network analysis was applied to understand the relationship between the haplotypes of the three regions. In three genetic layer can be described the position of the populations of the Southern region of Kazakhstan-the geographic Kazakh populations of Kazakhstan, the Kazakh tribal groups, and the people of bordering Asia. CONCLUSION The Kazakhstan Y-chromosome Haplotype Reference Database was formed for 27 Y-STR loci with a total sample of 1796 samples of Kazakhs from 16 regions of Kazakhstan. The variability of the Y-chromosome of the Kazakhs in a geographical context can be divided into four main clusters-south, north, east, west. At the same time, in the genetic space of tribal groups, the population of southern Kazakhs clusters with tribes from the same region, and genetic proximity is determined with the populations of the Hazaras of Afghanistan and the Mongols of China.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Madina Seidualy
- National Center for Biotechnology, Astana, Kazakhstan
- Nazarbayev University, Astana, Kazakhstan
| | - Arman Abaildayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | | | - Kamalidin Sharipov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Zhaxylyk Sabitov
- Research Institute for Jochi Ulus Studies, Astana, Republic of Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana, Republic of Kazakhstan
| | - Maxat Zhabagin
- National Center for Biotechnology, Astana, Kazakhstan.
- Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
8
|
García-Olivares V, Muñoz-Barrera A, Rubio-Rodríguez LA, Jáspez D, Díaz-de Usera A, Iñigo-Campos A, Veeramah KR, Alonso S, Thomas MG, Lorenzo-Salazar JM, González-Montelongo R, Flores C. Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data. Comput Struct Biotechnol J 2023; 21:4613-4618. [PMID: 37817776 PMCID: PMC10560978 DOI: 10.1016/j.csbj.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- María Goyri Building, Biotechnology Center, Human Molecular Evolution Lab 2.08 UPV/EHU Science Park, 48940 Leioa, Bizkaia, Spain
| | - Mark G. Thomas
- UCL Genetics Institute, University College London (UCL), Gower Street, London WC1E 6BT, United Kingdom
- Research Department of Genetics, Evolution & Environment, University College London (UCL), Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
9
|
Bozlak E, Radovic L, Remer V, Rigler D, Allen L, Brem G, Stalder G, Castaneda C, Cothran G, Raudsepp T, Okuda Y, Moe KK, Moe HH, Kounnavongsa B, Keonouchanh S, Van NH, Vu VH, Shah MK, Nishibori M, Kazymbet P, Bakhtin M, Zhunushov A, Paul RC, Dashnyam B, Nozawa K, Almarzook S, Brockmann GA, Reissmann M, Antczak DF, Miller DC, Sadeghi R, von Butler-Wemken I, Kostaras N, Han H, Manglai D, Abdurasulov A, Sukhbaatar B, Ropka-Molik K, Stefaniuk-Szmukier M, Lopes MS, da Câmara Machado A, Kalashnikov VV, Kalinkova L, Zaitev AM, Novoa-Bravo M, Lindgren G, Brooks S, Rosa LP, Orlando L, Juras R, Kunieda T, Wallner B. Refining the evolutionary tree of the horse Y chromosome. Sci Rep 2023; 13:8954. [PMID: 37268661 PMCID: PMC10238413 DOI: 10.1038/s41598-023-35539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.
Collapse
Affiliation(s)
- Elif Bozlak
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lara Radovic
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Viktoria Remer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lucy Allen
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Caitlin Castaneda
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gus Cothran
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Terje Raudsepp
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Okuda
- Museum of Dinosaur Research, Okayama University of Science, Okayama, Japan
| | - Kyaw Kyaw Moe
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Bounthavone Kounnavongsa
- National Agriculture and Forestry Research Institute (Lao) Resources, Livestock Research Center, Xaythany District, Vientiane, Laos
| | - Soukanh Keonouchanh
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Nguyen Huu Van
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Van Hai Vu
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Manoj Kumar Shah
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, 44209, Nepal
| | - Masahide Nishibori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Polat Kazymbet
- Radiobiological Research Institute, JSC Astana Medical University, Astana, 010000, Republic of Kazakhstan
| | - Meirat Bakhtin
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720071, Kyrgyz Republic
| | - Asankadyr Zhunushov
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720071, Kyrgyz Republic
| | - Ripon Chandra Paul
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Bumbein Dashnyam
- Institute of Biological Sciences, Mongolian Academy of Sciences, Ulaan Baator, Mongolia
| | - Ken Nozawa
- Primate Research Institute, Kyoto University, Aichi, Japan
| | - Saria Almarzook
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Monika Reissmann
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Donald C Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Raheleh Sadeghi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ines von Butler-Wemken
- Barb Horse Breeding Organisation VFZB E. V., Verein der Freunde und Züchter Des Berberpferdes E.V., Kirchgasse 11, 67718, Schmalenberg, Germany
| | | | - Haige Han
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dugarjaviin Manglai
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Abdugani Abdurasulov
- Department of Agriculture, Faculty of Natural Sciences and Geography, Osh State University, 723500, Osh, Kyrgyzstan
| | - Boldbaatar Sukhbaatar
- Sector of Surveillance and Diagnosis of Infectious Diseases, State Central Veterinary Laboratory, Ulaanbaatar, 17024, Mongolia
| | - Katarzyna Ropka-Molik
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047, Cracow, Poland
| | | | - Maria Susana Lopes
- Biotechnology Centre of Azores, University of Azores, 9700-042, Angra do Heroísmo, Portugal
| | | | | | - Liliya Kalinkova
- All-Russian Research Institute for Horse Breeding, Ryazan, 391105, Russia
| | - Alexander M Zaitev
- All-Russian Research Institute for Horse Breeding, Ryazan, 391105, Russia
| | - Miguel Novoa-Bravo
- Genética Animal de Colombia SAS., Av. Calle 26 #69-76, 111071, Bogotá, Colombia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
- Department of Biosystems, Center for Animal Breeding and Genetics, KU Leuven, 3001, Leuven, Belgium
| | - Samantha Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Laura Patterson Rosa
- Department of Agriculture and Industry, Sul Ross State University, Alpine, TX, 79832, USA
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rytis Juras
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
10
|
From collected stamps to hair locks: ethical and legal implications of testing DNA found on privately owned family artifacts. Hum Genet 2023; 142:331-341. [PMID: 36456648 DOI: 10.1007/s00439-022-02508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
Biological samples containing DNA that is attributed to deceased relatives, can now undergo genetic testing at a reasonable cost due to revolutionary improvements in sampling, sequencing, and analytical techniques. This artifact DNA testing, or 'artDNA', includes genetic analysis of hair locks, stamps, envelopes with saliva traces or teeth. ArtDNA can reveal valuable information about a deceased relative or one's genetic background, but it also presents novel ethical dilemmas and legal uncertainties for genetic researchers and commercial testing services. In this paper, we provide an analysis of some of the unique ethical and legal risks of such testing and provide needed recommendations for practitioners of private family artDNA testing. ArtDNA testing generates ethical and legal risks regarding the privacy and autonomy of deceased individuals, the rights of living relatives over their ancestor's genetic information, and the rights of living persons to control their own genetic information. To mitigate these risks, practitioners can conduct certain preliminary testing to ascertain the identity of a DNA donor and estimate the time that has elapsed postmortem. Generally, the ethical and legal concerns will be higher when a shorter period has passed between the death of the DNA donor and the time of artifact DNA testing. Regardless, all artDNA testing present some risks, and practitioners should exercise professional judgement as necessary.
Collapse
|
11
|
Watherston J, McNevin D. Skull and long bones – Forensic DNA techniques for historic shipwreck human remains. AUST J FORENSIC SCI 2023. [DOI: 10.1080/00450618.2023.2181395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- J. Watherston
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Biology Unit, Forensic Science Branch, Nt Police, Fire and Emergency Services, Berrimah, NT, Australia
- College of Health & Human Sciences, Faculty of Science, Charles Darwin University, Casuarina, NT, Australia
| | - D. McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
12
|
Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity. Hum Genet 2023; 142:145-160. [PMID: 36190543 PMCID: PMC9839801 DOI: 10.1007/s00439-022-02493-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023]
Abstract
Rapidly mutating Y-chromosomal short tandem repeats (RM Y-STRs) were suggested for differentiating patrilineally related men as relevant in forensic genetics, anthropological genetics, and genetic genealogy. Empirical data are available for closely related males, while differentiation rates for more distant relatives are scarce. Available RM Y-STR mutation rate estimates are typically based on father-son pair data, while pedigree-based studies for efficient analysis requiring less samples are rare. Here, we present a large-scale pedigree analysis in 9379 pairs of men separated by 1-34 meioses on 30 Y-STRs with increased mutation rates including all known RM Y-STRs (RMplex). For comparison, part of the samples were genotyped at 25 standard Y-STRs mostly with moderate mutation rates (Yfiler Plus). For 43 of the 49 Y-STRs analyzed, pedigree-based mutation rates were similar to previous father-son based estimates, while for six markers significant differences were observed. Male relative differentiation rates from the 30 RMplex Y-STRs were 43%, 84%, 96%, 99%, and 100% for relatives separated by one, four, six, nine, and twelve meioses, respectively, which largely exceeded rates obtained by 25 standard Y-STRs. Machine learning based models for predicting the degree of patrilineal consanguinity yielded accurate and reasonably precise predictions when using RM Y-STRs. Fully matching haplotypes resulted in a 95% confidence interval of 1-6 meioses with RMplex compared to 1-25 with Yfiler Plus. Our comprehensive pedigree study demonstrates the value of RM Y-STRs for differentiating male relatives of various types, in many cases achieving individual identification, thereby overcoming the largest limitation of forensic Y-chromosome analysis.
