1
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
2
|
Hasebe M, Kotaki T, Shiga S. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104359. [PMID: 35041845 DOI: 10.1016/j.jinsphys.2022.104359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Animals in temperate regions breed in the appropriate season by sensing seasonal changes through photoperiodism. Many studies suggest the involvement of a circadian clock system in the photoperiodic regulation of reproduction. Pigment-dispersing factor (PDF) is a known brain neuropeptide involved in the circadian control in various insects. Here, we investigated the localization and projection of PDF neurons in the brain and their involvement in the photoperiodic control of reproduction in the females of the brown-winged green bug, Plautia stali. Immunohistochemical analyses revealed a dense cluster of PDF-immunoreactive cells localized in the proximal medulla of the optic lobe, which corresponded to the cluster known as PDFMe cells. PDF-immunoreactive cells projected their fibers to the lamina through the medulla surface. PDF-immunoreactive fibers were also found in the protocerebrum and seemed to connect both PDF cell bodies in the optic lobes. RNA interference-mediated knockdown of pdf inhibited oviposition arrest induced by the transfer from long- to short-day conditions. Additionally, the knockdown of pdf delayed oviposition onset after the change from short- to long-day conditions. In conclusion, the study results indicate that PDF is locally expressed in a cell cluster at the proximal medulla and involved in the photoperiodic control of reproduction in P. stali females.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Toyomi Kotaki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Beer K, Härtel S, Helfrich-Förster C. The pigment-dispersing factor neuronal network systematically grows in developing honey bees. J Comp Neurol 2021; 530:1321-1340. [PMID: 34802154 DOI: 10.1002/cne.25278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022]
Abstract
The neuropeptide pigment-dispersing factor (PDF) plays a prominent role in the circadian clock of many insects including honey bees. In the honey bee brain, PDF is expressed in about 15 clock neurons per hemisphere that lie between the central brain and the optic lobes. As in other insects, the bee PDF neurons form wide arborizations in the brain, but certain differences are evident. For example, they arborize only sparsely in the accessory medulla (AME), which serves as important communication center of the circadian clock in cockroaches and flies. Furthermore, all bee PDF neurons cluster together, which makes it impossible to distinguish individual projections. Here, we investigated the developing bee PDF network and found that the first three PDF neurons arise in the third larval instar and form a dense network of varicose fibers at the base of the developing medulla that strongly resembles the AME of hemimetabolous insects. In addition, they send faint fibers toward the lateral superior protocerebrum. In last larval instar, PDF cells with larger somata appear and send fibers toward the distal medulla and the medial protocerebrum. In the dorsal part of the medulla serpentine layer, a small PDF knot evolves from which PDF fibers extend ventrally. This knot disappears during metamorphosis and the varicose arborizations in the putative AME become fainter. Instead, a new strongly stained PDF fiber hub appears in front of the lobula. Simultaneously, the number of PDF neurons increases and the PDF neuronal network in the brain gets continuously more complex.
Collapse
Affiliation(s)
- Katharina Beer
- Department of Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Stephan Härtel
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Massah A, Neupert S, Brodesser S, Homberg U, Stengl M. Distribution and daily oscillation of GABA in the circadian system of the cockroach Rhyparobia maderae. J Comp Neurol 2021; 530:770-791. [PMID: 34586642 DOI: 10.1002/cne.25244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the prevalent inhibitory neurotransmitter in nervous systems promoting sleep in both mammals and insects. In the Madeira cockroach, sleep-wake cycles are controlled by a circadian clock network in the brain's optic lobes, centered in the accessory medulla (AME) with its innervating pigment-dispersing factor (PDF) expressing clock neurons at the anterior-ventral rim of the medulla. GABA is present in cell clusters that innervate different circuits of the cockroach's AME clock, without colocalizing in PDF clock neurons. Physiological, immunohistochemical, and behavioral assays provided evidence for a role of GABA in light entrainment, possibly via the distal tract that connects the AME's glomeruli to the medulla. Furthermore, GABA was implemented in clock outputs to multiple effector systems in optic lobe and midbrain. Here, GABAergic brain circuits were analyzed further, focusing on the circadian system in search for sleep/wake controlling brain circuits. All GABA-immunoreactive neurons of the cockroach brain were also stained with an antiserum against the GABA-synthesizing enzyme glutamic acid decarboxylase. We found strong overlap of the distribution of GABA-immunoreactive networks with PDF clock networks in optic lobes and midbrain. Neurons in five of the six soma groups that innervate the clock exhibited GABA immunoreactivity. The intensity of GABA immunoreactivity in the distal tract showed daily fluctuations with maximum staining intensity in the middle of the day and weakest staining at the end of the day. Quantification via enzyme-linked immunosorbent assay and quantitative liquid chromatography coupled to electrospray ionization tandem mass spectrometry, likewise, showed higher GABA levels in the optic lobe during the inactivity phase of the cockroach during the day and lower levels during its activity phase at dusk. Our data further support the hypothesis that light- and PDF-dependently the circadian clock network of the cockroach controls GABA levels and thereby promotes sleep during the day.
Collapse
Affiliation(s)
- Azar Massah
- Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Susanne Neupert
- Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Monika Stengl
- Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| |
Collapse
|
5
|
Kamruzzaman ASM, Hiragaki S, Watari Y, Natsukawa T, Yasuhara A, Ichihara N, Mohamed AA, Elgendy AM, Takeda M. Clock-controlled arylalkylamine N-acetyltransferase (aaNAT) regulates circadian rhythms of locomotor activity in the American cockroach, Periplaneta americana, via melatonin/MT2-like receptor. J Pineal Res 2021; 71:e12751. [PMID: 34091948 DOI: 10.1111/jpi.12751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Melatonin (MEL) orchestrates daily and seasonal rhythms (eg, locomotion, sleep/wake cycles, and migration among other rhythms) in diverse organisms. We investigated the effects of pharmacological doses (0.03-1 mM) of exogenous MEL intake in the cockroach, Periplaneta americana, on locomotor activity. As per os MEL concentration increased, cockroach locomotor rhythm in light-dark (LD) cycles became more synchronized. The ratio of night activity to 24-h activity increased and the acrophase (peak) slightly advanced. MEL application also influenced total activity bouts in the free-running rhythm. Since MEL slightly influenced τ in the free-running rhythms, it is not a central element of the circadian pacemaker but must influence mutual coupling of multi-oscillatory system components. Arylalkylamine N-acetyltransferase (aaNAT) regulates enzymatic production of MEL. aaNAT activities vary in circadian rhythms, and the immunoreactive aaNAT (aaNAT-ir) is colocalized with the key clock proteins cycle (CYC)-ir and pigment-dispersing factor (PDF)-ir These are elements of the central pacemaker and its output pathway as well as other circadian landmarks such as the anterior and posterior optic commissures (AOC and POC, respectively). It also partially shares immunohistochemical reactivity with PER-ir and DBT-ir neurons. We analyzed the role of Pamericana aaNAT1 (PaaaNAT1) (AB106562.1) by injecting dsRNAaaNAT1 . qPCR showed a decrease in accumulations of mRNAs encoding PaaaNAT1. The injections led to arrhythmicity in LD cycles and the arrhythmicity persisted in constant dark (DD). Continuous administration of MEL resynchronized the rhythm after arrhythmicity was induced by dsRNAaaNAT1 injection, suggesting that PaaaNAT is the key regulator of the circadian system in the cockroach via MEL production. PaaaNAT1 contains putative E-box regions which may explain its tight circadian control. The receptor that mediates MEL function is most likely similar to the mammalian MT2, because injecting the competitive MT2 antagonist luzindole blocked MEL function, and MEL injection after luzindole treatment restored MT function. Human MT2-ir was localized in the circadian neurons in the cockroach brain and subesophageal ganglion. We infer that MEL and its synthesizing enzyme, aaNAT, constitute at least one circadian output pathway of locomotor activity either as a distinct route or in association with PDF system.
