1
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
2
|
Liu Z, Sui A, Wang S, Cui L, Xin Q, Zhang R, Han Y, Shao L, Zhao X. Double synonymous mutations in exon 9 of the Cullin3 gene restore exon inclusion by abolishing hnRNPs inhibition. Hum Mol Genet 2022; 31:4006-4018. [PMID: 35796549 DOI: 10.1093/hmg/ddac148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
All mutations in exon 9 of the Cullin3 gene associated with pseudohypoaldosteronism type II (PHA II) contribute to exon skipping to different degrees, but the specific molecular mechanism of this aberrant splicing is still unclear. The aims of this study were to investigate the regulatory mechanism underlying two synonymous splicing events, c.1221A > G (p. Glu407Glu) and c.1236G > A (p. Leu412Leu), and to discover a therapeutic strategy for correcting this aberrant splicing by targeting potential regulatory sites. Through a series of RNA pulldown, silver staining, western blotting, siRNA knockdown, in vitro overexpression and single or double site-directed mutagenesis experiments, we first explored the pathogenesis of exon 9 skipping caused by mutations in the CUL3 gene and verified that the main splicing regulators associated with the synonymous c.1221A > G and c.1236G > A mutations were heterogeneous nuclear ribonucleoproteins (hnRNPs). In addition, we verified that introducing another synonymous mutation, c.1224A > G (A18G), significantly rescued the abnormal splicing caused by c.1221A > G and c.1236G > A, highlighting the therapeutic potential for the treatment of PHA II.
Collapse
Affiliation(s)
- Zhiying Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China.,Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China
| | - Aihua Sui
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China.,Department of Dermatology, Peking University First Hospital, Beijing, 100034, China
| | - Li Cui
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Qing Xin
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China.,Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China
| | - Yue Han
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| |
Collapse
|
3
|
Kataoka N, Matsumoto E, Masaki S. Mechanistic Insights of Aberrant Splicing with Splicing Factor Mutations Found in Myelodysplastic Syndromes. Int J Mol Sci 2021; 22:ijms22157789. [PMID: 34360561 PMCID: PMC8346168 DOI: 10.3390/ijms22157789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is an essential process for gene expression in higher eukaryotes, which requires a high order of accuracy. Mutations in splicing factors or regulatory elements in pre-mRNAs often result in many human diseases. Myelodysplastic syndrome (MDS) is a heterogeneous group of chronic myeloid neoplasms characterized by many symptoms and a high risk of progression to acute myeloid leukemia. Recent findings indicate that mutations in splicing factors represent a novel class of driver mutations in human cancers and affect about 50% of Myelodysplastic syndrome (MDS) patients. Somatic mutations in MDS patients are frequently found in genes SF3B1, SRSF2, U2AF1, and ZRSR2. Interestingly, they are involved in the recognition of 3' splice sites and exons. It has been reported that mutations in these splicing regulators result in aberrant splicing of many genes. In this review article, we first describe molecular mechanism of pre-mRNA splicing as an introduction and mainly focus on those four splicing factors to describe their mutations and their associated aberrant splicing patterns.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Correspondence: ; Tel.: +81-3-5841-5372; Fax: +81-3-5841-8014
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - So Masaki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan;
| |
Collapse
|
4
|
Okada N, Oshima K, Iwasaki Y, Maruko A, Matsumura K, Iioka E, Vu TD, Fujitsuka N, Nishi A, Sugiyama A, Nishiyama M, Kaneko A, Mizoguchi K, Yamamoto M, Nishimura S. Intron retention as a new pre-symptomatic marker of aging and its recovery to the normal state by a traditional Japanese multi-herbal medicine. Gene 2021; 794:145752. [PMID: 34082065 DOI: 10.1016/j.gene.2021.145752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. Using klotho mice at the pre-symptomatic state, we discovered that retained-introns accumulated in several organs including the liver and that among these retained introns in the liver a subset was recovered to the normal state by a Japanese traditional herbal medicine. This is the first report of IR recovery by a medicine. IR-recovered genes fell into two categories: those involved in liver-specific metabolism and in splicing. Metabolome analysis of the liver showed that the klotho mice were under starvation stress. In addition, our differentially expressed gene analysis showed that liver metabolism was actually recovered by the herbal medicine at the transcriptional level. By analogy with the widespread accumulation of intron-retained pre-mRNAs induced by heat shock stress, we propose a model in which retained-introns in klotho mice were induced by an aging stress and in which this medicine-related IR recovery is indicative of the actual recovery of liver-specific metabolic function to the healthy state. Accumulation of retained-introns was also observed at the pre-symptomatic state of aging in wild-type mice and may be an excellent marker for this state in general.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Yuki Iwasaki
- Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Kenya Matsumura
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Erica Iioka
- Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Trieu-Duc Vu
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Aiko Sugiyama
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Mitsue Nishiyama
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Atsushi Kaneko
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Research Laboratories, Tsumura & CO., 3586 Yoshiwara, Ami-machi, Ibaraki 300-1192, Japan
| | - Susumu Nishimura
- Foundation for Advancement of International Science, 3-24-16 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| |
Collapse
|
5
|
Nakura T, Ozoe A, Narita Y, Matsuo M, Hakuno F, Kataoka N, Takahashi SI. Rbfox2 mediates exon 11 inclusion in insulin receptor pre-mRNA splicing in hepatoma cells. Biochimie 2021; 187:25-32. [PMID: 34022289 DOI: 10.1016/j.biochi.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022]
Abstract
Insulin receptor (IR) pre-mRNA undergoes alternative splicing that produces two isoforms, IR-A and IR-B. The ratio of IR-A to IR-B varies among tissues, which strongly suggests that IR mRNA alternative splicing is regulated in a tissue-specific manner. However, the precise molecular mechanism for IR alternative splicing remains to be elucidated, especially in liver. In this study, we have analyzed IR alternative splicing mechanism by preparing a mini-gene splicing reporter with rat genomic DNA. The splicing reporter that contains exon 11 and its flanking intronic sequences could reproduce alternative splicing pattern in rat hepatoma H4IIE cells. Introducing several deletions in introns of the reporter revealed that intron 11 contains the region near exon 11 essential to promote exon 11 inclusion. This region contains an UGCAUG sequence, a specific binding site for the Rbfox splicing regulator, and mutation in this sequence results in exon 11 skipping. Furthermore, RbFox2 knockdown in H4IIE cells enhanced exon 11 skipping of endogenous IR pre-mRNA. Lastly mutations in the SRSF3 binding site of exon11 together with the Rbfox2 binding site completely abolished exon 11 inclusion with a mini-gene reporter pre-mRNA. Our results indicate that RbFox2 and SRSF3 proteins mediate exon 11 inclusion in rat hepatoma cells.
Collapse
Affiliation(s)
- Takahito Nakura
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Narita
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kataoka
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan.
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
7
|
Kim Guisbert KS, Mossiah I, Guisbert E. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology. Int J Mol Sci 2020; 21:ijms21249641. [PMID: 33348896 PMCID: PMC7766730 DOI: 10.3390/ijms21249641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
SF3B1 is a core component of the U2 spliceosome that is frequently mutated in cancer. We have previously shown that titrating the activity of SF3B1, using the inhibitor pladienolide B (PB), affects distinct steps of the heat shock response (HSR). Here, we identify other genes that are sensitive to different levels of SF3B1 (5 vs. 100 nM PB) using RNA sequencing. Significant changes to mRNA splicing were identified at both low PB and high PB concentrations. Changes in expression were also identified in the absence of alternative splicing, suggesting that SF3B1 influences other gene expression pathways. Surprisingly, gene expression changes identified in low PB are not predictive of changes in high PB. Specific pathways were identified with differential sensitivity to PB concentration, including nonsense-mediated decay and protein-folding homeostasis, both of which were validated using independent reporter constructs. Strikingly, cells exposed to low PB displayed enhanced protein-folding capacity relative to untreated cells. These data reveal that the transcriptome is exquisitely sensitive to SF3B1 and suggests that the activity of SF3B1 is finely regulated to coordinate mRNA splicing, gene expression and cellular physiology.