Collapse
|
13
|
García-Fernández C, Lizano E, Telford M, Olalde Í, de Cid R, Larmuseau MHD, M. de Pancorbo M, Calafell F. Y-chromosome target enrichment reveals rapid expansion of haplogroup R1b-DF27 in Iberia during the Bronze Age transition. Sci Rep 2022; 12:20708. [PMID: 36456614 PMCID: PMC9715704 DOI: 10.1038/s41598-022-25200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The Y chromosome can yield a unique perspective into the study of human demographic history. However, due to the repetitive nature of part of its sequence, only a small set of regions are suitable for variant calling and discovery from short-read sequencing data. These regions combined represent 8.9 Mbp or 0.14% of a diploid human genome. Consequently, investing in whole-genome sequencing to resolve Y-chromosome questions is poorly efficient. Here we use, as an alternative, target enrichment technology to greatly increase sequencing effectiveness, validating and applying the technique to 181 males, for 162 of whom we obtained a positive result. Additionally, 75 samples sequenced for the whole genome were also included, for a total sample size of 237. These samples were chosen for their Y chromosome haplogroup: R1b-DF27. In the context of European populations, and particularly in Iberia, this haplogroup stands out for its high frequency and its demographic history. Current evidence indicates that the diffusion of this haplogroup is related to the population movements that mark the cultural Bronze Age transition, making it remarkably interesting for population geneticists. The results of this study show the effects of the rapid radiation of the haplogroup in Spain, as even with the higher discriminating power of whole sequences, most haplotypes still fall within the R1b-DF27* paragroup rather than in the main derived branches. However, we were able to refine the ISOGG 2019-2020 phylogeny, and its two main subbranches, namely L176.2 and Z272, which present geographical differentiation between the Atlantic and Mediterranean coasts of Iberia.
Collapse
Affiliation(s)
- Carla García-Fernández
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Esther Lizano
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marco Telford
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Íñigo Olalde
- grid.11480.3c0000000121671098BIOMICs Research Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque—Basque Foundation of Science, Bilbao, Spain
| | - Rafael de Cid
- grid.429186.00000 0004 1756 6852Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Maarten H. D. Larmuseau
- grid.5596.f0000 0001 0668 7884Laboratory of Human Genetic Genealogy, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.5284.b0000 0001 0790 3681ARCHES–Antwerp Cultural Heritage Sciences, Faculty of Design Sciences, University of Antwerp, Antwerp, Belgium ,Histories Vzw, Gent, Belgium
| | - Marian M. de Pancorbo
- grid.11480.3c0000000121671098BIOMICs Research Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
14
|
Liu J, Jiang L, Zhao M, Du W, Wen Y, Li S, Zhang S, Fang F, Shen J, He G, Wang M, Dai H, Hou Y, Wang Z. Development and validation of a custom panel including 256 Y-SNPs for Chinese Y-chromosomal haplogroups dissection. Forensic Sci Int Genet 2022; 61:102786. [DOI: 10.1016/j.fsigen.2022.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
15
|
de Knijff P. On the Forensic Use of Y-Chromosome Polymorphisms. Genes (Basel) 2022; 13:genes13050898. [PMID: 35627283 PMCID: PMC9141910 DOI: 10.3390/genes13050898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the use of Y-chromosome polymorphisms forms an essential part of many forensic DNA investigations. However, this was not always the case. Only since 1992 have we seen that some forensic scientists started to have an interest in this chromosome. In this review, I will sketch a brief history focusing on the forensic use of Y-chromosome polymorphisms. Before describing the various applications of short-tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) on the Y-chromosome, I will discuss a few often ignored aspects influencing proper use and interpretation of Y-chromosome information: (i) genotyping Y-SNPs and Y-STRs, (ii) Y-STR haplotypes shared identical by state (IBS) or identical by descent (IBD), and (iii) Y-haplotype database frequencies.
Collapse
Affiliation(s)
- Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
16
|
Xiong J, Du P, Chen G, Tao Y, Zhou B, Yang Y, Wang H, Yu Y, Chang X, Allen E, Sun C, Zhou J, Zou Y, Xu Y, Meng H, Tan J, Li H, Wen S. Sex-Biased Population Admixture Mediated Subsistence Strategy Transition of Heishuiguo People in Han Dynasty Hexi Corridor. Front Genet 2022; 13:827277. [PMID: 35356424 PMCID: PMC8960071 DOI: 10.3389/fgene.2022.827277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
The Hexi Corridor was an important arena for culture exchange and human migration between ancient China and Central and Western Asia. During the Han Dynasty (202 BCE–220 CE), subsistence strategy along the corridor shifted from pastoralism to a mixed pastoralist-agriculturalist economy. Yet the drivers of this transition remain poorly understood. In this study, we analyze the Y-chromosome and mtDNA of 31 Han Dynasty individuals from the Heishuiguo site, located in the center of the Hexi Corridor. A high-resolution analysis of 485 Y-SNPs and mitogenomes was performed, with the Heishuiguo population classified into Early Han and Late Han groups. It is revealed that (1) when dissecting genetic lineages, the Yellow River Basin origin haplogroups (i.e., Oα-M117, Oβ-F46, Oγ-IMS-JST002611, and O2-P164+, M134-) reached relatively high frequencies for the paternal gene pools, while haplogroups of north East Asian origin (e.g., D4 and D5) dominated on the maternal side; (2) in interpopulation comparison using PCA and Fst heatmap, the Heishuiguo population shifted from Southern-Northern Han cline to Northern-Northwestern Han/Hui cline with time, indicating genetic admixture between Yellow River immigrants and natives. By comparison, in maternal mtDNA views, the Heishuiguo population was closely clustered with certain Mongolic-speaking and Northwestern Han populations and exhibited genetic continuity through the Han Dynasty, which suggests that Heishuiguo females originated from local or neighboring regions. Therefore, a sex-biased admixture pattern is observed in the Heishuiguo population. Additionally, genetic contour maps also reveal the same male-dominated migration from the East to Hexi Corridor during the Han Dynasty. This is also consistent with historical records, especially excavated bamboo slips. Combining historical records, archeological findings, stable isotope analysis, and paleoenvironmental studies, our uniparental genetic investigation on the Heishuiguo population reveals how male-dominated migration accompanied with lifestyle adjustments brought by these eastern groups may be the main factor affecting the subsistence strategy transition along the Han Dynasty Hexi Corridor.
Collapse
Affiliation(s)
- Jianxue Xiong
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoke Chen
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Yichen Tao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, United States
| | - Yishi Yang
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Hui Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Juanjuan Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yetao Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| |
Collapse
|
17
|
Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses. Genes (Basel) 2022; 13:genes13020229. [PMID: 35205275 PMCID: PMC8871751 DOI: 10.3390/genes13020229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.
Collapse
|
18
|
Fan GY, Song DL, Jin HY, Zheng XK. Gene flow and phylogenetic analyses of paternal lineages in the Yi-Luo valley using Y-STR genetic markers. Ann Hum Biol 2022; 48:627-634. [DOI: 10.1080/03014460.2021.2017480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guang-Yao Fan
- Forensic Center, College of Medicine, Shaoxing University, Shaoxing, China
| | - Dan-Lu Song
- Ningbo Health Gene Technologies Co. Ltd., Ningbo, China
| | - Hai-Ying Jin
- Ningbo Health Gene Technologies Co. Ltd., Ningbo, China
| | | |
Collapse
|
19
|
Improving the regional Y-STR haplotype resolution utilizing haplogroup-determining Y-SNPs and the application of machine learning in Y-SNP haplogroup prediction in a forensic Y-STR database: A pilot study on male Chinese Yunnan Zhaoyang Han population. Forensic Sci Int Genet 2021; 57:102659. [PMID: 35007855 DOI: 10.1016/j.fsigen.2021.102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022]
Abstract
Improving the resolution of the current widely used Y-chromosomal short tandem repeat (Y-STR) dataset is of great importance for forensic investigators, and the current approach is limited, except for the addition of more Y-STR loci. In this research, a regional Y-DNA database was investigated to improve the Y-STR haplotype resolution utilizing a Y-SNP Pedigree Tagging System that includes 24 Y-chromosomal single nucleotide polymorphism (Y-SNP) loci. This pilot study was conducted in the Chinese Yunnan Zhaoyang Han population, and 3473 unrelated male individuals were enrolled. Based on data on the male haplogroups under different panels, the matched or near-matching (NM) Y-STR haplotype pairs from different haplogroups indicated the critical roles of haplogroups in improving the regional Y-STR haplotype resolution. A classic median-joining network analysis was performed using Y-STR or Y-STR/Y-SNP data to reconstruct population substructures, which revealed the ability of Y-SNPs to correct misclassifications from Y-STRs. Additionally, population substructures were reconstructed using multiple unsupervised or supervised dimensionality reduction methods, which indicated the potential of Y-STR haplotypes in predicting Y-SNP haplogroups. Haplogroup prediction models were built based on nine publicly accessible machine-learning (ML) approaches. The results showed that the best prediction accuracy score could reach 99.71% for major haplogroups and 98.54% for detailed haplogroups. Potential influences on prediction accuracy were assessed by adjusting the Y-STR locus numbers, selecting Y-STR loci with various mutabilities, and performing data processing. ML-based predictors generally presented a better prediction accuracy than two available predictors (Nevgen and EA-YPredictor). Three tree models were developed based on the Yfiler Plus panel with unprocessed input data, which showed their strong generalization ability in classifying various Chinese Han subgroups (validation dataset). In conclusion, this study revealed the significance and application prospects of Y-SNP haplogroups in improving regional Y-STR databases. Y-SNP haplogroups can be used to discriminate NM Y-STR haplotype pairs, and it is important for forensic Y-STR databases to develop haplogroup prediction tools to improve the accuracy of biogeographic ancestry inferences.