Collapse
Affiliation(s)
- A S M Kamruzzaman
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Susumu Hiragaki
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhiko Watari
- Faculty of Clinical Education, Ashiya University, Ashiya, Japan
| | - Takashi Natsukawa
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akie Yasuhara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoyuki Ichihara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza M Elgendy
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Makio Takeda
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
6
|
Mapping PERIOD-immunoreactive cells with neurons relevant to photoperiodic response in the bean bug Riptortus pedestris. Cell Tissue Res 2021; 385:571-583. [PMID: 33954831 DOI: 10.1007/s00441-021-03451-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
Circadian clock genes are involved in photoperiodic responses in many insects; however, there is a lack of understanding in the neural pathways that process photoperiodic information involving circadian clock cells. PERIOD-immunohistochemistry was conducted in the bean bug Riptortus pedestris to localise clock cells and their anatomical relationship with other brain neurons necessary for the photoperiodic response. PERIOD-immunoreactive cells were found in the six brain regions. In the optic lobe, two cell groups called lateral neuron lateral (LNl) and lateral neuron medial (LNm), were labelled anterior medial to the medulla and lobula, respectively. In the protocerebrum of the central brain, dorsal neuron (Prd), posterior neuron (Prp), and antennal lobe posterior neuron (pAL) were found. In the deutocerebrum, antennal lobe local neurons (ALln) were detected. Double immunohistochemistry revealed that PERIOD and serotonin were not co-localised. Furthermore, pigment-dispersing factor-immunoreactive neurons and anterior lobula neurons essential for R. pedestris photoperiodic response were not PERIOD immunopositive. LNl cells were located in the vicinity of the pigment-dispersing factor immunoreactive cells at the anterior base of the medulla. LNm cells were located close to the somata of the anterior lobula neurons. Fibres from the anterior lobula neurons and pigment-dispersing factor-immunoreactive neurons had contacts at the anterior base of the medulla. It is suggested that LNl cells work as clock cells involved in the photoperiodic response and the region at the medulla anterior base serves as a hub to receive photic and clock information relevant to the photoperiodic clock in R. pedestris.
Collapse
|
7
|
Werckenthin A, Huber J, Arnold T, Koziarek S, Plath MJA, Plath JA, Stursberg O, Herzel H, Stengl M. Neither per, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS One 2020; 15:e0235930. [PMID: 32750054 PMCID: PMC7402517 DOI: 10.1371/journal.pone.0235930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks control rhythms in physiology and behavior entrained to 24 h light-dark cycles. Despite of conserved general schemes, molecular circadian clockworks differ between insect species. With RNA interference (RNAi) we examined an ancient circadian clockwork in a basic insect, the hemimetabolous Madeira cockroach Rhyparobia maderae. With injections of double-stranded RNA (dsRNA) of cockroach period (Rm´per), timeless 1 (Rm´tim1), or cryptochrome 2 (Rm´cry2) we searched for essential components of the clock´s core negative feedback loop. Single injections of dsRNA of each clock gene into adult cockroaches successfully and permanently knocked down respective mRNA levels within ~two weeks deleting daytime-dependent mRNA rhythms for Rm´per and Rm´cry2. Rm´perRNAi or Rm´cry2RNAi affected total mRNA levels of both genes, while Rm´tim1 transcription was independent of both, also keeping rhythmic expression. Unexpectedly, circadian locomotor activity of most cockroaches remained rhythmic for each clock gene knockdown employed. It expressed weakened rhythms and unchanged periods for Rm´perRNAi and shorter periods for Rm´tim1RNAi and Rm´cry2RNAi.As a hypothesis of the cockroach´s molecular clockwork, a basic network of switched differential equations was developed to model the oscillatory behavior of clock cells expressing respective clock genes. Data were consistent with two synchronized main groups of coupled oscillator cells, a leading (morning) oscillator, or a lagging (evening) oscillator that couple via mutual inhibition. The morning oscillators express shorter, the evening oscillators longer endogenous periods based on core feedback loops with either PER, TIM1, or CRY2/PER complexes as dominant negative feedback of the clockwork. We hypothesize that dominant morning oscillator cells with shorter periods express PER, but not CRY2, or TIM1 as suppressor of clock gene expression, while two groups of evening oscillator cells with longer periods either comprise TIM1 or CRY2/PER suppressing complexes. Modelling suggests that there is an additional negative feedback next to Rm´PER in cockroach morning oscillator cells.
Collapse
Affiliation(s)
- Achim Werckenthin
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jannik Huber
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Thordis Arnold
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Susanne Koziarek
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Marcus J. A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jenny A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Olaf Stursberg
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Hanspeter Herzel
- Department of Theoretical Biology, Charité Berlin, Berlin, Germany
| | - Monika Stengl
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| |
Collapse
|
8
|
Arnold T, Korek S, Massah A, Eschstruth D, Stengl M. Candidates for photic entrainment pathways to the circadian clock via optic lobe neuropils in the Madeira cockroach. J Comp Neurol 2020; 528:1754-1774. [PMID: 31860126 DOI: 10.1002/cne.24844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
The compound eye of cockroaches is obligatory for entrainment of the Madeira cockroach's circadian clock, but the cellular nature of its entrainment pathways is enigmatic. Employing multiple-label immunocytochemistry, histochemistry, and backfills, we searched for photic entrainment pathways to the accessory medulla (AME), the circadian clock of the Madeira cockroach. We wanted to know whether photoreceptor terminals could directly contact pigment-dispersing factor-immunoreactive (PDF-ir) circadian pacemaker neurons with somata in the lamina (PDFLAs) or somata next to the AME (PDFMEs). Short green-sensitive photoreceptor neurons of the compound eye terminated in lamina layers LA1 and LA2, adjacent to PDFLAs and PDFMEs that branched in LA3. Long UV-sensitive compound eye photoreceptor neurons terminated in medulla layer ME2 without direct contact to ipsilateral PDFMEs that arborized in ME4. Multiple neuropeptide-ir interneurons branched in ME4, connecting the AME to ME2. Before, extraocular photoreceptors of the lamina organ were suggested to send terminals to accessory laminae. There, they overlapped with PDFLAs that mostly colocalized PDF, FMRFamide, and 5-HT immunoreactivities, and with terminals of ipsi- and contralateral PDFMEs. We hypothesize that during the day cholinergic activation of the largest PDFME via lamina organ photoreceptors maintains PDF release orchestrating phases of sleep-wake cycles. As ipsilateral PDFMEs express excitatory and contralateral PDFMEs inhibitory PDF autoreceptors, diurnal PDF release keeps both PDF-dependent clock circuits in antiphase. Future experiments will test whether ipsilateral PDFMEs are sleep-promoting morning cells, while contralateral PDFMEs are activity-promoting evening cells, maintaining stable antiphase via the largest PDFME entrained by extraocular photoreceptors of the lamina organ.
Collapse
Affiliation(s)
- Thordis Arnold
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Sebastian Korek
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Azar Massah
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - David Eschstruth
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- FB 10, Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| |
Collapse
|
9
|
Martin C, Hering L, Metzendorf N, Hormann S, Kasten S, Fuhrmann S, Werckenthin A, Herberg FW, Stengl M, Mayer G. Analysis of Pigment-Dispersing Factor Neuropeptides and Their Receptor in a Velvet Worm. Front Endocrinol (Lausanne) 2020; 11:273. [PMID: 32477266 PMCID: PMC7235175 DOI: 10.3389/fendo.2020.00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Pigment-dispersing factor neuropeptides (PDFs) occur in a wide range of protostomes including ecdysozoans (= molting animals) and lophotrochozoans (mollusks, annelids, flatworms, and allies). Studies in insects revealed that PDFs play a role as coupling factors of circadian pacemaker cells, thereby controlling rest-activity rhythms. While the last common ancestor of protostomes most likely possessed only one pdf gene, two pdf homologs, pdf-I and pdf-II, might have been present in the last common ancestors of Ecdysozoa and Panarthropoda (Onychophora + Tardigrada + Arthropoda). One of these homologs, however, was subsequently lost in the tardigrade and arthropod lineages followed by independent duplications of pdf-I in tardigrades and decapod crustaceans. Due to the ancestral set of two pdf genes, the study of PDFs and their receptor (PDFR) in Onychophora might reveal the ancient organization and function of the PDF/PDFR system in panarthropods. Therefore, we deorphanized the PDF receptor and generated specific antibodies to localize the two PDF peptides and their receptor in the onychophoran Euperipatoides rowelli. We further conducted bioluminescence resonance energy transfer (BRET) experiments on cultured human cells (HEK293T) using an Epac-based sensor (Epac-L) to examine cAMP responses in transfected cells and to reveal potential differences in the interaction of PDF-I and PDF-II with PDFR from E. rowelli. These data show that PDF-II has a tenfold higher potency than PDF-I as an activating ligand. Double immunolabeling revealed that both peptides are co-expressed in E. rowelli but their respective levels of expression differ between specific cells: some neurons express the same amount of both peptides, while others exhibit higher levels of either PDF-I or PDF-II. The detection of the onychophoran PDF receptor in cells that additionally express the two PDF peptides suggests autoreception, whereas spatial separation of PDFR- and PDF-expressing cells supports hormonal release of PDF into the hemolymph. This suggests a dual role of PDF peptides-as hormones and as neurotransmitters/neuromodulators-in Onychophora.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Niklas Metzendorf
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Sarah Hormann
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Sonja Kasten
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Sonja Fuhrmann
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Achim Werckenthin
- Department of Animal Physiology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Department of Animal Physiology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
- *Correspondence: Georg Mayer
| |
Collapse
|
10
|
Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:259-272. [PMID: 31691095 PMCID: PMC7069913 DOI: 10.1007/s00359-019-01379-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila’s special case.
