1
|
Kraoua L, Louati A, Ahmed SB, Abida N, Khemiri M, Menif K, Mrad R, Zaffran S, Jaouadi H. Homozygous TNNI3 frameshift variant in a consanguineous family with lethal infantile dilated cardiomyopathy. Mol Genet Genomic Med 2024; 12:e2486. [PMID: 38924380 PMCID: PMC11196996 DOI: 10.1002/mgg3.2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle, systolic dysfunction, and normal or reduced thickness of the left ventricular wall. It is a leading cause of heart failure and cardiac death at a young age. Cases with neonatal onset DCM were correlated with severe clinical presentation and poor prognosis. A monogenic molecular etiology accounts for nearly half of cases. FAMILY DESCRIPTION Here, we report a family with three deceased offspring at the age of 1 year old. The autopsy of the first deceased infant revealed a DCM. The second infant presented a DCM phenotype with a severely reduced Left Ventricular Ejection Fraction (LVEF) of 10%. Similarly, the third infant showed a severe DCM phenotype with LVEF of 30% as well, in addition to eccentric mitral insufficiency. RESULTS Exome sequencing was performed for the trio (the second deceased infant and her parents). Data analysis following the autosomal dominant and recessive patterns of inheritance was carried out along with a mitochondrial pathways-based analysis. We identified a homozygous frameshift variant in the TNNI3 gene (c.204delG; p.(Arg69AlafsTer8)). This variant has been recently reported in the ClinVar database in association with cardiac phenotypes as pathogenic or likely pathogenic and classified as pathogenic according to ACMG. CONCLUSION Genetic counseling was provided for the family and a prenatal diagnosis of choronic villus was proposed in the absence of pre-implantation genetic diagnosis possibilities. Our study expands the case series of early-onset DCM patients with a protein-truncating variant in the TNNI3 gene by reporting three affected infant siblings.
Collapse
Affiliation(s)
- Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Assaad Louati
- Pediatric Intensive Care UnitBechir Hamza Children's Hospital in TunisTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Sarra Ben Ahmed
- Pediatric “A” Department of the Bechir Hamza Children's Hospital, Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Nesrine Abida
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Monia Khemiri
- Pediatric “A” Department of the Bechir Hamza Children's Hospital, Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Khaled Menif
- Pediatric Intensive Care UnitBechir Hamza Children's Hospital in TunisTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Stéphane Zaffran
- Aix Marseille UnivINSERM, Marseille Medical GeneticsMarseilleFrance
| | - Hager Jaouadi
- Aix Marseille UnivINSERM, Marseille Medical GeneticsMarseilleFrance
| |
Collapse
|
2
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
3
|
Lipov A, Jurgens SJ, Mazzarotto F, Allouba M, Pirruccello JP, Aguib Y, Gennarelli M, Yacoub MH, Ellinor PT, Bezzina CR, Walsh R. Exploring the complex spectrum of dominance and recessiveness in genetic cardiomyopathies. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1078-1094. [PMID: 38666070 PMCID: PMC11041721 DOI: 10.1038/s44161-023-00346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/07/2023] [Indexed: 04/28/2024]
Abstract
Discrete categorization of Mendelian disease genes into dominant and recessive models often oversimplifies their underlying genetic architecture. Cardiomyopathies (CMs) are genetic diseases with complex etiologies for which an increasing number of recessive associations have recently been proposed. Here, we comprehensively analyze all published evidence pertaining to biallelic variation associated with CM phenotypes to identify high-confidence recessive genes and explore the spectrum of monoallelic and biallelic variant effects in established recessive and dominant disease genes. We classify 18 genes with robust recessive association with CMs, largely characterized by dilated phenotypes, early disease onset and severe outcomes. Several of these genes have monoallelic association with disease outcomes and cardiac traits in the UK Biobank, including LMOD2 and ALPK3 with dilated and hypertrophic CM, respectively. Our data provide insights into the complex spectrum of dominance and recessiveness in genetic heart disease and demonstrate how such approaches enable the discovery of unexplored genetic associations.
