1
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Ali A, Khatoon A, Shao C, Murtaza B, Tanveer Q, Su Z. Therapeutic potential of natural antisense transcripts and various mechanisms involved for clinical applications and disease prevention. RNA Biol 2024; 21:1-18. [PMID: 38090817 PMCID: PMC10761088 DOI: 10.1080/15476286.2023.2293335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Antisense transcription, a prevalent occurrence in mammalian genomes, gives rise to natural antisense transcripts (NATs) as RNA molecules. These NATs serve as agents of diverse transcriptional and post-transcriptional regulatory mechanisms, playing crucial roles in various biological processes vital for cell function and immune response. However, when their normal functions are disrupted, they can contribute to human diseases. This comprehensive review aims to establish the molecular foundation linking NATs to the development of disorders like cancer, neurodegenerative conditions, and cardiovascular ailments. Additionally, we evaluate the potential of oligonucleotide-based therapies targeting NATs, presenting both their advantages and limitations, while also highlighting the latest advancements in this promising realm of clinical investigation.Abbreviations: NATs- Natural antisense transcripts, PRC1- Polycomb Repressive Complex 1, PRC2- Polycomb Repressive Complex 2, ADARs- Adenosine deaminases acting on RNA, BDNF-AS- Brain-derived neurotrophic factor antisense transcript, ASOs- Antisense oligonucleotides, SINEUPs- Inverted SINEB2 sequence-mediated upregulating molecules, PTBP1- Polypyrimidine tract binding protein-1, HNRNPK- heterogeneous nuclear ribonucleoprotein K, MAPT-AS1- microtubule-associated protein tau antisense 1, KCNQ1OT- (KCNQ1 opposite strand/antisense transcript 1, ERK- extracellular signal-regulated kinase 1, USP14- ubiquitin-specific protease 14, EGF- Epidermal growth factor, LSD1- Lysine Specific Demethylase 1, ANRIL- Antisense Noncoding RNA in the INK4 Locus, BWS- Beckwith-Wiedemann syndrome, VEGFA- Vascular Endothelial Growth component A.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chenran Shao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qaisar Tanveer
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Natural antisense transcripts as drug targets. Front Mol Biosci 2022; 9:978375. [PMID: 36250017 PMCID: PMC9563854 DOI: 10.3389/fmolb.2022.978375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent discovery of vast non-coding RNA-based regulatory networks that can be easily modulated by nucleic acid-based drugs has opened numerous new therapeutic possibilities. Long non-coding RNA, and natural antisense transcripts (NATs) in particular, play a significant role in networks that involve a wide variety of disease-relevant biological mechanisms such as transcription, splicing, translation, mRNA degradation and others. Currently, significant efforts are dedicated to harnessing these newly emerging NAT-mediated biological mechanisms for therapeutic purposes. This review will highlight the recent clinical and pre-clinical developments in this field and survey the advances in nucleic acid-based drug technologies that make these developments possible.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
- *Correspondence: Claes Wahlestedt,
| |
Collapse
|
4
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
5
|
Guéant JL, Feillet F. Inherited metabolic disorders beyond the new generation sequencing era: the need for in-depth cellular and molecular phenotyping. Hum Genet 2022; 141:1235-1237. [PMID: 35754062 DOI: 10.1007/s00439-022-02467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France. .,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France.
| | - François Feillet
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France.,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France
| |
Collapse
|
6
|
Wiedemann A, Oussalah A, Lamireau N, Théron M, Julien M, Mergnac JP, Augay B, Deniaud P, Alix T, Frayssinoux M, Feillet F, Guéant JL. Clinical, phenotypic and genetic landscape of case reports with genetically proven inherited disorders of vitamin B 12 metabolism: A meta-analysis. Cell Rep Med 2022; 3:100670. [PMID: 35764087 PMCID: PMC9381384 DOI: 10.1016/j.xcrm.2022.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age categories are associated with patients' manifestations. The "cytoplasmic transport" cluster is associated with neurological and ophthalmological manifestations, the "mitochondrion" cluster with hypotonia, acute metabolic decompensation, and death, and the "B12 availability" and "remethylation" clusters with anemia and cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger patients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syndrome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the older patients. These results should prompt systematic checking of markers of vitamin B12 status, including homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult patients.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Abderrahim Oussalah
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Nathalie Lamireau
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Maurane Théron
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Melissa Julien
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | | | - Baptiste Augay
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Pauline Deniaud
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Tom Alix
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Marine Frayssinoux
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - François Feillet
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Jean-Louis Guéant
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France.