Collapse
|
11
|
Schlichting M, Díaz MM, Xin J, Rosbash M. Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. eLife 2019; 8:e48301. [PMID: 31613223 PMCID: PMC6794074 DOI: 10.7554/elife.48301] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Animal circadian rhythms persist in constant darkness and are driven by intracellular transcription-translation feedback loops. Although these cellular oscillators communicate, isolated mammalian cellular clocks continue to tick away in darkness without intercellular communication. To investigate these issues in Drosophila, we assayed behavior as well as molecular rhythms within individual brain clock neurons while blocking communication within the ca. 150 neuron clock network. We also generated CRISPR-mediated neuron-specific circadian clock knockouts. The results point to two key clock neuron groups: loss of the clock within both regions but neither one alone has a strong behavioral phenotype in darkness; communication between these regions also contributes to circadian period determination. Under these dark conditions, the clock within one region persists without network communication. The clock within the famous PDF-expressing s-LNv neurons however was strongly dependent on network communication, likely because clock gene expression within these vulnerable sLNvs depends on neuronal firing or light.
Collapse
Affiliation(s)
- Matthias Schlichting
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Madelen M Díaz
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Jason Xin
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Michael Rosbash
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| |
Collapse
|
12
|
Rojas P, Plath JA, Gestrich J, Ananthasubramaniam B, Garcia ME, Herzel H, Stengl M. Beyond spikes: Multiscale computational analysis of in vivo long-term recordings in the cockroach circadian clock. Netw Neurosci 2019; 3:944-968. [PMID: 31637333 PMCID: PMC6777951 DOI: 10.1162/netn_a_00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/27/2019] [Indexed: 11/28/2022] Open
Abstract
The circadian clock of the nocturnal Madeira cockroach is located in the accessory medulla, a small nonretinotopic neuropil in the brain's visual system. The clock comprises about 240 neurons that control rhythms in physiology and behavior such as sleep-wake cycles. The clock neurons contain an abundant number of partly colocalized neuropeptides, among them pigment-dispersing factor (PDF), the insects' most important circadian coupling signal that controls sleep-wake rhythms. We performed long-term loose-patch clamp recordings under 12:12-hr light-dark cycles in the cockroach clock in vivo. A wide range of timescales, from milliseconds to seconds, were found in spike and field potential patterns. We developed a framework of wavelet transform-based methods to detect these multiscale electrical events. We analyzed frequencies and patterns of events with interesting dynamic features, such as mixed-mode oscillations reminiscent of sharp-wave ripples. Oscillations in the beta/gamma frequency range (20-40 Hz) were observed to rise at dawn, when PDF is released, peaking just before the onset of locomotor activity of the nocturnal cockroach. We expect that in vivo electrophysiological recordings combined with neuropeptide/antagonist applications and behavioral analysis will determine whether specific patterns of electrical activity recorded in the network of the cockroach circadian clock are causally related to neuropeptide-dependent control of behavior.
Collapse
Affiliation(s)
- Pablo Rojas
- Theoretical Physics, University of Kassel, Kassel, Germany
| | - Jenny A. Plath
- Animal Physiology, University of Kassel, Kassel, Germany
| | - Julia Gestrich
- Animal Physiology, University of Kassel, Kassel, Germany
| | - Bharath Ananthasubramaniam
- Institute for Theoretical Biology, Humboldt University of Berlin and Charité Universitätsmedizin, Berlin, Germany
| | - Martin E. Garcia
- Theoretical Physics, University of Kassel, Kassel, Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University of Berlin and Charité Universitätsmedizin, Berlin, Germany
| | - Monika Stengl
- Animal Physiology, University of Kassel, Kassel, Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| |
Collapse
|
13
|
Vafopoulou X, Hindley-Smith M, Steel CGH. Neuropeptide- and serotonin- cells in the brain of Rhodnius prolixus (Hemiptera) associated with the circadian clock. Gen Comp Endocrinol 2019; 278:25-41. [PMID: 30048647 DOI: 10.1016/j.ygcen.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
The neuronal pathways of the circadian clock in the brain of R. prolixus have been described in detail previously, but there is no information concerning the cells or their pathways which relay either inputs to the clock (e.g. for light entrainment), or outputs from it to driven rhythms. Here, we employ antisera to three neuropeptides (type A allatostatin-7, crustacean cardioactive peptide and FMRFamide), and serotonin in confocal laser scanning immunohistochemistry to analyze the distribution of cell bodies and their projections in relation to the principle circadian clock cells (lateral cells, LNs) for all four neuron types. LNs are revealed following labelling with anti- pigment dispersing factor in double labelled preparations. Regions of potential communication between ramifications of the LNs and each of the four other neuron types is described (identified by close superposition of their neurites in various brain regions), as is their detailed projections within the brain. Neuromodulation is sometimes suggested by close, but not intimate, proximity of varicosities of neurites. We infer that some neuron types comprise input pathways to the LNs, some are outputs to neuroendocrine or behavioral rhythms, and others participate in both input and output pathways, sometimes by the same neuron type but in different locations. For example, one retinula cell in each ommatidium is immunoreactive for allatostatin A; its axon projects to the medulla making superpositions with LNs, as do serotonin cells in the optic lobe, indicating roles of both neuron types in light input (entrainment) to the clock. But in other brain areas, these same types appear to mediate outputs from the clock. The accessory medulla has been widely reported as the principle center of integration in other insects; but we found sparse evidence of this in R. prolixus as it contains few neurites other than those from the clock cells. Rather, the importance of neural pathways involving the medulla and the superior protocerebrum is emphasized. We conclude that there is a vast and complex web of interactions in the brain with the LNs, which potentially receive multiple pathways of inputs and outputs that could drive rhythmicity in a multitude of downstream cells, rendering a host of output pathways rhythmic, notably hormone release from neurosecretory cells and behaviors.
Collapse
|
14
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
15
|
Giese M, Wei H, Stengl M. Circadian pacemaker neurons of the Madeira cockroach are inhibited and activated by GABA
A
and GABA
B
receptors. Eur J Neurosci 2018; 51:282-299. [DOI: 10.1111/ejn.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Giese
- FB10, Biology, Animal PhysiologyUniversity of Kassel Kassel Germany
| | - HongYing Wei
- FB10, Biology, Animal PhysiologyUniversity of Kassel Kassel Germany
| | - Monika Stengl
- FB10, Biology, Animal PhysiologyUniversity of Kassel Kassel Germany
| |
Collapse
|
16
|
Giese M, Gestrich J, Massah A, Peterle J, Wei H, Stengl M. GABA- and serotonin-expressing neurons take part in inhibitory as well as excitatory input pathways to the circadian clock of the Madeira cockroach Rhyparobia maderae. Eur J Neurosci 2018; 47:1067-1080. [PMID: 29430734 DOI: 10.1111/ejn.13863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/20/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023]
Abstract
In the Madeira cockroach, pigment-dispersing factor-immunoreactive (PDF-ir) neurons innervating the circadian clock, the accessory medulla (AME) in the brain's optic lobes, control circadian behaviour. Circadian activity rhythms are entrained to daily light-dark cycles only by compound eye photoreceptors terminating in the lamina and medulla. Still, it is unknown which neurons connect the photoreceptors to the clock to allow for light entrainment. Here, we characterized by multiple-label immunocytochemistry the serotonin (5-HT)-ir anterior fibre fan and GABA-ir pathways connecting the AME- and optic lobe neuropils. Colocalization of 5-HT with PDF was confirmed in PDF-ir lamina neurons (PDFLAs). Double-labelled fibres were traced to the AME originating from colabelled PDFLAs branching in accessory laminae and proximal lamina. The newly discovered GABA-ir medial layer fibre tract connected the AME to the medulla's medial layer fibre system, and the distal tract fibres connected the AME to the medulla. With Ca2+ imaging on primary cell cultures of the AME and with loose-patch-clamp recordings in vivo, we showed that both neurotransmitters either excite or inhibit AME clock neurons. Because we found no colocalization of GABA and 5-HT in any optic lobe neuron, GABA- and 5-HT neurons form separate clock input circuits. Among others, both pathways converged also on AME neurons that coexpressed mostly inhibitory GABA- and excitatory 5-HT receptors. Our physiological and immunocytochemical studies demonstrate that GABA- and 5-HT-immunoreactive neurons constitute parallel excitatory or inhibitory pathways connecting the circadian clock either to the lamina or medulla where photic information from the compound eye is processed.