Collapse
Affiliation(s)
- Alex Lipov
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Sean J. Jurgens
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mona Allouba
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
| | - James P. Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA USA
| | - Yasmine Aguib
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Magdi H. Yacoub
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
- Harefield Heart Science Centre, Uxbridge, UK
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA USA
| | - Connie R. Bezzina
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Luo Z, Cheng J, Wang Y. m6A regulator-mediated RNA methylation modification remodels immune microenvironment in dilated cardiomyopathy. J Cell Physiol 2023; 238:2282-2292. [PMID: 37475583 DOI: 10.1002/jcp.31085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
The latest evidence suggested that the onset of dilated cardiomyopathy (DCM) is closely associated with immune microenvironment disturbance. Since N6 -methyladenosine (m6A) RNA methylation impacts on immunocyte function and antitumor immunity, it is predictable that m6A RNA methylation may result in immune microenvironment disorder. Here, we attempted to verify this hypothesis. We used single-sample gene set enrichment analysis (ssGSEA) to investigate the infiltration abundance of immunocytes, single-cell RNA-Seq to identify key m6A regulator, and a doxorubicin (Dox)-induced DCM mouse model to confirm our findings. ssGSEA revealed a higher infiltration abundance of CD8+ T lymphocytes, NK cells, monocytes, and B+ lymphocytes in DCM myocardium tissue. Single-cell RNA-Seq indicated a critical role of IGFBP2 in DCM. Cross-checking analysis hinted an interaction between IGFBP2 and NSUN5, ALYREF, RRP8, and ALKBH3. Mechanically, IGFBP2-mediated RNA methylation deteriorated the immune microenvironment and thus increased the risk of DCM by enhancing CD8+ T lymphocyte, NK cell, monocyte, B+ lymphocyte infiltration and activating check-point, MHC-I, and T cell co-stimulation signaling pathways. In the DCM mouse model, echocardiography indicated a significant reduction in ejection fraction (EF) and fractional shortening (FS) and an increase in left ventricular internal dimensions at systole (LVIDs) and diastole (LVIDd). MASSON staining indicated an increased fibrosis in myocardium tissue. qPCR and immunofluorescence staining indicated a significant increase in mRNA and protein levels of IGFBP2. The present study indicated that IGFBP2-mediated RNA methylation remodeled the immune microenvironment and increased the risk of DCM. IGFBP2 may serve as potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Zhi Luo
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Cheng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Milenkovic I, Santos Vieira HG, Lucas MC, Ruiz-Orera J, Patone G, Kesteven S, Wu J, Feneley M, Espadas G, Sabidó E, Hübner N, van Heesch S, Völkers M, Novoa EM. Dynamic interplay between RPL3- and RPL3L-containing ribosomes modulates mitochondrial activity in the mammalian heart. Nucleic Acids Res 2023; 51:5301-5324. [PMID: 36882085 PMCID: PMC10287911 DOI: 10.1093/nar/gkad121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse 'specialized ribosomes' is still a controversial topic. Here, we explore the biological function of RPL3L (uL3L), a ribosomal protein (RP) paralogue of RPL3 (uL3) that is exclusively expressed in skeletal muscle and heart tissues, by generating a viable homozygous Rpl3l knockout mouse strain. We identify a rescue mechanism in which, upon RPL3L depletion, RPL3 becomes up-regulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L modulates neither translational efficiency nor ribosome affinity towards a specific subset of transcripts. In contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of fine-tuning of mitochondrial activity. Our results demonstrate that the existence of tissue-specific RP paralogues does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Helaine Graziele Santos Vieira
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Morghan C Lucas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), D-13125 Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), D-13125 Berlin, Germany
| | - Scott Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Michael Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Guadalupe Espadas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), D-13125 Berlin, Germany
- Charité -Universitätsmedizin, D-10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, D-13347 Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | | | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
6
|
Yang Q, Zhang Q, Qin Z, Zhang S, Yi S, Yi S, Zhang Q, Luo J. Novel compound heterozygous variants in the RPL3L gene causing dilated cardiomyopathy type-2D: a case report and literature review. BMC Med Genomics 2023; 16:127. [PMID: 37308880 DOI: 10.1186/s12920-023-01567-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy type-2D (CMD2D) is a rare heart disease causing a severe cardiomyopathy with neonatal onset and rapid progression to cardiac decompensation and death in untreated patients. CMD2D is an autosomal recessive disease resulting from variants in the RPL3L gene, which encodes the 60 S ribosomal protein exclusively expressed in skeletal and cardiac muscle and plays an essential role in myoblast growth and fusion. Previous reports have only associated CMD2D with a small duplication and seven nucleotide substitution in the RPL3L gene. CASE PRESENTATION In this study, we report the case of a 31 days old Chinese infant patient with severe dilated cardiomyopathy (DCM) and rapid decompensation along with other cardiac malformations. In addition to previously reported clinical features, the patient showed the previously unreported complication of occasional premature atrial contractions and a first-degree atrioventricular block. Whole-exome sequencing (WES) revealed compound heterozygous variants (c.80G > A (p.Gly27Asp) and c.1074dupA (p.Ala359fs*6)) in RPL3L (NM_005061.3). The latter novel variant may result in the absence of protein production with a significant decrease in mRNA level, suggesting it is a loss-of-function mutation. CONCLUSIONS This is the first case report of RPL3L-associated neonatal dilated cardiomyopathy in China. The molecular confirmation of the patient expands the genetic spectrum of CMD2D, and the clinical manifestation of CMD2D in the patient provides additional clinical information regarding this disease.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China.