Collapse
|
20
|
Genealogy: The Tree Where History Meets Genetics. GENEALOGY 2021. [DOI: 10.3390/genealogy5040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although biological relationships are a universal reality for all human beings, the concepts of “family” and “family bond” depend on both the geographic region and the historical moment to which they refer. However, the concept of “family” can be determinant in a large variety of societies, since it can influence the lines of succession, inheritances and social relationships, as well as where and with whom an individual is buried. The relation between a deceased person and other members of a community, other individuals of the same necropolis, or even with those who are buried in the same tomb can be analysed from the genetic point of view, considering different perspectives: archaeological, historical, and forensic. In the present work, the concepts of “family” and “kinship” are discussed, explaining the relevance of genetic analysis, such as nuclear and lineage markers, and their contribution to genealogical research, for example in the heritage of surnames and Y-chromosome, as well as those cases where some discrepancies with historical record are detected, such as cases of adoption. Finally, we explain how genetic genealogical analyses can help to solve some cold cases, through the analysis of biologically related relatives.
Collapse
|
21
|
Claerhout S, Verstraete P, Warnez L, Vanpaemel S, Larmuseau M, Decorte R. CSYseq: The first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics. PLoS Genet 2021; 17:e1009758. [PMID: 34491993 PMCID: PMC8423258 DOI: 10.1371/journal.pgen.1009758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/05/2021] [Indexed: 11/26/2022] Open
Abstract
Male-specific Y-chromosome (chrY) polymorphisms are interesting components of the DNA for population genetics. While single nucleotide polymorphisms (Y-SNPs) indicate distant evolutionary ancestry, short tandem repeats (Y-STRs) are able to identify close familial kinships. Detailed chrY analysis provides thus both biogeographical background information as paternal lineage identification. The rapid advancement of high-throughput massive parallel sequencing (MPS) technology in the past decade has revolutionized genetic research. Using MPS, single-base information of both Y-SNPs as Y-STRs can be analyzed in a single assay typing multiple samples at once. In this study, we present the first extensive chrY-specific targeted resequencing panel, the 'CSYseq', which simultaneously identifies slow mutating Y-SNPs as evolution markers and rapid mutating Y-STRs as patrilineage markers. The panel was validated by paired-end sequencing of 130 males, distributed over 65 deep-rooted pedigrees covering 1,279 generations. The CSYseq successfully targets 15,611 Y-SNPs including 9,014 phylogenetic informative Y-SNPs to identify 1,443 human evolutionary Y-subhaplogroup lineages worldwide. In addition, the CSYseq properly targets 202 Y-STRs, including 81 slow, 68 moderate, 27 fast and 26 rapid mutating Y-STRs to individualize close paternal relatives. The targeted chrY markers cover a high average number of reads (Y-SNP = 717, Y-STR = 150), easy interpretation, powerful discrimination capacity and chrY specificity. The CSYseq is interesting for research on different time scales: to identify evolutionary ancestry, to find distant family and to discriminate closely related males. Therefore, this panel serves as a unique tool valuable for a wide range of genetic-genealogical applications in interdisciplinary research within evolutionary, population, molecular, medical and forensic genetics.
Collapse
Affiliation(s)
- Sofie Claerhout
- Forensic Biomedical Sciences, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Paulien Verstraete
- Forensic Biomedical Sciences, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Liesbeth Warnez
- Forensic Biomedical Sciences, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Simon Vanpaemel
- KU Leuven, Department of Mechanical Engineering, Noise and Vibration Engineering, Leuven, Belgium
- DMMS Lab, Flanders Make, Heverlee, Belgium
| | - Maarten Larmuseau
- Histories vzw, Mechelen, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ronny Decorte
- Forensic Biomedical Sciences, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
- Laboratory of Forensic genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Claerhout S, Vanpaemel S, Gill MS, Antiga LG, Baele G, Decorte R. YMrCA: Improving Y-chromosomal ancestor time estimation for DNA kinship research. Hum Mutat 2021; 42:1307-1320. [PMID: 34265144 DOI: 10.1002/humu.24259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
The Y-chromosome is a valuable kinship indicator in family history and forensic research. To reconstruct genealogies, the time to the most recent common ancestor (tMRCA) between paternal relatives can be estimated through Y-STR analysis. Existing models are the stepwise mutation model (SMM, only one-step Y-STR changes) and the infinite allele model (IAM, new allele per Y-STR change). In this study, these mutation models and all existing tMRCA calculators were validated through a genetic-genealogy database containing 1,120 biologically related genealogical pairs confirmed by 46 Y-STRs with known tMRCA (18,109 generations). Consistent under- and overestimation and broad confidence intervals were observed, leading to dubious tMRCA estimates. This is because they do not include individual mutation rates or multi-step changes and ignore hidden multiple, back, or parallel modifications. To improve tMRCA estimation, we developed a user-friendly calculator, the "YMrCA", including all previously mentioned mutation characteristics. After extensive validation, we observed that the YMrCA calculator demonstrated a promising performance. The YMrCA yields a significantly higher tMRCA success rate (96%; +20%) and a lower tMRCA error (7; -3) compared to the mutation models and all online tMRCA calculators. Therefore, YMrCA offers the next step towards more objective tMRCA estimation for DNA kinship research.
Collapse
Affiliation(s)
- Sofie Claerhout
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Simon Vanpaemel
- Department of Mechanical Engineering, KU Leuven, Noise and Vibration Engineering, Heverlee, Belgium.,DMMS Lab, Flanders Make, Heverlee, Belgium
| | - Mandev S Gill
- Department of Microbiology, KU Leuven, Immunology and Transplantation, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Laura G Antiga
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium.,Bioinformatics for Health Science, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guy Baele
- Department of Microbiology, KU Leuven, Immunology and Transplantation, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Ronny Decorte
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium.,Laboratory of Forensic Genetics, Department of Forensic Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Phylogeographic review of Y chromosome haplogroups in Europe. Int J Legal Med 2021; 135:1675-1684. [PMID: 34216266 DOI: 10.1007/s00414-021-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
The Y chromosome has been widely explored for the study of human migrations. Due to its paternal inheritance, the Y chromosome polymorphisms are helpful tools for understanding the geographical distribution of populations all over the world and for inferring their origin, which is really useful in forensics. The remarkable historical context of Europe, with numerous migrations and invasions, has turned this continent into a melting pot. For this reason, it is interesting to study the Y chromosome variability and how it has contributed to improving our knowledge of the distribution and development of European male genetic pool as it is today. The analysis of Y lineages in Europe shows the predominance of four haplogroups, R1b-M269, I1-M253, I2-M438 and R1a-M420. However, other haplogroups have been identified which, although less frequent, provide significant evidence about the paternal origin of the populations. In addition, the study of the Y chromosome in Europe is a valuable tool for revealing the genetic trace of the different European colonizations, mainly in several American countries, where the European ancestry is mostly detected by the presence of the R1b-M269 haplogroup. Therefore, the objective of this review is to compile the studies of the Y chromosome haplogroups in current European populations, in order to provide an outline of these haplogroups which facilitate their use in forensic studies.
Collapse
|
24
|
Fan H, Xie Q, Li Y, Wang L, Wen SQ, Qiu P. Insights Into Forensic Features and Genetic Structures of Guangdong Maoming Han Based on 27 Y-STRs. Front Genet 2021; 12:690504. [PMID: 34220963 PMCID: PMC8253533 DOI: 10.3389/fgene.2021.690504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maoming is located in the southwest region of Guangdong Province and is the cradle of Gaoliang culture, which is the representative branch of Lingnan cultures. Historical records showed that the amalgamations between Gaoliang aborigines and distinct ethnic minorities had some influences on the shaping of Gaoliang culture, especially for the local Tai-kadai language-speaking Baiyue and Han Chinese from Central China. However, there is still no exact genetic evidence for the influences on the genetic pool of Maoming Han, and the genetic relationships between Maoming Han and other Chinese populations are still unclear. Hence, in order to get a better understanding of the paternal genetic structures and characterize the forensic features of 27 Y-chromosomal short tandem repeats (Y-STRs) in Han Chinese from Guangdong Maoming, we firstly applied the AmpFLSTR® Yfiler® Plus PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, United States) to genotype the haplotypes in 431 Han males residing in Maoming. A total of 263 different alleles were determined across all 27 Y-STRs with the corresponding allelic frequencies from 0.0004 to 0.7401, and the range of genetic diversity (GD) was 0.4027 (DYS391) to 0.9596 (DYS385a/b). In the first batch of 27 Yfiler data in Maoming Han, 417 distinct haplotypes were discovered, and nine off-ladder alleles were identified at six Y-STRs; in addition, no copy number variant or null allele was detected. The overall haplotype diversity (HD) and discrimination capacity (DC) of 27 Yfiler were 0.9997 and 0.9675, respectively, which demonstrated that the 6-dye and 27-plex system has sufficient system effectiveness for forensic applications in Maoming Han. What is more, the phylogenetic analyses indicated that Maoming Han, which is a Southern Han Chinese population, has a close relationship with Meizhou Kejia, which uncovered that the role of the gene flows from surrounding Han populations in shaping the genetic pool of Maoming Han cannot be ignored. From the perspectives of genetics, linguistics, and geographies, the genetic structures of Han populations correspond to the patterns of the geographical-scale spatial distributions and the relationships of language families. Nevertheless, no exact genetic evidence supports the intimate relationships between Maoming Han and Tai-Kadai language-speaking populations and Han populations of Central Plains in the present study.