Collapse
Affiliation(s)
- Maria Giese
- Animal Physiology/Neurobiology, Biology, FB10, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Julia Gestrich
- Animal Physiology/Neurobiology, Biology, FB10, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Azar Massah
- Animal Physiology/Neurobiology, Biology, FB10, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Jonas Peterle
- Animal Physiology/Neurobiology, Biology, FB10, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - HongYing Wei
- Animal Physiology/Neurobiology, Biology, FB10, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Monika Stengl
- Animal Physiology/Neurobiology, Biology, FB10, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| |
Collapse
|
17
|
Abstract
Sleep is essential for proper brain function in mammals and insects. During sleep, animals are disconnected from the external world; they show high arousal thresholds and changed brain activity. Sleep deprivation results in a sleep rebound. Research using the fruit fly, Drosophila melanogaster, has helped us understand the genetic and neuronal control of sleep. Genes involved in sleep control code for ion channels, factors influencing neurotransmission and neuromodulation, and proteins involved in the circadian clock. The neurotransmitters/neuromodulators involved in sleep control are GABA, dopamine, acetylcholine, serotonin, and several neuropeptides. Sleep is controlled by the interplay between sleep homeostasis and the circadian clock. Putative sleep-wake centers are located in higher-order brain centers that are indirectly connected to the circadian clock network. The primary function of sleep appears to be the downscaling of synapses that have been built up during wakefulness. Thus, brain homeostasis is maintained and learning and memory are assured.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| |
Collapse
|
18
|
Gestrich J, Giese M, Shen W, Zhang Y, Voss A, Popov C, Stengl M, Wei H. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach. J Biol Rhythms 2017; 33:35-51. [PMID: 29179611 DOI: 10.1177/0748730417739471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.
Collapse
Affiliation(s)
- Julia Gestrich
- Department of Animal Physiology, University of Kassel, Germany
| | - Maria Giese
- Department of Animal Physiology, University of Kassel, Germany
| | - Wen Shen
- Department of Animal Physiology, University of Kassel, Germany
| | - Yi Zhang
- Institute of Nanostructure Technologies and Analytics, Center of Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Germany
| | - Alexandra Voss
- Institute of Nanostructure Technologies and Analytics, Center of Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Germany
| | - Cyril Popov
- Institute of Nanostructure Technologies and Analytics, Center of Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Germany
| | - Monika Stengl
- Department of Animal Physiology, University of Kassel, Germany
| | - HongYing Wei
- Department of Animal Physiology, University of Kassel, Germany
| |
Collapse
|
19
|
Homberg U, Müller M. Ultrastructure of GABA- and Tachykinin-Immunoreactive Neurons in the Lower Division of the Central Body of the Desert Locust. Front Behav Neurosci 2016; 10:230. [PMID: 27999533 PMCID: PMC5138221 DOI: 10.3389/fnbeh.2016.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022] Open
Abstract
The central complex, a group of neuropils spanning the midline of the insect brain, plays a key role in spatial orientation and navigation. In the desert locust and other species, many neurons of the central complex are sensitive to the oscillation plane of polarized light above the animal and are likely involved in the coding of compass directions derived from the polarization pattern of the sky. Polarized light signals enter the locust central complex primarily through two types of γ-aminobutyric acid (GABA)-immunoreactive tangential neurons, termed TL2 and TL3 that innervate specific layers of the lower division of the central body (CBL). Candidate postsynaptic partners are columnar neurons (CL1) connecting the CBL to the protocerebral bridge (PB). Subsets of CL1 neurons are immunoreactive to antisera against locustatachykinin (LomTK). To better understand the synaptic connectivities of tangential and columnar neurons in the CBL, we studied its ultrastructural organization in the desert locust, both with conventional electron microscopy and in preparations immunolabeled for GABA or LomTK. Neuronal profiles in the CBL were rich in mitochondria and vesicles. Three types of vesicles were distinguished: small clear vesicles with diameters of 20–40 nm, dark dense-core vesicles (diameter 70–120 nm), and granular dense-core vesicles (diameter 70–80 nm). Neurons were connected via divergent dyads and, less frequently, through convergent dyads. GABA-immunoreactive neurons contained small clear vesicles and small numbers of dark dense core vesicles. They had both pre- and postsynaptic contacts but output synapses were observed more frequently than input synapses. LomTK immunostaining was concentrated on large granular vesicles; neurons had pre- and postsynaptic connections often with neurons assumed to be GABAergic. The data suggest that GABA-immunoreactive tangential neurons provide signals to postsynaptic neurons in the CBL, including LomTK-immunolabeled CL1 neurons, but in addition also receive input from LomTK-labeled neurons. Both types of neuron are additionally involved in local circuits with other constituents of the CBL.
Collapse
Affiliation(s)
- Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, Germany
| | - Monika Müller
- Institute for Zoology, University of Regensburg Regensburg, Germany
| |
Collapse
|
20
|
Arendt A, Baz ES, Stengl M. Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach,Rhyparobia maderae. J Comp Neurol 2016; 525:1250-1272. [DOI: 10.1002/cne.24133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Andreas Arendt
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| | - El-Sayed Baz
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
- Department of Zoology, Faculty of Science; Suez Canal University; 41522 Ismailia Governorate Egypt
| | - Monika Stengl
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| |
Collapse
|
21
|
Stengl M, Arendt A. Peptidergic circadian clock circuits in the Madeira cockroach. Curr Opin Neurobiol 2016; 41:44-52. [PMID: 27575405 DOI: 10.1016/j.conb.2016.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 01/29/2023]
Abstract
Circadian clocks control physiology and behavior of organisms in synchrony with external light dark cycles in changing photoperiods. The Madeira cockroach Rhyparobia maderae was the first model organism in which an endogenous circadian clock in the brain was identified. About 240 neurons constitute the cockroach circadian pacemaker network in the accessory medulla. The expression of high concentrations of neuropeptides, among them the most prominent circadian coupling factor pigment-dispersing factor, as well as their ability to generate endogenous ultradian and circadian rhythms in electrical activity and clock gene expression distinguish these pacemaker neurons. We assume that entrainment to light-dark cycles and the control of 24h rest-activity rhythms is achieved via peptidergic circuits forming autoreceptive labeled lines.