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
7
|
Shiraishi C, Matsumoto A, Ichihara K, Yamamoto T, Yokoyama T, Mizoo T, Hatano A, Matsumoto M, Tanaka Y, Matsuura-Suzuki E, Iwasaki S, Matsushima S, Tsutsui H, Nakayama KI. RPL3L-containing ribosomes determine translation elongation dynamics required for cardiac function. Nat Commun 2023; 14:2131. [PMID: 37080962 PMCID: PMC10119107 DOI: 10.1038/s41467-023-37838-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Although several ribosomal protein paralogs are expressed in a tissue-specific manner, how these proteins affect translation and why they are required only in certain tissues have remained unclear. Here we show that RPL3L, a paralog of RPL3 specifically expressed in heart and skeletal muscle, influences translation elongation dynamics. Deficiency of RPL3L-containing ribosomes in RPL3L knockout male mice resulted in impaired cardiac contractility. Ribosome occupancy at mRNA codons was found to be altered in the RPL3L-deficient heart, and the changes were negatively correlated with those observed in myoblasts overexpressing RPL3L. RPL3L-containing ribosomes were less prone to collisions compared with RPL3-containing canonical ribosomes. Although the loss of RPL3L-containing ribosomes altered translation elongation dynamics for the entire transcriptome, its effects were most pronounced for transcripts related to cardiac muscle contraction and dilated cardiomyopathy, with the abundance of the encoded proteins being correspondingly decreased. Our results provide further insight into the mechanisms and physiological relevance of tissue-specific translational regulation.
Collapse
Affiliation(s)
- Chisa Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Kazuya Ichihara
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Eriko Matsuura-Suzuki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Li X, Shen Y, Xu X, Guo G, Chen Y, Wei Q, Li H, He K, Liu C. Genomic and RNA-Seq profiling of patients with HFrEF unraveled OAS1 mutation and aggressive expression. Int J Cardiol 2023; 375:44-54. [PMID: 36414043 DOI: 10.1016/j.ijcard.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heart failure (HF) is a complex pathophysiological state characterized by inadequate delivery of blood and nutrients to the cardiac tissues. It is rarely curable and is commonly associated with a poor prognosis. In this study, we aimed to analyse exomic and RNA-Seq data from patients with HF to identify the key altered pathways in HF. METHODS Whole blood samples were collected from patients with HF and subjected to whole exome sequencing (WES) and RNA-Seq analysis. The gene expression and RNA-Seq data obtained were verified using gene chip analysis and RT-PCR. RESULTS Both exomic and RNA-Seq data confirmed the dysregulation of phosphorylation and immune signalling in patients with HF. Specifically, exomic analysis showed that TITIN, OBSCURIN, NOD2, CDH2, MAP3K5, and SLC17A4 mutations were associated with HF, and RNA-Seq revealed that S100A12, S100A8, S100A9, PFDN5, and TMCC2, were upregulated in patients with HF. Additionally, comparison between RNA-seq and WES data showed that OAS1 mutations are associated with HF. CONLCUSION Our findings indicated that patients with HF show an overall disruption of key phosphorylation and immune signalling pathways. Based on RNA-seq and WES, OAS1 mutations may be primarily responsible for these changes.
