1
|
薛 恩, 陈 曦, 王 雪, 王 斯, 王 梦, 李 劲, 秦 雪, 武 轶, 李 楠, 李 静, 周 治, 朱 洪, 吴 涛, 陈 大, 胡 永. [Single nucleotide polymorphism heritability of non-syndromic cleft lip with or without cleft palate in Chinese population]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:775-780. [PMID: 39397453 PMCID: PMC11480541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To delve into the intricate relationship between common genetic variations across the entire genome and the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P). METHODS Utilizing summary statistics data from genome-wide association studies (GWAS), a thorough investigation to evaluate the impact of common variations on the genome were undertook. This involved assessing single nucleotide polymorphism (SNP) heritability across the entire genome, as well as within specific genomic regions. To ensure the robustness of our analysis, stringent quality control measures were applied to the GWAS summary statistics data. Criteria for inclusion encompassed the absence of missing values, a minor allele frequency ≥1%, P-values falling within the range of 0 to 1, and clear SNP strand orientation. SNP meeting these stringent criteria were then meticulously included in our analysis. The SNP heritability of NSCL/P was calculated using linkage disequilibrium score regression. Additionally, hierarchical linkage disequilibrium score regression to partition SNP heritability within coding regions, promoters, introns, enhancers, and super enhancers were employed, and the enrichment levels within different genomic regions using LDSC (v1.0.1) software were further elucidated. RESULTS Our study drew upon GWAS summary statistics data obtained from 806 NSCL/P trios, comprising a total of 2 418 individuals from the Chinese population. Following rigorous quality control procedures, 490 593 out of 492 993 SNP were deemed suitable for inclusion in SNP heritability calculations. The observed SNP heritability of NSCL/P was 0.55 (95%CI: 0.28-0.82). Adjusting for the elevated disease pre-valence within our sample, the SNP heritability scaled down to 0.37 (95%CI: 0.19-0.55) based on the prevalence observed in the general Chinese population. Notably, our enrichment analysis unveiled significant enrichment of SNP heritability within enhancer regions (15.70, P=0.04) and super enhancer regions (3.18, P=0.03). CONCLUSION Our study sheds light on the intricate interplay between common genetic variations and the risk of NSCL/P in the Chinese population. By elucidating the SNP heritability landscape across different genomic regions, we contribute valuable insights into the genetic basis of NSCL/P. The significant enrichment of SNP heritability within enhancer and super enhancer regions underscores the potential role of these regulatory elements in shaping the genetic susceptibility to NSCL/P. This paves the way for further research aimed at uncovering novel genetic pathogenic factors underlying NSCL/P pathogenesis.
Collapse
Affiliation(s)
- 恩慈 薛
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 曦 陈
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 雪珩 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 斯悦 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 梦莹 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 劲 李
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 雪英 秦
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 轶群 武
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 楠 李
- 北京大学口腔医学院口腔颌面外科,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing 100081, China
| | - 静 李
- 北京大学口腔医学院儿童口腔科,北京 100081Department of Pediatric Dentistry, Peking University School of Stomatology, Beijing 100081, China
| | - 治波 周
- 北京大学口腔医学院口腔颌面外科,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing 100081, China
| | - 洪平 朱
- 北京大学口腔医学院口腔颌面外科,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing 100081, China
| | - 涛 吴
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 大方 陈
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 永华 胡
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
2
|
Kishore Bhat HH, Anehosur V, Upadya VH, Kumar N, Madhur V. Cephalometric analysis of parents of patients with cleft lip and/or palate. J Orofac Orthop 2024; 85:270-278. [PMID: 36477380 DOI: 10.1007/s00056-022-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cleft lip and/or palate (CL ± P) or isolated cleft palate (CP) are the most common congenital malformations of the face. Although there have been advances in prenatal diagnosis and the discovery of genetic markers, there has been no breakthrough in the identification of parents at risk of giving birth to a child with a cleft. AIMS To determine a possible phenotypic difference in the craniofacial morphology of parents of children with CL ± P and to investigate whether cephalometric analysis can help identify parents at risk of giving birth to a child with a cleft. METHODS Cephalometric data of 25 sets of parents having children with CL ± P were compared with that of 25 sets of parents of children without CL ± P. The study population was indigenous to North Karnataka. In all, 10 linear, 2 angular, and 5 triangular measurements were made on lateral cephalograms and compared using an unpaired t‑test. RESULTS The length of the posterior cranial base (S-Ba) in mothers was smaller in the study compared to the control group. Total facial height (N-Me) both in fathers and in the group with both parents, upper facial height in the group with both parents, and lower facial height (ANS-Me) in fathers was smaller in the study than in the control group. The area of the nasopharyngeal triangle (S-PNS-Ba) in mothers and that of the anterior maxillary triangle (S-N-A) in fathers was smaller in the study group than in the control group. CONCLUSION Parents of children with CL ± P showed variations in craniofacial morphology. Future research correlating cephalometric findings with genetic studies may indicate whether cephalometric analysis can be an adjunct to genetic tests for risk prediction among susceptible parents.