Collapse
Affiliation(s)
- Monika Stengl
- University of Kassel, Biology, Animal Physiology, Heinrich Plett Str. 40, 34132 Kassel, Germany.
| | - Andreas Arendt
- University of Kassel, Biology, Animal Physiology, Heinrich Plett Str. 40, 34132 Kassel, Germany
| |
Collapse
|
22
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
23
|
Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H. Evolution of pigment-dispersing factor neuropeptides in panarthropoda: Insights from onychophora (velvet worms) and tardigrada (water bears). J Comp Neurol 2015; 523:1865-85. [DOI: 10.1002/cne.23767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Georg Mayer
- Animal Evolution and Development; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
- Department of Zoology; Institute of Biology, University of Kassel; D-34132 Kassel Germany
| | - Lars Hering
- Animal Evolution and Development; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
| | - Juliane M. Stosch
- Animal Evolution and Development; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
| | - Paul A. Stevenson
- Physiology of Animals and Behavior; Institute of Biology, University of Leipzig; D-04103 Leipzig Germany
| | - Heinrich Dircksen
- Department of Zoology; Stockholm University; S-10691 Stockholm Sweden
| |
Collapse
|
24
|
Schendzielorz J, Schendzielorz T, Arendt A, Stengl M. Bimodal oscillations of cyclic nucleotide concentrations in the circadian system of the Madeira cockroach Rhyparobia maderae. J Biol Rhythms 2014; 29:318-31. [PMID: 25231947 DOI: 10.1177/0748730414546133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigment-dispersing factor (PDF) is the most important coupling factor of the circadian system in insects, comparable to its functional ortholog vasoactive intestinal polypeptide of the mammalian circadian clock. In Drosophila melanogaster, PDF signals via activation of adenylyl cyclases, controlling circadian locomotor activity rhythms at dusk and dawn. In addition, PDF mediates circadian rhythms of the visual system and is involved in entrainment to different photoperiods. We examined whether PDF daytime-dependently elevates cAMP levels in the Madeira cockroach Rhyparobia maderae and whether cAMP mimics PDF effects on locomotor activity rhythms. To determine time windows of PDF release, we searched for circadian rhythms in concentrations of cAMP and its functional opponent cGMP in the accessory medulla (AMe), the insect circadian pacemaker controlling locomotor activity rhythms, and in the optic lobes, as the major input and output area of the circadian clock. Enzyme-linked immunosorbent assays detected PDF-dependent increases of cAMP in optic lobes and daytime-dependent oscillations of cAMP and cGMP baseline levels in the AMe, both with maxima at dusk and dawn. Although these rhythms disappeared at the first day in constant conditions (DD1), cAMP but not cGMP oscillations returned at the second day in constant conditions (DD2). Whereas in light-dark cycles the cAMP baseline level remained constant in other optic lobe neuropils, it oscillated in phase with the AMe at DD2. To determine whether cAMP and cGMP mimic PDF-dependent control of locomotor activity rhythms, both cyclic nucleotides were injected at different times of the circadian day using running-wheel assays. Whereas cAMP injections generated delays at dusk and advances at dawn, cGMP only delayed locomotor activity at dusk. For the first time we found PDF-dependent phase advances at dawn in addition to previously described phase delays at dusk. Thus, we hypothesize that PDF release at dusk and dawn controls locomotor activity rhythms and visual system processing cAMP-dependently.
Collapse
Affiliation(s)
- Julia Schendzielorz
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | | | - Andreas Arendt
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Department of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| |
Collapse
|
25
|
Schendzielorz J, Stengl M. Candidates for the light entrainment pathway to the circadian clock of the Madeira cockroach Rhyparobia maderae. Cell Tissue Res 2013; 355:447-62. [DOI: 10.1007/s00441-013-1757-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022]
|
26
|
Karsai G, Pollák E, Wacker M, Vömel M, Selcho M, Berta G, Nachman RJ, Isaac RE, Molnár L, Wegener C. Diverse in- and output polarities and high complexity of local synaptic and non-synaptic signaling within a chemically defined class of peptidergic Drosophila neurons. Front Neural Circuits 2013; 7:127. [PMID: 23914156 PMCID: PMC3729985 DOI: 10.3389/fncir.2013.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 12/31/2022] Open
Abstract
Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or volume transmission. Moreover, the polarity of peptidergic interneurons in terms of in- and out-put sites can be hard to predict and is very little explored. We describe in detail the morphology and the subcellular distribution of fluorescent vesicle/dendrite markers in CCAP neurons (NCCAP), a well defined set of peptidergic neurons in the Drosophila larva. NCCAP can be divided into five morphologically distinct subsets. In contrast to other subsets, serial homologous interneurons in the ventral ganglion show a mixed localization of in- and output markers along ventral neurites that defy a classification as dendritic or axonal compartments. Ultrastructurally, these neurites contain both pre- and postsynaptic sites preferably at varicosities. A significant portion of the synaptic events are due to reciprocal synapses. Peptides are mostly non-synaptically or parasynaptically released, and dense-core vesicles and synaptic vesicle pools are typically well separated. The responsiveness of the NCCAP to ecdysis-triggering hormone may be at least partly dependent on a tonic synaptic inhibition, and is independent of ecdysteroids. Our results reveal a remarkable variety and complexity of local synaptic circuitry within a chemically defined set of peptidergic neurons. Synaptic transmitter signaling as well as peptidergic paracrine signaling and volume transmission from varicosities can be main signaling modes of peptidergic interneurons depending on the subcellular region. The possibility of region-specific variable signaling modes should be taken into account in connectomic studies that aim to dissect the circuitry underlying insect behavior and physiology, in which peptidergic neurons act as important regulators.
Collapse
Affiliation(s)
- Gergely Karsai
- Department of Comparative Anatomy and Developmental Biology, Institute of Biology, Faculty of Science, University of Pécs Pécs, Hungary ; Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schulze J, Schendzielorz T, Neupert S, Predel R, Stengl M. Neuropeptidergic input pathways to the circadian pacemaker center of the Madeira cockroach analysed with an improved injection technique. Eur J Neurosci 2013; 38:2842-52. [DOI: 10.1111/ejn.12285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Julia Schulze
- Department of Biology, Animal Physiology; University of Kassel; Heinrich-Plett-Str. 40; Kassel; 34132; Germany
| | - Thomas Schendzielorz
- Department of Biology, Animal Physiology; University of Kassel; Heinrich-Plett-Str. 40; Kassel; 34132; Germany
| | - Susanne Neupert
- Biocenter Cologne; Functional Peptidomics; University of Cologne; Cologne; Germany
| | - Reinhard Predel
- Biocenter Cologne; Functional Peptidomics; University of Cologne; Cologne; Germany
| | - Monika Stengl
- Department of Biology, Animal Physiology; University of Kassel; Heinrich-Plett-Str. 40; Kassel; 34132; Germany
| |
Collapse
|
28
|
Wei H, Stengl M. Ca²⁺-dependent ion channels underlying spontaneous activity in insect circadian pacemaker neurons. Eur J Neurosci 2012; 36:3021-9. [PMID: 22817403 DOI: 10.1111/j.1460-9568.2012.08227.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electrical activity in the gamma frequency range is instrumental for temporal encoding on the millisecond scale in attentive vertebrate brains. Surprisingly, also circadian pacemaker neurons in the cockroach Rhyparobia maderae (Leucophaea maderae) employ fast spontaneous rhythmic activity in the gamma band frequency range (20-70 Hz) together with slow rhythmic activity. The ionic conductances controlling this fast spontaneous activity are still unknown. Here, Ca(2+) imaging combined with pharmacology was employed to analyse ion channels underlying spontaneous activity in dispersed circadian pacemakers of the adult accessory medulla, which controls circadian locomotor activity rhythms. Fast spontaneous Ca(2+) transients in circadian pacemakers accompany tetrodotoxin (TTX)-blockable spontaneous action potentials. In contrast to vertebrate pacemakers, the spontaneous depolarisations from rest appear to be rarely initiated via TTX-sensitive sustained Na(+) channels. Instead, they are predominantly driven by mibefradil-sensitive, low-voltage-activated Ca(2+) channels and DK-AH269-sensitive hyperpolarisation-activated, cyclic nucleotide-gated cation channels. Rhythmic depolarisations activate voltage-gated Na(+) channels and nifedipine-sensitive high-voltage-activated Ca(2+) channels. Together with Ca(2+) rises, the depolarisations open repolarising small-conductance but not large-conductance Ca(2+) -dependent K(+) channels. In contrast, we hypothesise that P/Q-type Ca(2+) channels coupled to large-conductance Ca(2+) -dependent K(+) channels are involved in input-dependent activity.