Collapse
|
8
|
Mittwollen R, Wohlfart S, Park J, Grosch E, Has C, Hohenester E, Schneider H, Hammersen J. Aberrant splicing as potential modifier of the phenotype of junctional epidermolysis bullosa. J Eur Acad Dermatol Venereol 2020; 34:2127-2134. [PMID: 32124492 DOI: 10.1111/jdv.16332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND A lack or dysfunction of the anchoring protein laminin-332 in the basement membrane leads to the skin blistering disorder junctional epidermolysis bullosa (JEB). The mutation c.628G>A in the gene LAMB3 encoding the laminin β3-chain is associated with generalized intermediate JEB; it may introduce an amino acid substitution (p.Glu210Lys) or disrupt splicing. OBJECTIVE This retrospective study aimed at determining the effects of aberrant splicing on the JEB phenotype. METHODS LAMB3 transcription was analysed in two siblings compound heterozygous for the LAMB3 mutations p.Glu210Lys and p.Arg635* with a diverging JEB phenotype from late childhood on. Laminin-332 levels in skin sections and in cultured keratinocytes were investigated by immunofluorescence staining. Real-time PCR was used to quantify LAMB3 expression in keratinocytes. RNA splice variants were identified by subcloning of a LAMB3 cDNA fraction and subsequent DNA sequencing. Structural models of laminin-332 helped to assess the impact of certain mutations on laminin-332 folding. RESULTS Both siblings showed diminished LAMB3 expression. Laminin-332 was equally reduced in skin sections obtained during infancy but differed in keratinocytes isolated during adolescence. Although aberrant LAMB3 splicing with 26 variants was detected in both patients, splicing differed significantly: the full-length LAMB3 transcript harbouring the p.Glu210Lys mutation was found more often in the patient affected less severely (14/108 vs. 5/106 clones; P = 0.03). Structural modelling predicted that several deletions in LAMB3, but not the point mutation p.Glu210Lys, have an effect on laminin-332 folding and secretion. CONCLUSIONS Differential LAMB3 mRNA splicing in the patients may explain the disparate JEB phenotype. By elucidating the regulation of laminin-332 gene expression, these findings may contribute to the development of therapeutic strategies for JEB and might help to understand phenotype modification by splice-site mutations in other hereditary diseases.
Collapse
Affiliation(s)
- R Mittwollen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - S Wohlfart
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - J Park
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - E Grosch
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - E Hohenester
- Department of Life Sciences, Imperial College London, London, UK
| | - H Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - J Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Oshiquiri LH, Gomes SL, Georg RC. Blastocladiella emersonii spliceosome is regulated in response to the splicing inhibition caused by the metals cadmium, cobalt and manganese. Fungal Biol 2020; 124:468-474. [PMID: 32389309 DOI: 10.1016/j.funbio.2020.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
Abstract
Blastocladiella emersonii is an aquatic fungus of the phylum Blastocladiomycota, localized near the base of the fungal tree. Previous studies have shown that B. emersonii responds to heat shock and cadmium exposure inducing the transcription of a high number of genes. EST sequencing from heat shocked and cadmium exposed B. emersonii cells has shown that exposure to cadmium causes strong splicing inhibition. Despite the knowledge about splicing inhibition by cadmium, it is still unclear if other metal contaminants can cause the same response. In the present study, we have demonstrated that the effect of cadmium exposure on splicing inhibition is much stronger than that of other divalent metals such as cobalt and manganese. Data presented here also indicate that intron retention occurs randomly among the fungal transcripts, as verified by analyzing differently affected transcripts. In addition, we identified in the genome of B. emersonii the genes encoding the snRNA splicing components U1, U2, U4, U5 and U6 and observed that spliceosome snRNAs are upregulated in the presence of metals, in particular snRNA U1 in cells under cadmium exposure. This observation suggests that snRNA upregulation might be a defense of the fungal cell against the metal stress condition.