Collapse
Affiliation(s)
- H Hari Kishore Bhat
- Centre for Craniofacial Anomalies, Department of Oral and Maxillofacial Surgery, Yenepoya Dental College and Hospital, Yenepoya (Deemed to be University), Deralakatte, 575018, Mangalore, Karnataka, India.
| | - Venkatesh Anehosur
- Department of Oral and Maxillofacial Surgery, SDM College of Dental Sciences and Hospital, Sattur, Dharwad, Karnataka, India
| | - Varsha Haridas Upadya
- Department of Oral and Maxillofacial Surgery, Yenepoya Dental College and Hospital, Yenepoya (Deemed to be University), Deralakatte, 575018, Mangalore, Karnataka, India
| | - Niranjan Kumar
- Department of Plastic and Reconstructive Surgery, SDM College of Medical Sciences, Dharwad, Karnataka, India
| | - Vijayanand Madhur
- Department of Orthodontics and Dentofacial Orthopedics, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
| |
Collapse
|
3
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Dynamic enhancer landscapes in human craniofacial development. Nat Commun 2024; 15:2030. [PMID: 38448444 PMCID: PMC10917818 DOI: 10.1038/s41467-024-46396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, 3010, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Matthew J Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Octant Inc., Emeryville, CA, 94608, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
4
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Cell Type- and Tissue-specific Enhancers in Craniofacial Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546603. [PMID: 37425964 PMCID: PMC10327103 DOI: 10.1101/2023.06.26.546603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The genetic basis of craniofacial birth defects and general variation in human facial shape remains poorly understood. Distant-acting transcriptional enhancers are a major category of non-coding genome function and have been shown to control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development1-3. However, a lack of accurate maps of the genomic location and cell type-specific in vivo activities of all craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combined histone modification and chromatin accessibility profiling from different stages of human craniofacial development with single-cell analyses of the developing mouse face to create a comprehensive catalogue of the regulatory landscape of facial development at tissue- and single cell-resolution. In total, we identified approximately 14,000 enhancers across seven developmental stages from weeks 4 through 8 of human embryonic face development. We used transgenic mouse reporter assays to determine the in vivo activity patterns of human face enhancers predicted from these data. Across 16 in vivo validated human enhancers, we observed a rich diversity of craniofacial subregions in which these enhancers are active in vivo. To annotate the cell type specificities of human-mouse conserved enhancers, we performed single-cell RNA-seq and single-nucleus ATAC-seq of mouse craniofacial tissues from embryonic days e11.5 to e15.5. By integrating these data across species, we find that the majority (56%) of human craniofacial enhancers are functionally conserved in mice, providing cell type- and embryonic stage-resolved predictions of their in vivo activity profiles. Using retrospective analysis of known craniofacial enhancers in combination with single cell-resolved transgenic reporter assays, we demonstrate the utility of these data for predicting the in vivo cell type specificity of enhancers. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Laura E. Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Cailyn H. Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304
| | - Matthew J. Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA 94110
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E. Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Octant Inc., Emeryville, CA 94608, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
5
|
Zieger HK, Weinhold L, Schmidt A, Holtgrewe M, Juranek SA, Siewert A, Scheer AB, Thieme F, Mangold E, Ishorst N, Brand FU, Welzenbach J, Beule D, Paeschke K, Krawitz PM, Ludwig KU. Prioritization of non-coding elements involved in non-syndromic cleft lip with/without cleft palate through genome-wide analysis of de novo mutations. HGG ADVANCES 2023; 4:100166. [PMID: 36589413 PMCID: PMC9795529 DOI: 10.1016/j.xhgg.2022.