Collapse
Affiliation(s)
- Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Institute of Archaeological Science, Fudan University, Shanghai, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lingxiang Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Fan H, Zeng Y, Wu W, Liu H, Xu Q, Du W, Hao H, Liu C, Ren W, Wu W, Chen L, Liu C. The Y-STR landscape of coastal southeastern Han: Forensic characteristics, haplotype analyses, mutation rates, and population genetics. Electrophoresis 2021; 42:1578-1593. [PMID: 34018209 DOI: 10.1002/elps.202100037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 05/15/2021] [Indexed: 11/09/2022]
Abstract
The Y-STR landscape of Coastal Southeastern Han (CSEH) living in Chinese southeast areas (including Guangdong, Fujian, and Zhejiang provinces) is still unclear. We investigated 62 Y-STR markers in a reasonably large number of 1021 unrelated males and 1027 DNA-confirmed father-son pairs to broaden the genetic backgrounds of CSEH. In total, 85 null alleles, 121 off-ladder alleles, and 95 copy number variants were observed, and 1012 distinct haplotypes were determined with the overall HD and DC values of 0.999974 and 0.9912. We observed 369 mutations in 76 099 meiotic transfers, and the average estimated Y-STR mutation rate was 4.85 × 10-3 (95% CI, 4.4 × 10-3 -5.4 × 10-3 ). The Spearman correlation analyses indicated that GD values (R2 = 0.6548) and average allele sizes (R2 = 0.5989) have positive correlations with Y-STR mutation rates. Our RM Y-STR set including 8 candidate RM Y-STRs, of which DYS534, DYS630, and DYS713 are new candidates in CSEH, distinguished 18.52% of father-son pairs. This study also clarified the population structures of CSEH which isolated in population-mixed South China relatively. The strategy, SM Y-STRs for familial searching and RM Y-STRs for individual identification regionally, could be applicable based on enough knowledge of the Y-STR mutability of different populations.
Collapse
Affiliation(s)
- Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Ying Zeng
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Weiwei Wu
- Zhejiang Key Laboratory of Forensic Science and Technology, Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Hangzhou, P. R. China
| | - Hong Liu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Weian Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Honglei Hao
- Zhejiang Key Laboratory of Forensic Science and Technology, Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Hangzhou, P. R. China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Wenyan Ren
- Zhejiang Key Laboratory of Forensic Science and Technology, Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Hangzhou, P. R. China
| | - Weibin Wu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Chao Liu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China.,Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| |
Collapse
|
26
|
An 8.22 Mb Assembly and Annotation of the Alpaca ( Vicugna pacos) Y Chromosome. Genes (Basel) 2021; 12:genes12010105. [PMID: 33467186 PMCID: PMC7830431 DOI: 10.3390/genes12010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The unique evolutionary dynamics and complex structure make the Y chromosome the most diverse and least understood region in the mammalian genome, despite its undisputable role in sex determination, development, and male fertility. Here we present the first contig-level annotated draft assembly for the alpaca (Vicugna pacos) Y chromosome based on hybrid assembly of short- and long-read sequence data of flow-sorted Y. The latter was also used for cDNA selection providing Y-enriched testis transcriptome for annotation. The final assembly of 8.22 Mb comprised 4.5 Mb of male specific Y (MSY) and 3.7 Mb of the pseudoautosomal region. In MSY, we annotated 15 X-degenerate genes and two novel transcripts, but no transposed sequences. Two MSY genes, HSFY and RBMY, are multicopy. The pseudoautosomal boundary is located between SHROOM2 and HSFY. Comparative analysis shows that the small and cytogenetically distinct alpaca Y shares most of MSY sequences with the larger dromedary and Bactrian camel Y chromosomes. Most of alpaca X-degenerate genes are also shared with other mammalian MSYs, though WWC3Y is Y-specific only in alpaca/camels and the horse. The partial alpaca Y assembly is a starting point for further expansion and will have applications in the study of camelid populations and male biology.
Collapse
|
27
|
The Y Chromosome: A Complex Locus for Genetic Analyses of Complex Human Traits. Genes (Basel) 2020; 11:genes11111273. [PMID: 33137877 PMCID: PMC7693691 DOI: 10.3390/genes11111273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
The Human Y chromosome (ChrY) has been demonstrated to be a powerful tool for phylogenetics, population genetics, genetic genealogy and forensics. However, the importance of ChrY genetic variation in relation to human complex traits is less clear. In this review, we summarise existing evidence about the inherent complexities of ChrY variation and their use in association studies of human complex traits. We present and discuss the specific particularities of ChrY genetic variation, including Y chromosomal haplogroups, that need to be considered in the design and interpretation of genetic epidemiological studies involving ChrY.
Collapse
|
28
|
Population genetic diversity in an Iraqi population and gene flow across the Arabian Peninsula. Sci Rep 2020; 10:15289. [PMID: 32943725 PMCID: PMC7499422 DOI: 10.1038/s41598-020-72283-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Y-STRs have emerged as important forensic and population genetic markers for human identification and population differentiation studies. Therefore, population databases for these markers have been developed for almost all major populations around the world. The Iraqi population encompasses several ethnic groups that need to be genetically characterised and evaluated for possible substructures. Previous studies on the Iraqi population based on Y-STR markers were limited by a restricted number of markers. A larger database for Iraqi Arab population needed to be developed to help study and compare the population with other Middle Eastern populations. Twenty-three Y-STR loci included in the PowerPlex Y23 (Promega, Madison, WI, USA) were typed in 254 males from the Iraqi Arab population. Global and regional Y-STR analysis demonstrated regional genetic continuity among the populations of Iraq, the Arabian Peninsula and the Middle East. The Iraqi Arab haplotypes were used to allocate samples to their most likely haplogroups using Athey’s Haplogroup Predictor tool. Prediction indicated predominance (36.6%) of haplogroup J1 in Iraqi Arabs. The migration rate between other populations and the Iraqis was inferred using coalescence theory in the Migrate-n program. Y-STR data were used to test different out-of-Africa migration models as well as more recent migrations within the Arabian Peninsula. The migration models demonstrated that gene flow to Iraq began from East Africa, with the Levantine corridor the most probable passageway out of Africa. The data presented here will enrich our understanding of genetic diversity in the region and introduce a PowerPlex Y23 database to the forensic community.
Collapse
|
29
|
Bouakaze C, Delehelle F, Saenz-Oyhéréguy N, Moreira A, Schiavinato S, Croze M, Delon S, Fortes-Lima C, Gibert M, Bujan L, Huyghe E, Bellis G, Calderon R, Hernández CL, Avendaño-Tamayo E, Bedoya G, Salas A, Mazières S, Charioni J, Migot-Nabias F, Ruiz-Linares A, Dugoujon JM, Thèves C, Mollereau-Manaute C, Noûs C, Poulet N, King T, D'Amato ME, Balaresque P. Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): Unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters. Forensic Sci Int Genet 2020; 48:102342. [PMID: 32818722 DOI: 10.1016/j.fsigen.2020.102342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022]
Abstract
We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high DC/HD). We designed CombYplex around two sub-panels M1 and M2 characterized by average and high-mutation STR panels. Using these two sub-panels, we tested how our program PredYmale reacts to mutability when considering basal branches and, moving down, terminal branches. We tested first the discrimination capacity of CombYplex on 996 human samples using various forensic and statistical parameters and showed that its resolution is sufficient to separate haplogroup classes. In parallel, PredYMaLe was designed and used to test whether a ML approach can predict haplogroup classes from Y-STR profiles. Applied to our kit, SVM and Random Forest classifiers perform very well (average 97 %), better than Neural Network (average 91 %) and Bayesian methods (< 90 %). We observe heterogeneity in haplogroup assignation accuracy among classes, with most haplogroups having high prediction scores (99-100 %) and two (E1b1b and G) having lower scores (67 %). The small sample sizes of these classes explain the high tendency to misclassify the Y-profiles of these haplogroups; results were measurably improved as soon as more training data were added. We provide evidence that our ML approach is a robust method to accurately predict haplogroups when it is combined with a sufficient number of markers, well-balanced mutation rate Y-STR panels, and large ML training sets. Further research on confounding factors (such as CNV-STR or gene conversion) and ideal STR panels in regard to the branches analysed can be developed to help classifiers further optimize prediction scores.