Collapse
Affiliation(s)
- Letícia Harumi Oshiquiri
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Suely Lopes Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raphaela Castro Georg
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Increasing the Genetic Diagnosis Yield in Inherited Retinal Dystrophies: Assigning Pathogenicity to Novel Non-canonical Splice Site Variants. Genes (Basel) 2020; 11:genes11040378. [PMID: 32244552 PMCID: PMC7231145 DOI: 10.3390/genes11040378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022] Open
Abstract
Aims: We aimed to validate the pathogenicity of genetic variants identified in inherited retinal dystrophy (IRD) patients, which were located in non-canonical splice sites (NCSS). Methods: After next generation sequencing (NGS) analysis (target gene panels or whole exome sequencing (WES)), NCSS variants were prioritized according to in silico predictions. In vivo and in vitro functional tests were used to validate their pathogenicity. Results: Four novel NCSS variants have been identified. They are located in intron 33 and 34 of ABCA4 (c.4774-9G>A and c.4849-8C>G, respectively), intron 2 of POC1B (c.101-3T>G) and intron 3 of RP2 (c.884-14G>A). Functional analysis detected different aberrant splicing events, including intron retention, exon skipping and intronic nucleotide addition, whose molecular effect was either the disruption or the elongation of the open reading frame of the corresponding gene. Conclusions: Our data increase the genetic diagnostic yield of IRD patients and expand the landscape of pathogenic variants, which will have an impact on the genotype–phenotype correlations and allow patients to opt for the emerging gene and cell therapies.
Collapse
|
11
|
Masaki S, Kabuto T, Suzuki K, Kataoka N. Multiple nuclear localization sequences in SRSF4 protein. Genes Cells 2020; 25:327-333. [PMID: 32050040 DOI: 10.1111/gtc.12756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
SRSF4 is one of the members of serine-/arginine (SR)-rich protein family involved in both constitutive and alternative splicing. SRSF4 is localized in the nucleus with speckled pattern, but its nuclear localization signal was not determined. Here, we have identified nuclear localization signals (NLSs) of SRSF4 by using a pyruvate kinase fusion system. As expected, arginine-/serine (RS)-rich domain of SRSF4 confers nuclear localization activity when it is fused to PK protein. We then further delineated the minimum sequences for nuclear localization in RS domain of SRSF4. Surprisingly, RS-rich region does not always have a nuclear localization activity. In addition, basic amino acid stretches that resemble to classical-type NLSs were identified. These results strongly suggest that SRSF4 protein uses two different nuclear import pathways with multiple NLSs in RS domain.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Takafumi Kabuto
- Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan.,Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Chauhan P, Gupta R, Jain BP, Pandey S, Goswami SK. Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 2019; 44:637-650. [PMID: 31773824 DOI: 10.1002/cbin.11264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
SG2NA, a WD40 repeat protein of the Striatin subfamily, has four splicing and one messenger RNA edit variants. It is fast emerging as a scaffold for multimeric signaling complexes with roles in tissue development and disease. The green fluorescent protein (GFP)-tagged variants of SG2NA were ectopically expressed in NIH3T3 cells and their modulation by serum and GSK3β-ERK signaling were monitored. The 87, 78, and 35 kDa variants showed a biphasic modulation by serum till 24 h but the 52 kDa variant remained largely unresponsive. Inhibition of phosphatases by okadaic acid increased the levels of the endogenous 78 kDa and the ectopically expressed GFP-tagged 87 and 78 kDa SG2NAs. Contrastingly, okadaic acid treatment reduced the level of GFP-tagged 35 kDa SG2NA, suggesting differential modes of their stability through phosphorylation-dephosphorylation. The inhibition of GSK3β by LiCl showed a gradual decrease in the levels of 78 kDa. In the case of the other variants viz, GFP-tagged 35, 52, and 87 kDa, inhibition of GSK3β caused an initial increase followed by a decrease with a subtle difference in kinetics and intensities. Similar results were also seen upon inhibition of GSK3β by small interfering RNA. All the variants showed an increase followed by a decrease upon inhibition of extracellular-signal-regulated-kinase (ERK). These variants are localized in the plasma membrane, endoplasmic reticulum, mitochondria, and the nucleus with different propensities and no discernable subcellular distribution was seen upon stimulation by serum and the inhibition of phosphatases, GSK3β, and ERK. Taken together, the variants of SG2NA are modulated by the kinase-phosphatase network in a similar but characteristic manner.