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Non-syndromic cleft lip with/without cleft palate (nsCL/P) is a highly heritable facial disorder. To date, systematic investigations of the contribution of rare variants in non-coding regions to nsCL/P etiology are sparse. Here, we re-analyzed available whole-genome sequence (WGS) data from 211 European case-parent trios with nsCL/P and identified 13,522 de novo mutations (DNMs) in nsCL/P cases, 13,055 of which mapped to non-coding regions. We integrated these data with DNMs from a reference cohort, with results of previous genome-wide association studies (GWASs), and functional and epigenetic datasets of relevance to embryonic facial development. A significant enrichment of nsCL/P DNMs was observed at two GWAS risk loci (4q28.1 (p = 8 × 10-4) and 2p21 (p = 0.02)), suggesting a convergence of both common and rare variants at these loci. We also mapped the DNMs to 810 position weight matrices indicative of transcription factor (TF) binding, and quantified the effect of the allelic changes in silico. This revealed a nominally significant overrepresentation of DNMs (p = 0.037), and a stronger effect on binding strength, for DNMs located in the sequence of the core binding region of the TF Musculin (MSC). Notably, MSC is involved in facial muscle development, together with a set of nsCL/P genes located at GWAS loci. Supported by additional results from single-cell transcriptomic data and molecular binding assays, this suggests that variation in MSC binding sites contributes to nsCL/P etiology. Our study describes a set of approaches that can be applied to increase the added value of WGS data.
Collapse
Affiliation(s)
- Hanna K. Zieger
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn 53127, Germany
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Manuel Holtgrewe
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10117, Germany
| | - Stefan A. Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn 53127, Germany
| | - Anna Siewert
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Annika B. Scheer
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Frederic Thieme
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Nina Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Fabian U. Brand
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Welzenbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn 53127, Germany
| | - Peter M. Krawitz
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn 53127, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
6
|
Abstract
This chapter reviews the evidence of gene×environment interactions (G×E) in the etiology of orofacial cleft birth defects (OFCs), specifically cleft lip (CL), cleft palate (CP), and cleft lip with or without cleft palate (CL/P). We summarize the current state of our understanding of the genetic architecture of nonsyndromic OFCs and the evidence that maternal exposures during pregnancy influence risk of OFCs. Further, we present possible candidate gene pathways for these exposures including metabolism of folates, metabolism of retinoids, retinoic acid receptor signaling, aryl hydrocarbon receptor signaling, glucocorticoid receptor signaling, and biotransformation and transport. We review genes in these pathways with prior evidence of association with OFCs, genes with evidence from prior candidate gene G×E studies, and genes identified from genome-wide searches specifically for identifying G×E. Finally, we suggest future directions for G×E research in OFCs.
Collapse
Affiliation(s)
- Mary L Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States; Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Clinical and Translational Science Institute, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
7
|
Young JI, Slifer S, Hecht JT, Blanton SH. DNA Methylation Variation Is Identified in Monozygotic Twins Discordant for Non-syndromic Cleft Lip and Palate. Front Cell Dev Biol 2021; 9:656865. [PMID: 34055787 PMCID: PMC8149607 DOI: 10.3389/fcell.2021.656865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP) is the most common craniofacial birth defect. The etiology of NSCLP is complex with multiple genes and environmental factors playing causal roles. Although studies have identified numerous genetic markers associated with NSCLP, the role of epigenetic variation remains relatively unexplored. Because of their identical DNA sequences, monozygotic (MZ) twins discordant for NSCLP are an ideal model for examining the potential contribution of DNA methylation to non-syndromic orofacial clefting. In this study, we compared the patterns of whole genome DNA methylation in six MZ twin pairs discordant for NSCLP. Differentially methylated positions (DMPs) and regions (DMRs) were identified in NSCLP candidate genes, including differential methylation in MAFB and ZEB2 in two independent MZ twin pairs. In addition to DNA methylation differences in NSCLP candidate genes, we found common differential methylation in genes belonging to the Hippo signaling pathway, implicating this mechanosensory pathway in the etiology of NSCLP. The results of this novel approach using MZ twins discordant for NSCLP suggests that differential methylation is one mechanism contributing to NSCLP, meriting future studies on the role of DNA methylation in familial and sporadic NSCLP.