Collapse
Affiliation(s)
- Hongying Wei
- FB 10, Biology, Animal Physiology, University of Kassel, Heinrich Plett Str. 40, 34132 Kassel, Germany
| | | |
Collapse
|
29
|
Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, Stengl M. Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol 2012; 520:1078-97. [DOI: 10.1002/cne.22785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Wei H, Stengl M. Light Affects the Branching Pattern of Peptidergic Circadian Pacemaker Neurons in the Brain of the Cockroach Leucophaea maderae. J Biol Rhythms 2011; 26:507-17. [DOI: 10.1177/0748730411419968] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pigment-dispersing factor–immunoreactive neurons anterior to the accessory medulla (aPDFMes) in the optic lobes of insects are circadian pacemaker neurons in cockroaches and fruit flies. The authors examined whether any of the aPDFMes of the cockroach Leucophaea maderae are sensitive to changes in period and photoperiod of light/dark (LD) cycles as a prerequisite to adapt to changes in external rhythms. Cockroaches were raised in LD cycles of 11:11, 13:13, 12:12, 6:18, or 18:6 h, and the brains of the adults were examined with immunocytochemistry employing antisera against PDF and orcokinin. Indeed, in 11:11 LD cycles, only the number of medium-sized aPDFMes specifically decreased, while it increased in 13:13. In addition, 18:6 LD cycles increased the number of large- and medium-sized aPDFMes, as well as the posterior pPDFMes, while 6:18 LD cycles only decreased the number of medium-sized aPDFMes. Furthermore, PDF-immunoreactive fibers in the anterior optic commissure and orcokinin-immunoreactive fibers in both the anterior and posterior optic commissures were affected by different lengths of light cycles. Thus, apparently different groups of the PDFMes, most of all the medium-sized aPDFMes, which colocalize orcokinin, respond to changes in period and photoperiod and could possibly allow for the adjustment to different photoperiods.
Collapse
Affiliation(s)
- Hongying Wei
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Monika Stengl
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| |
Collapse
|
31
|
Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res 2011; 343:559-77. [PMID: 21229364 PMCID: PMC3046342 DOI: 10.1007/s00441-010-1091-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/04/2010] [Indexed: 12/27/2022]
Abstract
Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day.
Collapse
|
32
|
Meelkop E, Temmerman L, Schoofs L, Janssen T. Signalling through pigment dispersing hormone-like peptides in invertebrates. Prog Neurobiol 2010; 93:125-47. [PMID: 21040756 DOI: 10.1016/j.pneurobio.2010.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/19/2022]
Abstract
During recent decades, several research teams engaged in unraveling the molecular structure and the physiological significance of pigment dispersing hormone-like peptides, particularly with respect to colour change and biological rhythms. In this review, we first summarise the entire history of pigment dispersing hormone-like peptide research, thus providing a stepping stone for those who are curious about this growing area of interest. Next, we try to bring order in the plethora of experimental data on the molecular structure of the various peptides and receptors and also discuss immunolocalization, time-related expression and suggested functions in crustaceans, insects and nematodes. In addition, a brief comparison with the vertebrate system is made.
Collapse
Affiliation(s)
- E Meelkop
- Laboratory of Functional Genomics and Proteomics, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
33
|
El Jundi B, Homberg U. Evidence for the possible existence of a second polarization-vision pathway in the locust brain. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:971-979. [PMID: 20488187 DOI: 10.1016/j.jinsphys.2010.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
For spatial orientation and navigation, many insects derive compass information from the polarization pattern of the blue sky. The desert locust Schistocerca gregaria detects polarized light with a specialized dorsal rim area of its compound eye. In the locust brain, polarized-light signals are passed through the anterior optic tract and tubercle to the central complex which most likely serves as an internal sky compass. Here, we suggest that neurons of a second visual pathway, via the accessory medulla and posterior optic tubercle, also provide polarization information to the central complex. Intracellular recordings show that two types of neuron in this posterior pathway are sensitive to polarized light. One cell type connects the dorsal rim area of the medulla with the medulla and accessory medulla, and a second type connects the bilaterally paired posterior optic tubercles. Given the evidence for a role of the accessory medulla as the master clock controlling circadian changes in behavioral activity in flies and cockroaches, our data open the possibility that time-compensated polarized-light signals may reach the central complex via this pathway for time-compensated sky-compass navigation.
Collapse
Affiliation(s)
- Basil El Jundi
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | | |
Collapse
|
34
|
Wei H, el Jundi B, Homberg U, Stengl M. Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae. J Comp Neurol 2010; 518:4113-33. [DOI: 10.1002/cne.22471] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Yasuyama K, Meinertzhagen IA. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum ofDrosophila melanogaster. J Comp Neurol 2010; 518:292-304. [DOI: 10.1002/cne.22210] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Abdelsalam S, Uemura H, Umezaki Y, Saifullah ASM, Shimohigashi M, Tomioka K. Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, Gryllus bimaculatus. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1205-1212. [PMID: 18634795 DOI: 10.1016/j.jinsphys.2008.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 05/26/2023]
Abstract
Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.
Collapse
Affiliation(s)
- Salaheldin Abdelsalam
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Soehler S, Neupert S, Predel R, Stengl M. Examination of the role of FMRFamide-related peptides in the circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 2008; 332:257-69. [PMID: 18338182 DOI: 10.1007/s00441-008-0585-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/17/2008] [Indexed: 12/25/2022]
Abstract
The accessory medulla, the circadian clock of the cockroach Leucophaea maderae, is abundant in neuropeptides. Among these neuropeptides are the FMRFamide-related peptides (FaRPs), which generally share the C-terminal RFamide. As a first step toward understanding the functional role of FaRPs in the circadian clock of the cockroach, immunocytochemistry with antisera against various FaRPs, MALDI-TOF mass spectrometry, and injections of two FaRPs combined with running-wheel assays were performed. Prominent FMRFamide-like immunoreactivity was found in maximally four soma clusters associated with the accessory medulla and in most neuropils of the protocerebrum. By MALDI-TOF mass spectrometry, various extended FMRFamides of the cockroach L. maderae were partially identified in thoracic perisympathetic organs, structures known to accumulate extended FMRFamides in insects. By mass match, several of these peptides were also detected in the accessory medulla. Injections of FMRFamide and Pea-FMRFa-7 (DRSDNFIRF-NH(2)) into the vicinity of the accessory medulla caused time-dependent phase-shifts of locomotor activity rhythms at circadian times 8, 18, and 4. Thus, our data suggest a role for the different FaRPs in the control of circadian locomotor activity rhythms in L. maderae.
Collapse
Affiliation(s)
- Sandra Soehler
- Department of Biology, Animal Physiology, Philipps University Marburg, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
38
|
Miśkiewicz K, Schürmann FW, Pyza E. Circadian release of pigment-dispersing factor in the visual system of the housefly,Musca domestica. J Comp Neurol 2008; 509:422-35. [DOI: 10.1002/cne.21765] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Neupert S, Johard HAD, Nässel DR, Predel R. Single-Cell Peptidomics ofDrosophila melanogasterNeurons Identified by Gal4-Driven Fluorescence. Anal Chem 2007; 79:3690-4. [PMID: 17439240 DOI: 10.1021/ac062411p] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptides are widespread signal molecules that display a great chemical and functional diversity. Predictions of neuropeptide cleavage from precursor proteins are not always correct, and thus, biochemical identification is essential. Single-cell analysis is valuable to identify peptides processed from a single precursor, but also to determine coexpression of further neuropeptides from other precursors. We have developed an approach to isolate single identified neurons from the fruit fly Drosophila melanogaster for mass spectrometric analysis. By using Gal4 promoter lines to drive green fluorescent protein under UAS control, we identified specific peptidergic neurons. These neurons were isolated singly under a fluorescence microscope and subjected to MALDI-TOF mass spectrometry. Two Gal4 lines were used here to identify pigment-dispersing factor (PDF) and hugin-expressing neurons. We found that the large PDF expressing clock neurons only give rise to a single peptide, PDF. The three different classes of hugin expressing neurons all display the same mass signal, identical to pyrokinin-2. The other peptide predicted from the hugin precursor, hugin gamma, was not detected in any of the cells. Single-cell peptidomics is a powerful tool in Drosophila neuroscience since Gal4 drivers can be produced for all known neuropeptide genes and thus provide detailed information about neuropeptide complements in neurons of interest.