Collapse
Affiliation(s)
- Pooja Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, POB 12272, Jerusalem, 91120, Israel
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,APSGMNS Govt PG College, Kawardha, Chhatishgarh
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| |
Collapse
|
13
|
Kataoka N, Mayeda A, Ohno K. Editorial: RNA Diseases in Humans-From Fundamental Research to Therapeutic Applications. Front Mol Biosci 2019; 6:53. [PMID: 31380391 PMCID: PMC6646588 DOI: 10.3389/fmolb.2019.00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Nakayama K, Kataoka N. Regulation of Gene Expression under Hypoxic Conditions. Int J Mol Sci 2019; 20:ijms20133278. [PMID: 31277312 PMCID: PMC6651685 DOI: 10.3390/ijms20133278] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Eukaryotes are often subjected to different kinds of stress. In order to adjust to such circumstances, eukaryotes activate stress–response pathways and regulate gene expression. Eukaryotic gene expression consists of many different steps, including transcription, RNA processing, RNA transport, and translation. In this review article, we focus on both transcriptional and post-transcriptional regulations of gene expression under hypoxic conditions. In the first part of the review, transcriptional regulations mediated by various transcription factors including Hypoxia-Inducible Factors (HIFs) are described. In the second part, we present RNA splicing regulations under hypoxic conditions, which are mediated by splicing factors and their kinases. This work summarizes and discusses the emerging studies of those two gene expression machineries under hypoxic conditions.
Collapse
Affiliation(s)
- Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| | - Naoyuki Kataoka
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
15
|
Zhu Y, Deng H, Chen X, Li H, Yang C, Li S, Pan X, Tian S, Feng S, Tan X, Matsuo M, Zhang Z. Skipping of an exon with a nonsense mutation in the DMD gene is induced by the conversion of a splicing enhancer to a splicing silencer. Hum Genet 2019; 138:771-785. [DOI: 10.1007/s00439-019-02036-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023]
|
16
|
Masaki S, Ikeda S, Hata A, Shiozawa Y, Kon A, Ogawa S, Suzuki K, Hakuno F, Takahashi SI, Kataoka N. Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences. Front Genet 2019; 10:338. [PMID: 31040863 PMCID: PMC6476956 DOI: 10.3389/fgene.2019.00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
Serine/arginine-rich splicing factor 2 (SRSF2) is a member of the SR protein family that is involved in both constitutive and alternative mRNA splicing. Mutations in SRSF2 gene are frequently reported in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is imperative to understand how these mutations affect SRSF2-mediated splicing and cause MDS. In this study, we characterized MDS-associated SRSF2 mutants (P95H, P95L, and P95R). We found that those mutants and wild-type SRSF2 proteins showed nuclear localization in HeLa cells. In vitro splicing reaction also revealed that mutant proteins associated with both precursor and spliced mRNAs, suggesting that the mutants directly participate in splicing. We established the human myeloid leukemia K562 cell lines that stably expressed myc-tagged wild-type or mutant SRSF2 proteins, and then performed RNA-sequence to analyze the splicing pattern of each cell line. The results revealed that both wild-type and mutants affected splicing of approximately 3,000 genes. Although splice site sequences adjacent to the affected exons showed no significant difference compared to the total exons, exonic motif analyses with both inclusion- and exclusion-enhanced exons demonstrated that wild-type and mutants have different binding sequences in exons. These results indicate that mutations of SRSF2 in MDS change binding properties of SRSF2 to exonic motifs and this causes aberrant splicing.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Shun Ikeda
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Hata
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Flores SK, Cheng Z, Jasper AM, Natori K, Okamoto T, Tanabe A, Gotoh K, Shibata H, Sakurai A, Nakai T, Wang X, Zethoven M, Balachander S, Aita Y, Young W, Zheng S, Takekoshi K, Nakamura E, Tothill RW, Aguiar RCT, Dahia PLM. A synonymous VHL variant in exon 2 confers susceptibility to familial pheochromocytoma and von Hippel-Lindau disease. J Clin Endocrinol Metab 2019; 104:3826-3834. [PMID: 30946460 PMCID: PMC6660912 DOI: 10.1210/jc.2019-00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT von Hippel-Lindau disease, comprising renal cancer, hemangioblastoma and/or pheochromocytoma (PHEO) is caused by missense or truncating variants of the VHL tumor suppressor gene, which is involved in degradation of hypoxia inducible factors (HIFs). However, the role of synonymous VHL variants in the disease is unclear. OBJECTIVE