Collapse
Affiliation(s)
- Xin Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China
| | - Yanying Shen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Xu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Ge Guo
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Yibing Chen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Qingxia Wei
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hanlu Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China; Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China.
| | - Chunlei Liu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China.
| |
Collapse
|
9
|
Grimes KM, Prasad V, Huo J, Kuwabara Y, Vanhoutte D, Baldwin TA, Bowers SLK, Johansen AKZ, Sargent MA, Lin SCJ, Molkentin JD. Rpl3l gene deletion in mice reduces heart weight over time. Front Physiol 2023; 14:1054169. [PMID: 36733907 PMCID: PMC9886673 DOI: 10.3389/fphys.2023.1054169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Davy Vanhoutte
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Tanya A Baldwin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Stephanie L K Bowers
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Yang Y, Wang Y, Wang C, Xu X, Liu C, Huang X. Identification of hub genes of Parkinson's disease through bioinformatics analysis. Front Neurosci 2022; 16:974838. [DOI: 10.3389/fnins.2022.974838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and there is still a lack of effective diagnostic and treatment methods. This study aimed to search for hub genes that might serve as diagnostic or therapeutic targets for PD. All the analysis was performed in R software. The expression profile data of PD (number: GSE7621) was acquired from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) associated with PD were screened by the “Limma” package of the R software. Key genes associated with PD were screened by the “WGCNA” package of the R software. Target genes were screened by merging the results of “Limma” and “WGCNA.” Enrichment analysis of target genes was performed by Gene Ontology (GO), Disease Ontology (DO), and Kyoto Enrichment of Genes and Genomes (KEGG). Machine learning algorithms were employed to screen for hub genes. Nomogram was constructed using the “rms” package. And the receiver operating characteristic curve (ROC) was plotted to detect and validate our prediction model sensitivity and specificity. Additional expression profile data of PD (number: GSE20141) was acquired from the GEO database to validate the nomogram. GSEA was used to determine the biological functions of the hub genes. Finally, RPL3L, PLEK2, PYCRL, CD99P1, LOC100133130, MELK, LINC01101, and DLG3-AS1 were identified as hub genes of PD. These findings can provide a new direction for the diagnosis and treatment of PD.
Collapse
|
11
|
Guo Y, Wang J, Guo X, Gao R, Yang C, Li L, Sun Y, Qiu X, Xu Y, Yang Y. KLF13 Loss‐of‐Function Mutations Underlying Familial Dilated Cardiomyopathy. J Am Heart Assoc 2022; 11:e027578. [DOI: 10.1161/jaha.122.027578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
Dilated cardiomyopathy (DCM), characterized by progressive left ventricular enlargement and systolic dysfunction, is the most common type of cardiomyopathy and a leading cause of heart failure and cardiac death. Accumulating evidence underscores the critical role of genetic defects in the pathogenesis of DCM, and >250 genes have been implicated in DCM to date. However, DCM is of substantial genetic heterogeneity, and the genetic basis underpinning DCM remains elusive in most cases.
Methods and Results
By genome‐wide scan with microsatellite markers and genetic linkage analysis in a 4‐generation family inflicted with autosomal‐dominant DCM, a new locus for DCM was mapped on chromosome 15q13.1–q13.3, a 4.77‐cM (≈3.43 Mbp) interval between markers D15S1019 and D15S1010, with the largest 2‐point logarithm of odds score of 5.1175 for the marker D15S165 at recombination fraction (θ)=0.00. Whole‐exome sequencing analyses revealed that within the mapping chromosomal region, only the mutation in the
KLF13
gene, c.430G>T (p.E144X), cosegregated with DCM in the family. In addition, sequencing analyses of
KLF13
in another cohort of 266 unrelated patients with DCM and their available family members unveiled 2 new mutations, c.580G>T (p.E194X) and c.595T>C (p.C199R), which cosegregated with DCM in 2 families, respectively. The 3 mutations were absent from 418 healthy subjects. Functional assays demonstrated that the 3 mutants had no transactivation on the target genes
ACTC1
and
MYH7
(2 genes causally linked to DCM), alone or together with GATA4 (another gene contributing to DCM), and a diminished ability to bind the promoters of
ACTC1
and
MYH7
. Add, the E144X‐mutant KLF13 showed a defect in intracellular distribution.
Conclusions
This investigation indicates
KLF13
as a new gene predisposing to DCM, which adds novel insight to the molecular pathogenesis underlying DCM, implying potential implications for prenatal prevention and precision treatment of DCM in a subset of patients.