Collapse
Affiliation(s)
- Susanne Neupert
- Institute of Zoology, Friedrich-Schiller-University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | | | | | | |
Collapse
|
40
|
Helfrich-Förster C, Shafer OT, Wülbeck C, Grieshaber E, Rieger D, Taghert P. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 2007; 500:47-70. [PMID: 17099895 DOI: 10.1002/cne.21146] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The clock-gene-expressing lateral neurons are essential for the locomotor activity rhythm of Drosophila melanogaster. Traditionally, these neurons are divided into three groups: the dorsal lateral neurons (LN(d)), the large ventral lateral neurons (l-LN(v)), and the small ventral lateral neurons (s-LN(v)), whereby the latter group consists of four neurons that express the neuropeptide pigment-dispersing factor (PDF) and a fifth PDF-negative neuron. So far, only the l-LN(v) and the PDF-positive s-LN(v) have been shown to project into the accessory medulla, a small neuropil that contains the circadian pacemaker center in several insects. We show here that the other lateral neurons also arborize in the accessory medulla, predominantly forming postsynaptic sites. Both the l-LN(v) and LN(d) are anatomically well suited to connect the accessory medullae. Whereas the l-LN(v) may receive ipsilateral photic input from the Hofbauer-Buchner eyelet, the LN(d) invade mainly the contralateral accessory medulla and thus may receive photic input from the contralateral side. Both the LN(d) and the l-LN(v) differentiate during midmetamorphosis. They do so in close proximity to one another and the fifth PDF-negative s-LN(v), suggesting that these cell groups may derive from common precursors.
Collapse
|
41
|
Söhler S, Neupert S, Predel R, Nichols R, Stengl M. Localization of leucomyosuppressin in the brain and circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 2007; 328:443-52. [PMID: 17216199 DOI: 10.1007/s00441-006-0338-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/30/2006] [Indexed: 11/27/2022]
Abstract
The myosuppressins (X1DVX2HX3FLRFamide), which reduce the frequency of insect muscle contractions, constitute a subgroup of the FMRFamide-related peptides. In the cockroach Leucophaea maderae, we have examined whether leucomyosuppressin (pQDVDHVFLRFamide) is present in the accessory medulla, viz., the circadian clock, which governs circadian locomotor activity rhythms. Antisera that specifically recognize leucomyosuppressin stain one to three neurons near the accessory medulla. MALDI-TOF mass spectrometry has confirmed the presence of leucomyosuppressin in the isolated accessory medulla. Injections of 1.15 pmol leucomyosuppressin into the vicinity of the accessory medulla at various circadian times have revealed no statistically significant effects on the phase of circadian locomotor activity rhythms. This is consistent with the morphology of the myosuppressin-immunoreactive neurons, which restrict their arborizations to the circadian clock and other optic lobe neuropils. Thus, leucomyosuppressin might play a role in the circadian system other than in the control of locomotor activity rhythms.
Collapse
Affiliation(s)
- Sandra Söhler
- Department of Biology, Animal Physiology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Honda T, Matsushima A, Sumida K, Chuman Y, Sakaguchi K, Onoue H, Meinertzhagen IA, Shimohigashi Y, Shimohigashi M. Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies. J Comp Neurol 2006; 499:404-21. [PMID: 16998911 DOI: 10.1002/cne.21112] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigment-dispersing factor (PDF) is an 18-mer peptide that acts as a principal neurotransmitter of the insect circadian clock. Our previous study, utilizing anti-Uca beta-PDH polyclonal antibody (pAb) to immunolabel the optic lobe of the cricket Gryllus bimaculatus, suggested the existence of an alternative PDF-like peptide in the outer cells of the first neuropile, or lamina (La), which were much less immunoreactive than the inner cells of the second neuropile, the medulla (Me). To obtain structural information about such a PDF-like peptide, we prepared 10 anti-Gryllus PDF monoclonal (mAb) and pAb antibodies and analyzed their detailed epitope specificities. The PDFMe and PDFLa inner cells and their axonal projections were clearly immunoreactive to all these antibodies, revealing the widespread immunocytochemical organization of the PDF system in the optic lobe, as seen previously with anti-Uca beta-PDH pAb and anti-Gryllus PDF mAb, the epitope structures of which were also clarified in this study. The lamina outer cells, which we found lacked a target pdf mRNA, displayed specific immunoreactivities, indicating that the cells contain a distinct PDF-like peptide possessing both N- and C-terminal structures. These cells were not immunolabeled by some other monoclonal antibodies, however, implying that the PDFLa outer cells have a PDF isoform peptide devoid of Asn at positions 6 and 16. This isoform was also identified in a varicose arborization in the lamina. These results suggest not only the structure of the peptide, but also the possibility of additional functions of this novel PDF isoform.
Collapse
Affiliation(s)
- Takeshi Honda
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schneider NL, Stengl M. Extracellular long-term recordings of the isolated accessory medulla, the circadian pacemaker center of the cockroach Leucophaea maderae, reveal ultradian and hint circadian rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:35-42. [PMID: 16983545 DOI: 10.1007/s00359-006-0169-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 02/03/2023]
Abstract
In the cockroach Leucophaea maderae transplantation studies located the circadian pacemaker center, which controls locomotor activity rhythms, to the accessory medulla (AMe), ventromedially to the medulla of the brain's optic lobes. The AMe is densely innervated via GABA- and manyfold peptide-immunoreactive neurons. They express ultradian action potential oscillations in the gamma frequency range and form phase-locked assemblies of synchronously spiking cells. Peptide application resulted in transient rises of extracellularly recorded activity. It remained unknown whether transient rises in spontaneous electrical activity as a possible indication of peptide release occur in the isolated circadian clock in a rhythmic manner. In extracellular glass electrode recordings of the isolated AMe in constant darkness, which lasted at least 12 h, the distribution of daytime-dependent changes in activity independently of the absolute action potential frequency was examined. Rapid, transient changes in activity preferentially occurred at the mid-subjective night, with a minimum at the middle of the subjective day, hinting the presence of circadian rhythms in the isolated circadian clock. Additionally, ultradian rhythms in activity change that are multiples of a fundamental 2 h period were observed. We hypothesize that circadian rhythms might originate from coupled ultradian oscillations, possibly already at the single cell level.
Collapse
Affiliation(s)
- Nils-Lasse Schneider
- Biology, Animal Physiology, Philipps-University of Marburg, Karl von Frisch Str., 35032, Marburg, Germany.
| | | |
Collapse
|
44
|
Hofer S, Homberg U. Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. ACTA ACUST UNITED AC 2006; 209:2794-803. [PMID: 16809470 DOI: 10.1242/jeb.02307] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The accessory medulla (AMe), a small neuropil in the optic lobe, houses the master circadian clock in the brain of the cockroach Leucophaea maderae and controls circadian rhythms in locomotor activity. Recently, members of the orcokinin family of crustacean neuropeptides were identified in a cockroach and a locust and were shown by immunocytochemistry to be prominently present in the AMe. In the cockroach L. maderae, about 30 neurons in five of six established cell groups of the AMe showed orcokinin immunostaining. By means of tracer injections into one AMe and immunostaining with anti-orcokinin antiserum, we show here that one orcokinin-immunoreactive ventral neuron and three ventromedian neurons directly connect both AMae. To determine a possible circadian function of orcokinin in the cockroach, we injected 150 fmol Asn(13)-orcokinin into the vicinity of the AMe at different circadian times. These experiments resulted in stable phase-dependent phase shifts of circadian locomotor activity of the cockroach. The shape of the resulting phase-response curve closely matched the phase-shifting effects of light pulses, and its amplitude was dependent on the amount of the injected peptide. Together with the anatomical data, the results suggest that orcokinin-related peptides play an important role in light entrainment pathways to the circadian clock via the contralateral compound eye. This study, furthermore, provides the first evidence for a physiological role of an orcokinin-related peptide in insects.