Collapse
Affiliation(s)
- Caroline Bouakaze
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Franklin Delehelle
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France; REVA Unit, UMR 5505 - CNRS & Université de Toulouse, Institut de Recherche en Informatique de Toulouse, 31400 Toulouse, France
| | - Nancy Saenz-Oyhéréguy
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Andreia Moreira
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Stéphanie Schiavinato
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Myriam Croze
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Solène Delon
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Cesar Fortes-Lima
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Morgane Gibert
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Louis Bujan
- Equipe d'acceuil EA3694, Hôpital Paule de Viguier, 330 Avenue de Grande Bretagne, TSA 70034, 31059 Toulouse Cedex 9, France
| | - Eric Huyghe
- Equipe d'acceuil EA3694, Hôpital Paule de Viguier, 330 Avenue de Grande Bretagne, TSA 70034, 31059 Toulouse Cedex 9, France
| | - Gil Bellis
- INED Institut National d'Etudes Démographiques, 133 Boulevard Davout, 75980 Paris cedex 20, France
| | - Rosario Calderon
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University. 28040 Madrid, Spain
| | - Candela Lucia Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University. 28040 Madrid, Spain
| | - Efren Avendaño-Tamayo
- Grupo de Ciencias Básicas Aplicadas del Tecnológico de Antioquia, Tecnológico de Antioquia, Institución Universitaria, Medellín 050034, Colombia
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Instituto de Biología, Universidad de Antioquia Medellín Colombia, Colombia
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, GenPoB Research Group, Instituto de Investigaciones, Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | | | - Jacques Charioni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France; Etablissement Français du Sang PACA Corse, Marseille, France
| | | | - Andres Ruiz-Linares
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jean-Michel Dugoujon
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Catherine Thèves
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Catherine Mollereau-Manaute
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Camille Noûs
- Laboratoire Cogitamous, CNRS & Université Toulouse III, 31000 Toulouse, France
| | - Nicolas Poulet
- Pôle écohydraulique AFB-IMT, allée du Pr Camille Soula, 31400 Toulouse, France
| | - Turi King
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Maria Eugenia D'Amato
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of Western Cape, Cape Town, South Africa
| | - Patricia Balaresque
- Laboratoire d´Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288 - CNRS & Université Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France.
| |
Collapse
|
30
|
Ralf A, Lubach D, Kousouri N, Winkler C, Schulz I, Roewer L, Purps J, Lessig R, Krajewski P, Ploski R, Dobosz T, Henke L, Henke J, Larmuseau MHD, Kayser M. Identification and characterization of novel rapidly mutating Y‐chromosomal short tandem repeat markers. Hum Mutat 2020; 41:1680-1696. [DOI: 10.1002/humu.24068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Arwin Ralf
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Delano Lubach
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Nefeli Kousouri
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | | | - Iris Schulz
- Institut für Blutgruppenforschung LGC GmbH Cologne Germany
| | - Lutz Roewer
- Abteilung für Forensische Genetik, Institut für Rechtsmedizin und Forensische Wissenschaften Charite ́‐Universitätsmedizin Berlin Berlin Germany
| | - Josephine Purps
- Abteilung für Forensische Genetik, Institut für Rechtsmedizin und Forensische Wissenschaften Charite ́‐Universitätsmedizin Berlin Berlin Germany
| | - Rüdiger Lessig
- Institut für Rechtsmedizin Universitätsklinikum Halle Halle/Saale Germany
| | - Pawel Krajewski
- Department of Medical Genetics and Department of Forensic Medicine Medical University Warsaw Warsaw Poland
| | - Rafal Ploski
- Department of Medical Genetics and Department of Forensic Medicine Medical University Warsaw Warsaw Poland
| | - Tadeusz Dobosz
- Department of Forensic Medicine Wroclaw Medical University Wroclaw Poland
| | - Lotte Henke
- Institut für Blutgruppenforschung LGC GmbH Cologne Germany
| | - Jürgen Henke
- Institut für Blutgruppenforschung LGC GmbH Cologne Germany
| | | | - Manfred Kayser
- Department of Genetic Identification Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
31
|
Nan H, Wu W, Hao H, Ren W, Lu D. Deletions and duplications of 42 Y chromosomal short tandem repeats in Chinese Han population. Int J Legal Med 2020; 135:153-159. [PMID: 32483669 DOI: 10.1007/s00414-020-02320-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022]
Abstract
Genotypes of 42 Y chromosome STR (Y-STR) loci were analyzed for a sample of 1420 unrelated males and 1160 father-son pairs from a Chinese Han population. Deletions of Y-STR loci were detected at DYS389I, DYS389II, DYS437, DYS446, DYS447, DYS448, and DYS557 loci. The most common deletion occurred at DYS448 and DYS557 with a frequency of 0.0056 and 0.0035, respectively. On the other hand, duplications of alleles were observed at DYF387S1a/b, DYS385a/b, DYS460, DYS527a/b, DYS459a/b, and DYS557 loci. The DYF387S1a/b, DYS527a/b, and DYS385a/b showed the highest duplicated frequencies of 0.0148, 0.0134, and 0.0099, respectively. The Y-STRs located on palindromes significantly exhibited more deletions or duplications than those non-palindromic loci. Also, duplications were more frequent than deletions. Hence, deletions or duplications of Y-STRs related to their positions on the Y chromosome. All the 52 deleted or duplicated events occurred in the two-generation families inherited stably. Furthermore, the deletions may show the Chinese Han population specificity, but the duplications may not have a similar phenomenon. Our results will be helpful to correct interpretation of the genetic profile of Y-STR loci in forensic casework.
Collapse
Affiliation(s)
- Hailun Nan
- Faculty of Forensic Medicine, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center of Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Weiwei Wu
- Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Zhejiang Key Laboratory of Forensic Science and Technology, 66# Minsheng Road, Hangzhou, 310009, People's Republic of China
| | - Honglei Hao
- Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Zhejiang Key Laboratory of Forensic Science and Technology, 66# Minsheng Road, Hangzhou, 310009, People's Republic of China
| | - Wenran Ren
- Institute of Forensic Science of Zhejiang Provincial Public Security Bureau, Zhejiang Key Laboratory of Forensic Science and Technology, 66# Minsheng Road, Hangzhou, 310009, People's Republic of China
| | - Dejian Lu
- Faculty of Forensic Medicine, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center of Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
32
|
Harding T, Milot E, Moreau C, Lefebvre JF, Bournival JS, Vézina H, Laprise C, Lalueza-Fox C, Anglada R, Loewen B, Casals F, Ribot I, Labuda D. Historical human remains identification through maternal and paternal genetic signatures in a founder population with extensive genealogical record. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:645-658. [PMID: 32064591 DOI: 10.1002/ajpa.24024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES We describe a method to identify human remains excavated from unmarked graves in historical Québec cemeteries by combining parental-lineage genetic markers with the whole-population genealogy of Québec contained in the BALSAC database. MATERIALS AND METHODS The remains of six men were exhumed from four historical cemeteries in the province of Québec, Canada. DNA was extracted from the remains and genotyped to reveal their mitochondrial and Y-chromosome haplotypes, which were compared to a collection of haplotypes of genealogically-anchored modern volunteers. Maternal and paternal genealogies were searched in the BALSAC genealogical record for parental couples matching the mitochondrial and the Y-chromosome haplotypic signatures, to identify candidate sons from whom the remains could have originated. RESULTS Analysis of the matching genealogies identified the parents of one man inhumed in the cemetery of the investigated parish during its operating time. The candidate individual died in 1833 at the age of 58, a plausible age at death in light of osteological analysis of the remains. DISCUSSION This study demonstrates the promising potential of coupling genetic information from living individuals to genealogical data in BALSAC to identify historical human remains. If genetic coverage is increased, the genealogical information in BALSAC could enable the identification of 87% of the men (n = 178,435) married in Québec before 1850, with high discriminatory power in most cases since >75% of the parental couples have unique biparental signatures in most regions. Genotyping and identifying Québec's historical human remains are a key to reconstructing the genomes of the founders of Québec and reinhuming archeological remains with a marked grave.