Collapse
Affiliation(s)
- Yu‐Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xiao‐Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Ri‐Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Chen‐Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Institute of Medical Genetics Tongji University Shanghai China
| | - Yu‐Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xing‐Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Ying‐Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Yi‐Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
- Cardiovascular Research Laboratory and Central Laboratory, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| |
Collapse
|
12
|
Lin S, Xian M, Ren T, Mo G, Zhang L, Zhang X. Mining of chicken muscle growth genes and the function of important candidate gene RPL3L in muscle development. Front Physiol 2022; 13:1033075. [PMID: 36407004 PMCID: PMC9669902 DOI: 10.3389/fphys.2022.1033075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2023] Open
Abstract
The birth weight of chickens does not significantly affect the weight at slaughter, while the different growth rate after birth was one of the important reasons for the difference in slaughter weight. Also, the increase in chickens' postnatal skeletal muscle weight is the main cause of the slaughter weight gain, but which genes are involved in this biological process is still unclear. In this study, by integrating four transcriptome datasets containing chicken muscles at different developmental times or different chicken tissues in public databases, a total of nine candidate genes that may be related to postnatal muscle development in chickens were obtained, including RPL3L, FBP2, ASB4, ASB15, CKMT2, PGAM1, YIPF7, PFKM, and LDHA. One of these candidate genes is RPL3L, whose 42 bp insertion/deletion (indel) mutation significantly correlated with multiple carcass traits in the F2 resource population from Xinghua chickens crossing with White Recessive Rock (WRR) chickens, including live weight, carcass weight, half eviscerated weight, eviscerated weight, breast meat weight, wing weight, leg muscle shear force, and breast muscle shear force. Also, there was a very significant difference between different genotypes of the RPL3L 42 bp indel mutation in these trains. Further experiments showed that RPL3L was highly expressed in chicken skeletal muscle, and its overexpression could promote the proliferation and inhibit the differentiation of chicken myoblasts by regulating ASB4 and ASB15 expression. Our findings demonstrated that the RPL3L 42 bp indel may be one of the molecular markers of chicken weight-related traits.
Collapse
Affiliation(s)
- Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tuanhui Ren
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guodong Mo
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Das BB, Gajula V, Arya S, Taylor MB. Compound Heterozygous Missense Variants in RPL3L Genes Associated with Severe Forms of Dilated Cardiomyopathy: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101495. [PMID: 36291431 PMCID: PMC9600237 DOI: 10.3390/children9101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/14/2023]
Abstract
Whole exome sequencing has identified an infant girl with fulminant dilated cardiomyopathy (DCM), leading to severe acute heart failure associated with ribosomal protein large 3-like (RPL3L) gene pathologic variants. Other genetic tests for mitochondrial disorders by sequence analysis and deletion testing of the mitochondrial genome were negative. Secondary causes for DCM due to metabolic and infectious etiologies were ruled out. She required a Berlin-Excor left ventricular assist device due to worsening of her heart failure as a bridge to orthotopic heart transplantation. At three months follow-up after heart transplantation, she has been doing well. We reviewed the literature on published RPL3L-related DCM cases and their outcomes. Bi-allelic variants in RPL3L have been reported in only seven patients from four unrelated families in the literature. RPL3L is a newer and likely pathogenic gene associated with a severe form of early-onset dilated cardiomyopathy with poor prognosis necessitating heart transplantation.