Collapse
Affiliation(s)
- Juan I. Young
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Susan Slifer
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline T. Hecht
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Susan H. Blanton
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
8
|
Hassan MG, Zaher AR, Athanasiou AE. How orthodontic research can be enriched and advanced by the novel and promising evolutions in biomedicine. J Orthod 2021; 48:288-294. [PMID: 33860691 DOI: 10.1177/14653125211006116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in developmental, molecular and cellular biology as well as biomedical technologies show a promising future for crossing the gap between biomedical basic sciences and clinical orthodontics. Orthodontic research shall utilise the advances and technologies in biomedical fields including genomics, molecular biology, bioinformatics and developmental biology. This review provides an update on the novel and promising evolutions in biomedicine and highlights their current and likely future implementation to orthodontic practice. Biotechnological opportunities in orthodontics and dentofacial orthopaedics are presented with regards to CRISPR technology, multi-omics sequencing, gene therapy, stem cells and regenerative medicine. Future orthodontic advances in terms of translational research are also discussed. Given the breadth of applications and the great number of questions that the presently available novel biomedical tools and techniques raise, their use may provide orthodontic research in the future with a great potential in understanding the aetiology of dentofacial deformities and malocclusions as well as in improving the practice of this clinical specialty.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Orthodontics, Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt
| | - Abbas R Zaher
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Athanasios E Athanasiou
- Department of Dentistry, School of Medicine, European University Cyprus, Nicosia, Cyprus.,Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Whole exome sequencing, a hypothesis-free approach to investigate recurrent early miscarriage. Reprod Biomed Online 2021; 42:789-798. [PMID: 33658156 DOI: 10.1016/j.rbmo.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/19/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
RESEARCH QUESTION Are there genetic determinants shared by unrelated women with unexplained recurrent early miscarriage (REM)? DESIGN Thirty REM cases and 30 controls were selected with extreme phenotype among women from Eastern Brittany (France), previously enrolled in an incident case-control study on thrombophilic mutations. Cases and controls were selected based on the number of early miscarriages or live births, respectively. Peripheral blood was collected for DNA extraction at initial visit. The burden of low-frequency variants in the coding part of the genes was compared using whole exome sequencing (WES). RESULTS Cases had 3 to 17 early miscarriages (20 cases: ≥5 previous losses). Controls had 1 to 4 live births (20 controls: ≥3 previous live births) and no miscarriages. WES data were available for 29 cases and 30 controls. A total of 209,387 variants were found (mean variant per patient: 59,073.05) with no difference between groups (P = 0.68). The top five most significantly associated genes were ABCA4, NFAM1, TCN2, AL078585.1 and EPS15. Previous studies suggest the involvement of vitamin B12 deficiency in REM. TCN2 encodes for vitamin B12 transporter into cells. Therefore, holotranscobalamin (active vitamin B12) was measured for both cases and controls (81.2 ± 32.1 versus 92.9 ± 34.3 pmol/l, respectively, P = 0.186). Five cases but no controls were below 50 pmol/l (P = 0.052). CONCLUSIONS This study highlights four new genes of interest in REM, some of which belong to known networks of genes involved in embryonic development (clathrin-mediated endocytosis and ciliary pathway). The study also confirms the involvement of TCN2 (vitamin B12 pathway) in the early first trimester of pregnancy.
Collapse
|