Collapse
Affiliation(s)
- Tommy Harding
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Canada.,Laboratoire de recherche en criminalistique, Département de chimie, biochimie et sciences de l'énergie, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Emmanuel Milot
- Laboratoire de recherche en criminalistique, Département de chimie, biochimie et sciences de l'énergie, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Centre international de criminologie comparée and Centre interuniversitaire d'études québécoises, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Claudia Moreau
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Canada.,Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | | | | | - Hélène Vézina
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada.,Projet BALSAC, Université du Québec à Chicoutimi, Chicoutimi, Canada.,Département des sciences humaines et sociales, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada.,Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Carles Lalueza-Fox
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Roger Anglada
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona, Spain
| | - Brad Loewen
- Département d'anthropologie, Université de Montréal, Montréal, Canada
| | - Ferran Casals
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona, Spain
| | - Isabelle Ribot
- Département d'anthropologie, Université de Montréal, Montréal, Canada
| | - Damian Labuda
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Canada.,Département de pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
33
|
Liu Y, Yu T, Mei S, Jin X, Lan Q, Zhou Y, Fang Y, Xie T, Huang J, Zhu B. Forensic characteristics and genetic affinity analyses of Xinjiang Mongolian group using a novel six fluorescent dye-labeled typing system including 41 Y-STRs and 3 Y-InDels. Mol Genet Genomic Med 2020; 8:e1097. [PMID: 31876394 PMCID: PMC7005640 DOI: 10.1002/mgg3.1097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Y-chromosomal genetic marker haplotypes of individuals can define the paternal kinship or genealogies to which they belong and further provide clues for forensic individual identifications. Studying the genetic structure of the Mongolian group will help to bring to light the Mongolian ethnic origin, and explicate the genetic affinities among the studied and compared populations. Some forensic scientists have studied the genetic background of the Mongolian group based on different molecular genetic markers. These studies were of very great reference significance for the Mongolian group genetic research, whereas the investigation of Y-STR haplotype data in the Xinjiang Mongolian group is still insufficient. METHODS Genetic characteristics of 182 unrelated healthy male Mongolian individuals were revealed by 41 Y-chromosomal short tandem repeat and 3 insertion/deletion molecular genetic markers. Furthermore, analyses of molecular variance programs, multi-dimensional scaling plots, and phylogenetic tree reconstructions were operated to explore the genetic relationships of the Xinjiang Mongolian group with comparative 23 populations from China and 33 populations from worldwide nations. RESULTS The genetic diversity values ranged from 0.0641 (rs771783753) to 0.9502 (DYF387S1). A total of 165 distinct haplotypes were identified, of which 150 (90.91%) were unique. The discrimination capacity, match probability, and haplotype diversity of 44 loci were 0.9066, 0.0067, and 0.9988, respectively. Additionally, the Mongolian group had the most intimate relationship with Gansu Dongxiang (RST = 0.0165), followed by HulunBuir Mongolian (RST = 0.0187), Inner Mongolia Daur (RST = 0.0202) as well as other three minority ethnic groups from the Xinjiang region (RST < 0.05) in all compared Chinese populations, and clustered together with the majority of Asian populations in a worldwide scale. CONCLUSIONS Consequently, the 44 loci could be well applied in forensic applications of the Mongolian group. The haplotypes available in here made new contributions to the existing population genetic information and would be of great value in population studies.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
- Department of Laboratory MedicineNanhai HospitalSouthern Medical UniversityFoshanChina
- Multi‐Omics Innovative Research Center of Forensic IdentificationSouthern Medical UniversityGuangzhouChina
| | | | - Shuyan Mei
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anChina
| | - Qiong Lan
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
- Multi‐Omics Innovative Research Center of Forensic IdentificationSouthern Medical UniversityGuangzhouChina
| | - Yongsong Zhou
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
- Multi‐Omics Innovative Research Center of Forensic IdentificationSouthern Medical UniversityGuangzhouChina
| | - Yating Fang
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
- Multi‐Omics Innovative Research Center of Forensic IdentificationSouthern Medical UniversityGuangzhouChina
| | - Tong Xie
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
- Multi‐Omics Innovative Research Center of Forensic IdentificationSouthern Medical UniversityGuangzhouChina
| | | | - Bofeng Zhu
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
- Multi‐Omics Innovative Research Center of Forensic IdentificationSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anChina
| |
Collapse
|
34
|
Abumsimir B, Ennaji MM. Suggested parameters to setup Y chromosome microsatellites markers as prostate cancer genetic risk indicator. Future Oncol 2019; 15:2791-2794. [PMID: 31429608 DOI: 10.2217/fon-2019-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Berjas Abumsimir
- Team of Virology, Oncology and Medical Biotechnology, Laboratory of Virology, Microbiology, Quality and Medical Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences and Techniques - Mohammedia, Hassan II University of Casablanca, PO BOX 146 Mohammedia 20650, Morocco
| | - Moulay Mustapha Ennaji
- Team of Virology, Oncology and Medical Biotechnology, Laboratory of Virology, Microbiology, Quality and Medical Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences and Techniques - Mohammedia, Hassan II University of Casablanca, PO BOX 146 Mohammedia 20650, Morocco
| |
Collapse
|
35
|
Kennett D. Using genetic genealogy databases in missing persons cases and to develop suspect leads in violent crimes. Forensic Sci Int 2019; 301:107-117. [DOI: 10.1016/j.forsciint.2019.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
36
|
Boattini A, Sarno S, Mazzarisi AM, Viroli C, De Fanti S, Bini C, Larmuseau MHD, Pelotti S, Luiselli D. Estimating Y-Str Mutation Rates and Tmrca Through Deep-Rooting Italian Pedigrees. Sci Rep 2019; 9:9032. [PMID: 31227725 PMCID: PMC6588691 DOI: 10.1038/s41598-019-45398-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
In the population genomics era, the study of Y-chromosome variability is still of the greatest interest for several fields ranging from molecular anthropology to forensics and genetic genealogy. In particular, mutation rates of Y-chromosomal Short Tandem Repeats markers (Y-STRs) are key parameters for different interdisciplinary applications. Among them, testing the patrilineal relatedness between individuals and calculating their Time of Most Recent Common Ancestors (TMRCAs) are of the utmost importance. To provide new valuable estimates and to address these issues, we typed 47 Y-STRs (comprising Yfiler, PowerPlex23 and YfilerPlus loci, the recently defined Rapidly Mutating [RM] panel and 11 additional markers often used in genetic genealogical applications) in 135 individuals belonging to 66 deep-rooting paternal genealogies from Northern Italy. Our results confirmed that the genealogy approach is an effective way to obtain reliable Y-STR mutation rate estimates even with a limited number of samples. Moreover, they showed that the impact of multi-step mutations and backmutations is negligible within the temporal scale usually adopted by forensic and genetic genealogy analyses. We then detected a significant association between the number of mutations within genealogies and observed TMRCAs. Therefore, we compared observed and expected TMRCAs by implementing a Bayesian procedure originally designed by Walsh (2001) and showed that the method yields a good performance (up to 96.72%), especially when using the Infinite Alleles Model (IAM).
Collapse
Affiliation(s)
- Alessio Boattini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126, Bologna, Italy.
| | - Stefania Sarno
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126, Bologna, Italy
| | - Alessandra M Mazzarisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126, Bologna, Italy
| | - Cinzia Viroli
- Dipartimento di Scienze Statistiche "Paolo Fortunati", Università di Bologna, 40126, Bologna, Italy
| | - Sara De Fanti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126, Bologna, Italy
| | - Carla Bini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40126, Bologna, Italy
| | - Maarten H D Larmuseau
- Laboratory of Forensic Genetics and Molecular Archaeology, Forensic Biomedical Sciences, KU Leuven, B-3000, Leuven, Belgium.,Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, B-3000, Leuven, Belgium
| | - Susi Pelotti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40126, Bologna, Italy
| | - Donata Luiselli
- Dipartimento di Beni Culturali, Università di Bologna, 48121, Ravenna, Italy
| |
Collapse
|
37
|
Wen SQ, Yao HB, Du PX, Wei LH, Tong XZ, Wang LX, Wang CC, Zhou BY, Shi MS, Zhabagin M, Wang J, Xu D, Jin L, Li H. Molecular genealogy of Tusi Lu's family reveals their paternal relationship with Jochi, Genghis Khan's eldest son. J Hum Genet 2019; 64:815-820. [PMID: 31164702 DOI: 10.1038/s10038-019-0618-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Genghis Khan's lineage has attracted both academic and general interest because of its mystery and large influence. However, the truth behind the mystery is complicated and continues to confound the scientific study. In this study, we surveyed the molecular genealogy of Northwestern China's Lu clan who claim to be the descendants of the sixth son of Genghis Khan, Toghan. We also investigated living members of the Huo and Tuo clans, who, according to oral tradition, were close male relatives of Lu clan. Using network analysis, we found that the Y-chromosomal haplotypes of Lu clan mainly belong to haplogroup C2b1a1b1-F1756, widely prevalent in Altaic-speaking populations, and are closely related to the Tore clan from Kazakhstan, who claim to be the descendants of the first son of Genghis Khan, Jochi. The most recent common ancestor of the special haplotype cluster that includes the Lu clan and Tore clan lived about 1000 years ago (YA), while the Huo and Tuo clans do not share any Y lineages with the Lu clan. In addition to the reported lineages, such as C3*-Star Cluster, R1b-M343, and Q, our results indicate that haplogroup C2b1a1b1-F1756 might be another candidate of the true Y lineage of Genghis Khan.