Collapse
Affiliation(s)
- Bibhuti B. Das
- Department of Pediatrics, Division of Cardiology, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Viswanath Gajula
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sandeep Arya
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary B. Taylor
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
14
|
Arbustini E, Behr ER, Carrier L, van Duijn C, Evans P, Favalli V, van der Harst P, Haugaa KH, Jondeau G, Kääb S, Kaski JP, Kavousi M, Loeys B, Pantazis A, Pinto Y, Schunkert H, Di Toro A, Thum T, Urtis M, Waltenberger J, Elliott P. Interpretation and actionability of genetic variants in cardiomyopathies: a position statement from the European Society of Cardiology Council on cardiovascular genomics. Eur Heart J 2022; 43:1901-1916. [PMID: 35089333 DOI: 10.1093/eurheartj/ehab895] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
This document describes the contribution of clinical criteria to the interpretation of genetic variants using heritable Mendelian cardiomyopathies as an example. The aim is to assist cardiologists in defining the clinical contribution to a genetic diagnosis and the interpretation of molecular genetic reports. The identification of a genetic variant of unknown or uncertain significance is a limitation of genetic testing, but current guidelines for the interpretation of genetic variants include essential contributions from clinical family screening that can establish a de novo assignment of the variant or its segregation with the phenotype in the family. A partnership between clinicians and patients helps to solve major uncertainties and provides reliable and clinically actionable information.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elijah R Behr
- Cardiology Research Section and Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, and INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
| | | | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristina Hermann Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Postboks 4950 Nydalen, Oslo 0424, Norway
- University of Oslo, Boks 1072 Blindern, Oslo 0316, Norway
| | - Guillaume Jondeau
- CNMR Syndrome de Marfan et apparentés, Member of VASCERN, AP-HP Hopital Bichat, Service de Cardiologie, 46 rue Henri Huchard, Paris 75018, France
- INSERM LVTS U1148, Paris 75018, France
- Université de Paris, Paris, France
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU University Hospital Munich, Munich, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Juan Pablo Kaski
- Institute of Cardiovascular Science, University College London, London, UK
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart Loeys
- Cardiogenomics, Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonis Pantazis
- The Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Yigal Pinto
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Center, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, München, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Alessandro Di Toro
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Mario Urtis
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Johannes Waltenberger
- Department of Cardiology and Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Medicine, Hirslanden Klinik Im Park, Seestrasse 220, Zürich 8027, Switzerland
| | - Perry Elliott
- Barts Heart Centre St Bartholomew's Hospital, London, UK
- Institute for Cardiovascular Science, University College London, London, UK
| |
Collapse
|
15
|
Kucher AN, Sleptcov AA, Nazarenko MS. Genetic Landscape of Dilated Cardiomyopathy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Nannapaneni H, Ghaleb S, Arya S, Gajula V, Taylor MB, Das BB. Further Evidence of Autosomal Recessive Inheritance of RPL3L Pathogenic Variants with Rapidly Progressive Neonatal Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2022; 9:jcdd9030065. [PMID: 35323613 PMCID: PMC8955827 DOI: 10.3390/jcdd9030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is rare with high etiologic heterogeneity. Recently, biallelic, autosomal recessive, pathogenic variants in RPL3L (ribosomal protein L3-like) have been reported in the literature with severe early-onset DCM. In the present brief report, we identified two pathogenic RPL3L variants, each harbored in unaffected heterozygous parents: mother (RPL3L c.1076_1080delCCGTG (p.Ala359Glyfs*4)) and father (RPL3L c.80G > A (p.Gly27Asp)). Pathogenic variants were segregated as autosomal recessive to two offspring born with compound heterozygous RPL3L variants and affected by neonatal DCM. This is the second report in the literature to the best of our knowledge and our findings support the pathogenicity of biallelic RPL3L pathologic variants associated with rapidly progressive neonatal DCM and heart failure with a poor prognosis.
Collapse
Affiliation(s)
| | - Stephanie Ghaleb
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sandeep Arya
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.A.); (V.G.); (M.B.T.)
| | - Viswanath Gajula
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.A.); (V.G.); (M.B.T.)
| | - Mary B. Taylor
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.A.); (V.G.); (M.B.T.)
| | - Bibhuti B. Das
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Correspondence: ; Tel.: +1-601-984-5250; Fax: +1-601-984-5283
| |
Collapse
|
17
|
Jaouadi H, Chabrak S, Lahbib S, Abdelhak S, Zaffran S. Identification of two variants in AGRN and RPL3L genes in a patient with catecholaminergic polymorphic ventricular tachycardia suggesting new candidate disease genes and digenic inheritance. Clin Case Rep 2022; 10:e05339. [PMID: 35341025 PMCID: PMC8858789 DOI: 10.1002/ccr3.5339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic syndrome characterized by life-threatening arrhythmias, a normal resting electrocardiogram and the absence of overt structural heart abnormalities. Mutations in RyR2 gene account for the large part of CPVT cases. Less frequently, mutations in CASQ2 gene have been linked to the recessive form of the disease. Overall, approximately 35% of CPVT patients remain without a genetic etiology implying that other genes might be found causative of the disease. Here, we present a 6-year-old boy born to first-degree related parents, with a typical phenotype of CPVT and a family history of sudden cardiac death of his brother at 7 years. A trio-based whole exome sequencing was performed, and we identified a homozygous variant in AGRN gene and a heterozygous variant in RPL3L gene. We hypothesized that the presence of the homozygous variant in AGRN accounts for the CPVT phenotype in this family and the heterozygous variant in RPL3L gene may act as a modifier gene. Further studies are needed to determine the role of these genes in CPVT.