Collapse
Affiliation(s)
- Sabine Hofer
- Fachbereich Biologie, Tierphysiologie, Philipps Universität Marburg, D-35032 Marburg, Germany
| | | |
Collapse
|
45
|
Hofer S, Homberg U. Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res 2006; 325:589-600. [PMID: 16628411 DOI: 10.1007/s00441-006-0155-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 12/23/2005] [Indexed: 12/25/2022]
Abstract
The accessory medulla is the master circadian clock in the brain of the cockroach Leucophaea maderae and controls circadian locomotor activity. Previous studies have demonstrated that a variety of neuropeptides are prominent neuromediators in this brain area. Recently, members of the orcokinin family of crustacean neuropeptides have been identified in several insect species and shown to be widely distributed in the brain, including the accessory medulla. To investigate the possible involvement of orcokinins in circadian clock function, we have analyzed the distribution of orcokinin immunostaining in the accessory medulla of L. maderae in detail. The accessory medulla is densely innervated by approximately 30 orcokinin-immunoreactive neurons with cell bodies distributed in five of six established cell groups in the accessory medulla. Immunostaining is particularly prominent in three ventromedian neurons. These neurons have processes in a median layer of the medulla and in the internodular neuropil of the accessory medulla and send axonal fibers via the posterior optic commissure to their contralateral counterparts. Double-labeling experiments have revealed the colocalization of orcokinin immunostaining with immunoreactivity for pigment-dispersing hormone, FMRFamide, Mas-allatotropin, and gamma-aminobutyric acid in two cell groups of the accessory medulla, but not in the ventromedian neurons or in the anterior and posterior optic commissure. Immunostaining in the ventromedian neurons suggests that orcokinin-related peptides play a role in the heterolateral transmission of photic input to the pacemaker and/or in the coupling of the bilateral pacemakers of the cockroach.
Collapse
Affiliation(s)
- Sabine Hofer
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
46
|
Schneider NL, Stengl M. Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae. J Neurosci 2006; 25:5138-47. [PMID: 15917454 PMCID: PMC6724822 DOI: 10.1523/jneurosci.5138-a-04.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pigment-dispersing factor-immunoreactive circadian pacemaker cells, which arborize in the accessory medulla, control circadian locomotor activity rhythms in Drosophila as well as in the cockroach Leucophaea maderae via unknown mechanisms. Here, we show that circadian pacemaker candidates of the accessory medulla of the cockroach produce regular interspike intervals. Therefore, the membrane potential of the cells oscillates with ultradian periods. Most or all oscillating cells within the accessory medulla are coupled via synaptic and nonsynaptic mechanisms, forming different assemblies. The cells within an assembly share the same ultradian period (interspike interval) and the same phase (timing of spikes), whereas cells between assemblies differ in phase. Apparently, the majority of these assemblies are formed by inhibitory GABAergic synaptic interactions. Application of pigment-dispersing factor phase locked and thereby synchronized different assemblies. The data suggest that pigment-dispersing factor inhibits GABAergic interneurons, resulting in disinhibition and phase locking of their postsynaptic cells, which previously belonged to different assemblies. Our data suggest that phase control of action potential oscillations in the ultradian range is a main task of the circadian pacemaker network. We hypothesize that neuropeptide-dependent phase control is used to gate circadian outputs to locomotor control centers.
Collapse
Affiliation(s)
- Nils-Lasse Schneider
- Department of Biology, Animal Physiology, Philipps University of Marburg, D-35032 Marburg, Germany
| | | |
Collapse
|
47
|
Hamanaka Y, Yasuyama K, Numata H, Shiga S. Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. J Comp Neurol 2006; 491:390-9. [PMID: 16175545 DOI: 10.1002/cne.20712] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In females of the blow fly Protophormia terraenovae, neurons with cell bodies in the pars lateralis (PL) projecting to the retrocerebral complex (designated as PL neurons) are necessary for the induction of reproductive diapause under short-day and low-temperature conditions. In the present study, neural connections between PL neurons and pigment-dispersing factor (PDF)-immunoreactive neurons were examined via immunolight microscopy and immunoelectron microscopy combined with backfills through the cardiac-recurrent nerve. Immunolight microscopy showed that fibers of PL neurons overlapped with PDF-immunoreactive fibers in the dorsolateral region of the superior protocerebral neuropil. Immunoelectron microscopy showed that PDF-immunoreactive fibers formed output synapses with fibers of PL neurons and unlabeled neurons in a region dorsoanteriorly located with respect to the calyx of the mushroom body. The distribution of synaptic connections between PDF-immunoreactive fibers and the fibers of PL neurons was sparse. According to the projection patterns, PDF-immunoreactive fibers with synaptic connections with PL neurons appeared to originate from PDF-immunoreactive neurons with cell bodies at the base of the medulla of the optic lobe (medulla PDF neurons), which are putative circadian clock neurons in P. terraenovae. PDF immunoreactivity was restrictively detected in dense-core vesicles but not in clear synaptic vesicles. The present results suggest that medulla PDF neurons convey time or photoperiodic information to PL neurons for diapause induction through direct synaptic connections.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Bio- and Geosciences, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
48
|
Schneider NL, Stengl M. Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae. J Neurophysiol 2005; 95:1996-2002. [PMID: 16291804 DOI: 10.1152/jn.00835.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The temporal organization of physiological and behavioral states is controlled by circadian clocks in apparently all eukaryotic organisms. In the cockroach Leucophaea maderae lesion and transplantation studies located the circadian pacemaker in the accessory medulla (AMe). The AMe is densely innervated by gamma-aminobutyric acid (GABA)-immunoreactive and peptidergic neurons, among them the pigment-dispersing factor immunoreactive circadian pacemaker candidates. The large majority of cells of the cockroach AMe spike regularly and synchronously in the gamma frequency range of 25-70 Hz as a result of synaptic and nonsynaptic coupling. Although GABAergic coupling forms assemblies of phase-locked cells, in the absence of synaptic release the cells remain synchronized but fire now at a stable phase difference. To determine whether these coupling mechanisms of AMe neurons, which are independent of synaptic release, are based on electrical synapses between the circadian pacemaker cells the gap-junction blockers halothane, octanol, and carbenoxolone were used in the presence and absence of synaptic transmission. Here, we show that different populations of AMe neurons appear to be coupled by gap junctions to maintain synchrony at a stable phase difference. This synchronization by gap junctions is a prerequisite to phase-locked assembly formation by synaptic interactions and to synchronous gamma-type action potential oscillations within the circadian clock.
Collapse
Affiliation(s)
- Nils-Lasse Schneider
- Biology, Animal Physiology, Philipps-University of Marburg, Karl von Frisch Str., 35032 Marburg, Germany
| | | |
Collapse
|
49
|
Reischig T, Petri B, Stengl M. Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell Tissue Res 2004; 318:553-64. [PMID: 15578273 DOI: 10.1007/s00441-004-0927-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Circadian locomotor activity rhythms of the cockroach Leucophaea maderae are driven by two bilaterally paired and mutually coupled pacemakers that reside in the optic lobes of the brain. Transplantation studies have shown that this circadian pacemaker is located in the accessory medulla (AMe), a small neuropil of the medulla of the optic lobe. The AMe is densely innervated by about 12 anterior pigment-dispersing-hormone-immunoreactive (PDH-ir) medulla (PDHMe) neurons. PDH-ir neurons are circadian pacemaker candidates in the fruitfly and cockroach. A subpopulation of these neurons also appears to connect both optic lobes and may constitute at least one of the circadian coupling pathways. To determine whether PDHMe neurons directly connect both accessory medullae, we injected rhodamine-labeled dextran as neuronal tracer into one AMe and performed PDH immunocytochemistry. Double-labeled fibers in the anterior, shell, and internodular neuropil of the AMe contralaterally to the injection site showed that PDH-ir fibers directly connect both accessory medullae. This connection is formed by three anterior PDHMe neurons of each optic lobe, which, thus, fulfill morphological criteria for a direct circadian coupling pathway. Our double-label studies also showed that all except one of the midbrain projection areas of anterior PDHMe neurons were innervated ipsilaterally and contralaterally. Thus, anterior PDHMe neurons seem to play multiple roles in generating circadian rhythms. They also deliver timing information output and perform mutual pacemaker coupling in L. maderae.
Collapse
Affiliation(s)
- Thomas Reischig
- Department of Neurobiology, Institute of Zoology and Anthropology, Georg August University of Göttingen, Berliner Strasse 28, 37073, Göttingen, Germany
| | | | | |
Collapse
|
50
|
Abstract
Digital models of organs, cells and subcellular structures have become important tools in biological and medical research. Reaching far beyond their traditional widespread use as didactic tools, computer-generated models serve as electronic atlases to identify specific elements in complex patterns, and as analytical tools that reveal relationships between such pattern elements that would remain obscure in two-dimensional sections. Digital models also offer the unique opportunity to store and display gene-expression patterns, and pilot studies have been made in several genetic model organisms, including mouse, Drosophila and Caenorhabditis elegans, to construct digital graphic databases intended as repositories for gene-expression data.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095 USA
| | | |
Collapse
|