We evaluated a synonymous VHL variant in patients with familial PHEO or VHL disease without a detectable pathogenic VHL mutation. DESIGN We performed genetic and transcriptional analyses of leukocytes and/or tumors from affected and unaffected individuals and evaluated VHL splicing in existing cancer databases. RESULTS We identified a synonymous VHL variant(c.414A>G, p.Pro138Pro) as the driver event in five independent individuals/families with PHEOs or VHL syndrome. This variant promotes exon 2 skipping and, hence, abolishes expression of the full-length VHL transcript. Exon 2 spans the HIF binding domain, required for HIF degradation by VHL. Accordingly, PHEOs carrying this variant display HIF hyperactivation typical of VHL loss. Moreover, other exon 2 VHL variants from the TCGA pan-cancer datasets are biased toward expression of a VHL transcript that excludes this exon, supporting a broader impact of this spliced variant. CONCLUSION A recurrent synonymous VHL variant (c.414A>G, p.Pro138Pro) confers susceptibility to PHEO and VHL disease through splice disruption, leading to VHL dysfunction. This finding indicates that certain synonymous VHL variants may be clinically relevant and should be considered in genetic testing and surveillance settings. The observation that other coding VHL variants can exclude exon 2 suggests that dysregulated splicing may be an underappreciated mechanism in VHL-mediated tumorigenesis.
Collapse
Affiliation(s)
- Shahida K Flores
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas San Antonio, San Antonio, Texas
| | - Ziming Cheng
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas San Antonio, San Antonio, Texas
| | - Angela M Jasper
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas San Antonio, San Antonio, Texas
| | - Keiko Natori
- Department of Breast and Endocrine Surgery, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Okamoto
- Department of Breast and Endocrine Surgery, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Koro Gotoh
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Akihiro Sakurai
- Department of Medical Genetics and Genomics, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Takuya Nakai
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Xiaojing Wang
- Greehey Children’s Cancer Research Institute, University of Texas San Antonio, San Antonio, Texas
| | - Magnus Zethoven
- Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shiva Balachander
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yuichi Aita
- Division of Sports Medicine and Laboratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - William Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas San Antonio, San Antonio, Texas
| | - Kazuhiro Takekoshi
- Division of Sports Medicine and Laboratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eijiro Nakamura
- DSK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Richard W Tothill
- Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ricardo C T Aguiar
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas San Antonio, San Antonio, Texas
- Greehey Children’s Cancer Research Institute, University of Texas San Antonio, San Antonio, Texas
- Audie Murphy VA Hospital, San Antonio, South Texas Veterans Health Care System, San Antonio, Texas
| | - Patricia L M Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas San Antonio, San Antonio, Texas
- Greehey Children’s Cancer Research Institute, University of Texas San Antonio, San Antonio, Texas
- Correspondence and Reprint Requests: Patricia L. M. Dahia, MD, PhD, Department of Medicine, University of Texas Health San Antonio, Mail Code 7880, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900. E-mail:
| |
Collapse
|
18
|
DeNicola AB, Tang Y. Therapeutic approaches to treat human spliceosomal diseases. Curr Opin Biotechnol 2019; 60:72-81. [PMID: 30772756 DOI: 10.1016/j.copbio.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Mutated RNA splicing machinery drives many human diseases and is a promising therapeutic target for engineering and small molecule therapy. In the case of mutations in individual genes that cause them to be incorrectly spliced, engineered splicing factors can be introduced to correct splicing of these aberrant transcripts and reduce the effects of the disease phenotype. Mutations that occur in certain splicing factor genes themselves have been implicated in many cancers, particularly myelodysplastic syndromes. Small molecules that target splicing factors have been developed as therapies to preferentially induce apoptosis in these cancer cells. Specifically, drugs targeting the splicing factor SF3B1 have led to recent clinical trials. Here, we review the role of alternative splicing in disease, approaches to rescue incorrect splicing using engineered splicing factors, and small molecule splicing inhibitors developed to treat hematological cancers.