Collapse
Affiliation(s)
- Hager Jaouadi
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05Institut Pasteur de TunisTunisTunisia
- Aix Marseille UniversitéINSERM, Marseille Medical GeneticsMarseilleFrance
| | - Sonia Chabrak
- Faculty of Medicine of TunisUniversité Tunis El ManarTunisTunisia
| | - Saida Lahbib
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05Institut Pasteur de TunisTunisTunisia
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05Institut Pasteur de TunisTunisTunisia
| | - Stéphane Zaffran
- Aix Marseille UniversitéINSERM, Marseille Medical GeneticsMarseilleFrance
| |
Collapse
|
18
|
Appels R, Wang P, Islam S. Integrating Wheat Nucleolus Structure and Function: Variation in the Wheat Ribosomal RNA and Protein Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:686586. [PMID: 35003148 PMCID: PMC8739226 DOI: 10.3389/fpls.2021.686586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
We review the coordinated production and integration of the RNA (ribosomal RNA, rRNA) and protein (ribosomal protein, RP) components of wheat cytoplasmic ribosomes in response to changes in genetic constitution, biotic and abiotic stresses. The components examined are highly conserved and identified with reference to model systems such as human, Arabidopsis, and rice, but have sufficient levels of differences in their DNA and amino acid sequences to form fingerprints or gene haplotypes that provide new markers to associate with phenotype variation. Specifically, it is argued that populations of ribosomes within a cell can comprise distinct complements of rRNA and RPs to form units with unique functionalities. The unique functionalities of ribosome populations within a cell can become central in situations of stress where they may preferentially translate mRNAs coding for proteins better suited to contributing to survival of the cell. In model systems where this concept has been developed, the engagement of initiation factors and elongation factors to account for variation in the translation machinery of the cell in response to stresses provided the precedents. The polyploid nature of wheat adds extra variation at each step of the synthesis and assembly of the rRNAs and RPs which can, as a result, potentially enhance its response to changing environments and disease threats.
Collapse
Affiliation(s)
- Rudi Appels
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
- Faculty of Veterinary and Agricultural Science, Melbourne, VIC, Australia
| | - Penghao Wang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Shahidul Islam
- Centre for Crop Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
19
|
Kao BR, Malerba A, Lu-Nguyen NB, Harish P, McCarthy JJ, Dickson G, Popplewell LJ. Knockdown of Muscle-Specific Ribosomal Protein L3-Like Enhances Muscle Function in Healthy and Dystrophic Mice. Nucleic Acid Ther 2021; 31:457-464. [PMID: 34081545 DOI: 10.1089/nat.2020.0928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosomal protein L3-like (RPL3L) is a poorly characterized ribosomal protein that is exclusively expressed in skeletal and cardiac muscle. RPL3L is also downregulated in Duchenne muscular dystrophy (DMD), suggesting that it may play an important role in muscle biology. In this study, we investigated the role of RPL3L in skeletal muscle of healthy C57 and dystrophic mdx mice. We show that RPL3L is developmentally regulated and that intramuscular adeno-associated virus (AAV)-mediated RPL3L knockdown in the tibialis anterior of C57 and mdx mice results in increased specific force with improved resistance to eccentric contraction induced muscle damage in dystrophic muscles. The mechanism by which RPL3L knockdown improves muscle function remains unclear. Histological observations showed a significant increase in muscle length and decrease in muscle cross-sectional area after RPL3L inhibition suggesting that this ribosomal protein may play a role in myofiber morphology. The endogenous downregulation of RPL3L in DMD may be a protective mechanism that attempts to improve skeletal muscle function and counteract the dystrophic phenotype.
Collapse
Affiliation(s)
- Betty R Kao
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Ngoc B Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Pradeep Harish
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Linda J Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
20
|
Qiao Q, Zhao CM, Yang CX, Gu JN, Guo YH, Zhang M, Li RG, Qiu XB, Xu YJ, Yang YQ. Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy. Clin Chem Lab Med 2020; 59:955-963. [PMID: 33554560 DOI: 10.1515/cclm-2020-1318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|