Collapse
Affiliation(s)
- Shao-Qing Wen
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China.,Institute of Archaeological Science, Fudan University, 200433, Shanghai, China
| | - Hong-Bing Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu Institute of Political Science and Law, 730070, Lanzhou, China
| | - Pan-Xin Du
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Lan-Hai Wei
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China.,Department of Anthropology and Ethnology Institute of Anthropology, Xiamen University, 361005, Xiamen, China
| | - Xin-Zhu Tong
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ling-Xiang Wang
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Chuan-Chao Wang
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China.,Department of Anthropology and Ethnology Institute of Anthropology, Xiamen University, 361005, Xiamen, China
| | - Bo-Yan Zhou
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Mei-Sen Shi
- Institute of the Investigation School of Criminal Justice, China University of Political Science and Law, 100088, Beijing, China
| | - Maxat Zhabagin
- National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Jiucun Wang
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Dan Xu
- Institut National des Langues et Civilisations Orientales, Centre de Recherches de Linguistique d'Asie Orientale, Institut Universitaire de France, 65 rue des Grands Moulins, 75013, Paris, France
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology and B&R International Joint Laboratory for Eurasian Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
38
|
A game of hide and seq: Identification of parallel Y-STR evolution in deep-rooting pedigrees. Eur J Hum Genet 2018; 27:637-646. [PMID: 30573800 DOI: 10.1038/s41431-018-0312-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
Short tandem repeats on the Y-chromosome (Y-STRs) are common DNA polymorphisms useful for genetic genealogy, population and evolutionary genetics, human genetics, pathology and forensic sciences. It is important to identify all Y-STR variants and to have knowledge of Y-STR mutation rates in order to correctly estimate the time to the most recent common ancestor (tMRCA) between paternally related individuals. When capillary electrophoresis (CE) is performed to analyze genealogical pairs, Y-STR sequence variations remain hidden when the number of repeats is identical. These hidden variations could be due to parallel Y-STR changes or modifications (PM) that occur independently in different lineages leading to alleles with identical number of repeats. In this study, we detect for the first time twelve PM by analyzing 133 males (960 meiosis) in extended deep-rooting family pedigrees on 42 Y-STRs. These PM were observed in nine Y-STR loci with mutation rates of at least 5.94 × 10-3 per generation. Sequencing analysis made it possible to distinguish insertions/deletions in different repeat regions revealing the presence of two unique changes in three PM on rapidly mutating and complex Y-STRs DYS724-ab and DYS518. Sequencing unraveled more information concerning the identity of alleles, and increased allelic discrimination possibilities which is of great importance in population genetics and forensic analysis. Limiting the analysis to CE could lead to wrong ancestral allele assumptions, to false negative interpretations and to tMRCA underestimations. These observations highlight the importance and added value of sequencing analysis and suggest a shift in genotyping methods from CE to next generation sequencing.
Collapse
|
39
|
Oh S, Kim J, Park S, Kim S, Lee K, Lee YH, Lim SK, Lee H. Prediction of Y haplogroup by polymerase chain reaction-reverse blot hybridization assay. Genes Genomics 2018; 41:297-304. [PMID: 30456526 DOI: 10.1007/s13258-018-0761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The analysis of Y-SNPs from crime scene samples is helpful for investigators in narrowing down suspects by predicting biogeographical ancestry. OBJECTIVE In this study, a PCR-reverse blot hybridization assay (REBA) for predicting Y-chromosome haplogroups was employed to determine the major haplogroups worldwide, including AB, DE, C, C3, F, K, NO, O, O2, and O3 and evaluated. METHODS The REBA detects nine biallelic Y chromosome markers (M9, M89, M122, M145, M175, M214, M217, P31, and RPS4Y711) simultaneously using multiple probes. RESULTS The REBA for Y-single nucleotide polymorphisms (SNP) genotyping was performed using 40 DNA samples from Asians-14 Koreans, 10 Indonesians, six Chineses, six Thais, and four Mongolians. 40 Asian samples were identified as haplogroup O2 (40%), O3 (32.5%), C3 (17.5%), O (7.5%) and K (2.5%). These cases were confirmed by DNA sequence analysis (κ = 1.00; P < 0.001). CONCLUSION PCR-REBA is a rapid and reliable method that complements other SNP detection methods. Therefore, implementing REBA for Y-SNP testing may be a useful tool in predicting Y-chromosome haplogroups.
Collapse
Affiliation(s)
- Sehee Oh
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea
| | - Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Seoyong Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Kyungmyung Lee
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea
| | - Yang-Han Lee
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju, Gangwon, Republic of Korea.
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea.
| |
Collapse
|
40
|
Genetic diversities and phylogenetic analyses of three Chinese main ethnic groups in southwest China: A Y-Chromosomal STR study. Sci Rep 2018; 8:15339. [PMID: 30337624 PMCID: PMC6193932 DOI: 10.1038/s41598-018-33751-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/05/2018] [Indexed: 01/25/2023] Open
Abstract
Short tandem repeats (STRs) located on the Y chromosome with the properties of male-specific inheritance and haploidy are widely used in forensics to analyze paternal genealogies and match male trace donors to evidence. Besides, Y-chromosomal haplotypes play an important role in providing breathtaking insights into population genetic history. However, the genetic diversity and forensic characteristics of Y-STRs in Guizhou main ethnic groups (Hans, Miaos and Bouyeis) remain uncharacterized. Here, we obtained Y-chromosomal 23-marker haplotypes in three Guizhou populations and submitted the first batch of Y-STR haplotype data to the YHRD. The HD in the aforementioned three populations are 0.99990, 0.99983, and 0.99979, respectively, and DC values are 0.9902, 0.9908, and 0.97959, respectively. Subsequently, genetic differentiation between our newly studied populations and reference groups along ethnic/administrative divisions, as well as national/continental boundaries were investigated via AMOVA, MDS, and phylogenetic relationship reconstruction. Significant genetic differentiations from our subjects and other groups are identified in ethnically, linguistically and geographically diverse populations, including most prominently Tibetans and Uyghurs among 30 mainland Chinese populations, Taiwanese groups and others among 58 Asian populations, as well as African groups and others among 89 worldwide populations. Qiannan Bouyei has a close genetic relationship with Guangxi Zhuang, and Zunyi Han and Qiandongnan Miao have close genetic affinity with Hunan Han and Guizhou Shui, respectively. Collectively, this new-generation Y-STR amplification system can be used as a supplementary tool in forensic identification and male parentage testing and even pedigree search.
Collapse
|
41
|
Larmuseau MHD, Ottoni C. Mediterranean Y-chromosome 2.0-why the Y in the Mediterranean is still relevant in the postgenomic era. Ann Hum Biol 2018; 45:20-33. [PMID: 29382278 DOI: 10.1080/03014460.2017.1402956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Due to its unique paternal inheritance, the Y-chromosome has been a highly popular marker among population geneticists for over two decades. Recently, the advent of cost-effective genome-wide methods has unlocked information-rich autosomal genomic data, paving the way to the postgenomic era. This seems to have announced the decreasing popularity of investigating Y-chromosome variation, which provides only the paternal perspective of human ancestries and is strongly influenced by genetic drift and social behaviour. OBJECTIVE For this special issue on population genetics of the Mediterranean, the aim was to demonstrate that the Y-chromosome still provides important insights in the postgenomic era and in a time when ancient genomes are becoming exponentially available. METHODS A systematic literature search on Y-chromosomal studies in the Mediterranean was performed. RESULTS Several applications of Y-chromosomal analysis with future opportunities are formulated and illustrated with studies on Mediterranean populations. CONCLUSIONS There will be no reduced interest in Y-chromosomal studies going from reconstruction of male-specific demographic events to ancient DNA applications, surname history and population-wide estimations of extra-pair paternity rates. Moreover, more initiatives are required to collect population genetic data of Y-chromosomal markers for forensic research, and to include Y-chromosomal data in GWAS investigations and studies on male infertility.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- a KU Leuven, Forensic Biomedical Sciences , Department of Imaging & Pathology , Leuven , Belgium.,b KU Leuven, Laboratory of Socioecology and Social Evolution , Department of Biology , Leuven , Belgium
| | - Claudio Ottoni
- c Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Oslo , Norway
| |
Collapse
|
42
|
The biological relevance of a medieval king's DNA. Biochem Soc Trans 2018; 46:1013-1020. [DOI: 10.1042/bst20170173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022]
Abstract
The discovery of the presumably lost grave of the controversial English king Richard III in Leicester (U.K.) was one of the most important archaeological achievements of the last decennium. The skeleton was identified beyond reasonable doubt, mainly by the match of mitochondrial DNA to that of living maternal relatives, along with the specific archaeological context. Since the genetic genealogical analysis only involved the DNA sequences of a single 15th century individual and a few reference persons, biologists might consider this investigation a mere curiosity. This mini-review shows that the unique context of a historical king's DNA also has relevance for biological research per se — in addition to the more obvious historical, societal and educational value. In the first place, the historical identification appeared to be a renewed forensic case realising a conservative statement with statistical power based on genetic and non-genetic data, including discordant elements. Secondly, the observation of historical non-paternity events within Richard III's patrilineage has given rise to new research questions about potential factors influencing the extra-pair paternity rate in humans and the importance of biological relatedness for the legal recognition of a child in the past. Thirdly, the identification of a named and dated skeleton with the known historical context serves as a reference for bioarchaeological investigations and studies on the spatio-temporal distribution of particular genetic variance. Finally, the Richard III case revealed privacy issues for living relatives which appear to be inherent to any publication of genetic genealogical data.
Collapse
|
43
|
Methodology for Y Chromosome Capture: A complete genome sequence of Y chromosome using flow cytometry, laser microdissection and magnetic streptavidin-beads. Sci Rep 2018; 8:9436. [PMID: 29930304 PMCID: PMC6013464 DOI: 10.1038/s41598-018-27819-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
This study is a comparison of the efficiency of three technologies used for Y chromosome capture and the next-generation sequencing (NGS) technologies applied for determining its whole sequence. Our main findings disclose that streptavidin-biotin magnetic particle-based capture methodology offers better and a deeper sequence coverage for Y chromosome capture, compared to chromosome sorting and microdissection procedures. Moreover, this methodology is less time consuming and the most selective for capturing only Y chromosomal material, in contrast with other methodologies that result in considerable background material from other, non-targeted chromosomes. NGS results compared between two platforms, NextSeq 500 and SOLID 5500xl, produce the same coverage results. This is the first study to explore a methodological comparison of Y chromosome capture and genetic analysis. Our results indicate an improved strategy for Y chromosome research with applications in several scientific fields where this chromosome plays an important role, such as forensics, medical sciences, molecular anthropology and cancer sciences.