| |
Collapse
|
7
|
Kiessling E, Peters F, Ebner LJ, Merolla L, Samardzija M, Baumgartner MR, Grimm C, Froese DS. HIF1 and DROSHA are involved in MMACHC repression in hypoxia. Biochim Biophys Acta Gen Subj 2022; 1866:130175. [DOI: 10.1016/j.bbagen.2022.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
8
|
Oussalah A, Siblini Y, Hergalant S, Chéry C, Rouyer P, Cavicchi C, Guerrini R, Morange PE, Trégouët D, Pupavac M, Watkins D, Pastinen T, Chung WK, Ficicioglu C, Feillet F, Froese DS, Baumgartner MR, Benoist JF, Majewski J, Morrone A, Rosenblatt DS, Guéant JL. Epimutations in both the TESK2 and MMACHC promoters in the Epi-cblC inherited disorder of intracellular metabolism of vitamin B 12. Clin Epigenetics 2022; 14:52. [PMID: 35440018 PMCID: PMC9020039 DOI: 10.1186/s13148-022-01271-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/05/2022] [Indexed: 03/14/2023] Open
Abstract
Background epi-cblC is a recently discovered inherited disorder of intracellular vitamin B12 metabolism associating hematological, neurological, and cardiometabolic outcomes. It is produced by an epimutation at the promoter common to CCDC163P and MMACHC, which results from an aberrant antisense transcription due to splicing mutations in the antisense PRDX1 gene neighboring MMACHC. We studied whether the aberrant transcription produced a second epimutation by encompassing the CpG island of the TESK2 gene neighboring CCDC163P.
Methods We unraveled the methylome architecture of the CCDC163P–MMACHC CpG island (CpG:33) and the TESK2 CpG island (CpG:51) of 17 epi-cblC cases. We performed an integrative analysis of the DNA methylome profiling, transcriptome reconstruction of RNA-sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-Seq) of histone H3, and transcription expression of MMACHC and TESK2.
Results The PRDX1 splice mutations and activation of numerous cryptic splice sites produced antisense readthrough transcripts encompassing the bidirectional MMACHC/CCDC163P promoter and the TESK2 promoter, resulting in the silencing of both the MMACHC and TESK2 genes through the deposition of SETD2-dependent H3K36me3 marks and the generation of epimutations in the CpG islands of the two promoters. Conclusions The antisense readthrough transcription of the mutated PRDX1 produces an epigenetic silencing of MMACHC and TESK2. We propose using the term 'epi-digenism' to define this epigenetic disorder that affects two genes. Epi-cblC is an entity that differs from cblC. Indeed, the PRDX1 and TESK2 altered expressions are observed in epi-cblC but not in cblC, suggesting further evaluating the potential consequences on cancer risk and spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01271-1.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - Youssef Siblini
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France
| | - Sébastien Hergalant
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France
| | - Céline Chéry
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - Pierre Rouyer
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France
| | - Catia Cavicchi
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Renzo Guerrini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Pierre-Emmanuel Morange
- INSERM UMR_S 1263, Center for CardioVascular and Nutrition Research (C2VN), Aix-Marseille University, 13385, Marseille, France
| | - David Trégouët
- INSERM, BPH, U1219, Université Bordeaux, 33000, Bordeaux, France
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - David Watkins
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, USA
| | - Can Ficicioglu
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - François Feillet
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France.,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France
| | - D Sean Froese
- Division of Metabolism, University Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism, University Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Jean-François Benoist
- Biochemistry Hormonology Laboratory, Robert-Debré University Hospital, APHP, 48 bd Serurier, 75019, Paris, France
| | - Jacek Majewski
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - David S Rosenblatt
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jean-Louis Guéant
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France. .,Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France. .,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology and Nutrition, University Hospital of Nancy, 54000, Nancy, France. .,Department of Hepato-Gastroenterology, University Hospital of Nancy, 54000, Nancy, France.
| |
Collapse
|