Collapse
Affiliation(s)
- Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
19
|
Abstract
Alport syndrome (AS) is a progressive hereditary renal disease that is characterized by sensorineural hearing loss and ocular abnormalities. It is divided into three modes of inheritance, namely, X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, while ADAS and ARAS are caused by those in COL4A3/COL4A4. Diagnosis is conventionally made pathologically, but recent advances in comprehensive genetic analysis have enabled genetic testing to be performed for the diagnosis of AS as first-line diagnosis. Because of these advances, substantial information about the genetics of AS has been obtained and the genetic background of this disease has been revealed, including genotype-phenotype correlations and mechanisms of onset in some male XLAS cases that lead to milder phenotypes of late-onset end-stage renal disease (ESRD). There is currently no radical therapy for AS and treatment is only performed to delay progression to ESRD using nephron-protective drugs. Angiotensin-converting enzyme inhibitors can remarkably delay the development of ESRD. Recently, some new drugs for this disease have entered clinical trials or been developed in laboratories. In this article, we review the diagnostic strategy, genotype-phenotype correlation, mechanisms of onset of milder phenotypes, and treatment of AS, among others.
Collapse
|
20
|
Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, Kaito H, Kanemoto K, Kobayashi A, Tanaka E, Tanaka K, Hama T, Fujimaru R, Miwa S, Yamamura T, Yamamura N, Horinouchi T, Minamikawa S, Nagata M, Iijima K. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 2018; 23:158-168. [PMID: 30128941 PMCID: PMC6510800 DOI: 10.1007/s10157-018-1629-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
Alport syndrome (AS) is a progressive hereditary renal disease that is characterized by sensorineural hearing loss and ocular abnormalities. It is divided into three modes of inheritance, namely, X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, while ADAS and ARAS are caused by those in COL4A3/COL4A4. Diagnosis is conventionally made pathologically, but recent advances in comprehensive genetic analysis have enabled genetic testing to be performed for the diagnosis of AS as first-line diagnosis. Because of these advances, substantial information about the genetics of AS has been obtained and the genetic background of this disease has been revealed, including genotype–phenotype correlations and mechanisms of onset in some male XLAS cases that lead to milder phenotypes of late-onset end-stage renal disease (ESRD). There is currently no radical therapy for AS and treatment is only performed to delay progression to ESRD using nephron-protective drugs. Angiotensin-converting enzyme inhibitors can remarkably delay the development of ESRD. Recently, some new drugs for this disease have entered clinical trials or been developed in laboratories. In this article, we review the diagnostic strategy, genotype–phenotype correlation, mechanisms of onset of milder phenotypes, and treatment of AS, among others.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yoshifusa Abe
- Children Medical Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Okada
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Katsuyoshi Kanemoto
- Department of Pediatrics, National Hospital Organization Chiba-East Hospital, Chiba, Japan
| | - Anna Kobayashi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Eriko Tanaka
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Tanaka
- Department of Nephrology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Taketsugu Hama
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Rika Fujimaru
- Department of Pediatrics, Osaka City General Hospital, Izumi, Japan
| | - Saori Miwa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Natsusmi Yamamura
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
21
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|