Collapse
|
44
|
Zhabagin M, Sarkytbayeva A, Tazhigulova I, Yerezhepov D, Li S, Akilzhanov R, Yeralinov A, Sabitov Z, Akilzhanova A. Development of the Kazakhstan Y-chromosome haplotype reference database: analysis of 27 Y-STR in Kazakh population. Int J Legal Med 2018; 133:1029-1032. [DOI: 10.1007/s00414-018-1859-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
|
45
|
Xue Y, Tyler-Smith C. Past successes and future opportunities for the genetics of the human Y chromosome. Hum Genet 2018; 136:481-483. [PMID: 28456835 PMCID: PMC5418311 DOI: 10.1007/s00439-017-1806-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs, CB10 1SA, UK.
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs, CB10 1SA, UK.
| |
Collapse
|
46
|
Defining Y-SNP variation among the Flemish population (Western Europe) by full genome sequencing. Forensic Sci Int Genet 2017; 31:e12-e16. [PMID: 29089250 DOI: 10.1016/j.fsigen.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022]
Abstract
Y-chromosomal single nucleotide polymorphisms (Y-SNPs) represent a powerful tool in forensic research and casework, especially for inferring paternal ancestry of unknown perpetrators and unidentified bodies. However, the wealth of recently discovered Y-SNPs, the 'jungle' of different evolutionary lineage trees and nomenclatures, and the lack of population-wide data of many phylogenetically mapped Y-SNPs, limits the use of Y-SNPs in routine forensic approaches. Recently, a concise reference phylogeny of the human Y chromosome, the 'Minimal Reference Y-tree', was introduced aiming to provide a stable phylogeny with optimal global discrimination capacity by including the most resolving Y-SNPs. Here, we obtained a representative sample of 270 whole-genome sequences (WGS) to grasp the Y-SNP variation within the autochthonous Flemish population (Belgium, Western Europe) according to this reference Y-tree. The high quality of the Y-SNP calling was guaranteed for the WGS sample as well as its representativeness for the Flemish population based on the comparison of the main haplogroup frequencies with those from earlier studies on Flanders and the Netherlands. The 270 Flemish Y chromosomes were assigned to 98 different sub-haplogroups of the Minimal Reference Y-tree, showing its high potential of discrimination and confirming the spectrum of evolutionary lineages within Western Europe in general and within Flanders in particular. The full database with all Y-SNP calls of the Flemish sample is public available for future updates including forensic and population genetic studies. New initiatives to categorise Y-SNP variation in other populations according to the reference phylogeny of the Y chromosome are highly encouraged for forensic applications. Recommendations to realise such future population sample sets are discussed based on this study.
Collapse
|
47
|
Qian X, Hou J, Wang Z, Ye Y, Lang M, Gao T, Liu J, Hou Y. Next Generation Sequencing Plus (NGS+) with Y-chromosomal Markers for Forensic Pedigree Searches. Sci Rep 2017; 7:11324. [PMID: 28900279 PMCID: PMC5595879 DOI: 10.1038/s41598-017-11955-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022] Open
Abstract
There is high demand for forensic pedigree searches with Y-chromosome short tandem repeat (Y-STR) profiling in large-scale crime investigations. However, when two Y-STR haplotypes have a few mismatched loci, it is difficult to determine if they are from the same male lineage because of the high mutation rate of Y-STRs. Here we design a new strategy to handle cases in which none of pedigree samples shares identical Y-STR haplotype. We combine next generation sequencing (NGS), capillary electrophoresis and pyrosequencing under the term ‘NGS+’ for typing Y-STRs and Y-chromosomal single nucleotide polymorphisms (Y-SNPs). The high-resolution Y-SNP haplogroup and Y-STR haplotype can be obtained with NGS+. We further developed a new data-driven decision rule, FSindex, for estimating the likelihood for each retrieved pedigree. Our approach enables positive identification of pedigree from mismatched Y-STR haplotypes. It is envisaged that NGS+ will revolutionize forensic pedigree searches, especially when the person of interest was not recorded in forensic DNA database.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiayi Hou
- Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yi Ye
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Min Lang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tianzhen Gao
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Solé-Morata N, Villaescusa P, García-Fernández C, Font-Porterias N, Illescas MJ, Valverde L, Tassi F, Ghirotto S, Férec C, Rouault K, Jiménez-Moreno S, Martínez-Jarreta B, Pinheiro MF, Zarrabeitia MT, Carracedo Á, de Pancorbo MM, Calafell F. Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci Rep 2017; 7:7341. [PMID: 28779148 PMCID: PMC5544771 DOI: 10.1038/s41598-017-07710-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022] Open
Abstract
Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carla García-Fernández
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Neus Font-Porterias
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - María José Illescas
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Claude Férec
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France.,Université de Bretagne Occidentale, Brest, France.,Etablissement Français du Sang-Bretagne, Brest, France
| | - Karen Rouault
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France
| | - Susana Jiménez-Moreno
- Forensic and Legal Medicine Area, Department of Pathology and Surgery, University Miguel Hernández, Elche, Spain
| | | | - Maria Fátima Pinheiro
- Forensic Genetics Department, National Institute of Legal Medicine and Forensic Sciences, Porto, Portugal
| | | | - Ángel Carracedo
- Genomic Medicine Group, CIBERER- University of Santiago de Compostela, Galician Foundation of Genomic Medicine (SERGAS), Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
49
|
Larmuseau MHD, Claerhout S, Gruyters L, Nivelle K, Vandenbosch M, Peeters A, van den Berg P, Wenseleers T, Decorte R. Genetic-genealogy approach reveals low rate of extrapair paternity in historical Dutch populations. Am J Hum Biol 2017; 29. [PMID: 28742271 DOI: 10.1002/ajhb.23046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/01/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Evolutionary theory has shown that seeking out extrapair paternity (EPP) can be a viable reproductive strategy for both sexes in pair-bonded species, also in humans. As yet, estimates of the contemporary or historical EPP rate in human population are still rare. In the present study, we estimated the historical EPP rate in the Dutch population over the last 400 years and compared the rate with those obtained for other human populations to determine the evolutionary, cultural, and socio-demographic factors that influence human cuckoldry behavior. METHODS We estimated the historical EPP rate for the Dutch population via the "genealogical pair method", in which the EPP rate is derived from Y-chromosome mismatches between pairs of individuals that, based on genealogical evidence, share a common paternal ancestor. RESULTS Based on the analysis of 68 representative genealogical pairs, separated by a total of 1013 fertilization events, we estimated that the historical EPP rate for the Dutch population over the last 400 years was 0.96% per generation (95% confidence interval 0.46%-1.76%). CONCLUSION The Dutch EPP rate fits perfectly within the range reported for other contemporary and historical populations in Western Europe and was highly congruent with that estimated for neighboring Flanders, despite the socio-economic and religious differences between both populations. The estimated low EPP rate challenges the "dual mating strategy hypothesis" that states that women could obtain fitness benefits by securing investment from one man while cuckolding him to obtain good genes from an affair partner.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Sofie Claerhout
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Leen Gruyters
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Kelly Nivelle
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Michiel Vandenbosch
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Anke Peeters
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Pieter van den Berg
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ronny Decorte
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium.,Laboratory of Forensic genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Moray N, Pink KE, Borry P, Larmuseau MHD. Paternity testing under the cloak of recreational genetics. Eur J Hum Genet 2017; 25:768-770. [PMID: 28272533 PMCID: PMC5477360 DOI: 10.1038/ejhg.2017.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Direct-to-consumer (DTC) internet companies are selling widely advertised and highly popular genetic ancestry tests to the broad public. These tests are often classified as falling within the scope of so-called 'recreational genetics', but little is known about the impact of using these services. In this study, a particular focus is whether minors (and under what conditions) should be able to participate in the use of these DTC tests. Current ancestry tests are easily able to reveal whether participants are related and can, therefore, also reveal misattributed paternity, with implications for the minors and adults involved in the testing. We analysed the publicly available privacy policies and terms of services of 43 DTC genetic ancestry companies to assess whether minors are able to participate in testing DTC genetic ancestry, and also whether and how companies ethically account for the potential of paternity inference. Our results indicated that the majority of DTC genetic ancestry testing companies do not specifically address whether minors are able to participate in testing. Furthermore, the majority of the policies and terms of services fail to mention the vulnerability of minors and family members in receiving unexpected information, in particular, in relation to (misattributed) paternity. Therefore, recreational genetics carries both the risk of unintentionally revealing misidentified paternity, and also the risk that fathers will deliberately use these services to test their children's paternity without revealing their intentions to the mother or any other third party.
Collapse
Affiliation(s)
- Nathalie Moray
- Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium
- AZ Maria Middelares, Gent, Belgium
| | - Katherina E Pink
- Family and Population Studies, Centre of Sociological Research, KU Leuven, Leuven, Belgium
- Faculty of Life Sciences, Department of Anthropology, University of Vienna, Vienna, Austria
| | - Pascal Borry
- Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium
- Leuven Institute for Genomics and Society (LIGAS), KU Leuven, Leuven, Belgium
| | - Maarten HD Larmuseau
- Leuven Institute for Genomics and Society (LIGAS), KU Leuven, Leuven, Belgium
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|