1
|
Das UN. Response to: Bioactive Lipids and Coronavirus (COVID-19)-further Discussion. Arch Med Res 2020; 51:445-449. [PMID: 32345532 PMCID: PMC7158824 DOI: 10.1016/j.arcmed.2020.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022]
|
2
|
Das UN. Bioactive lipids as modulators of immune check point inhibitors. Med Hypotheses 2019; 135:109473. [PMID: 31733534 DOI: 10.1016/j.mehy.2019.109473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
It is proposed that arachidonic acid (AA, 20:4 n-6) and other polyunsaturated fatty acids (PUFAs) in combination with immune check point inhibitors and tumor infiltrating lymphocytes (TILs) enhances the activity of T and NK cells and macrophages and thus, aids in the elimination of tumor cells and suppresses inflammatory side effects due to immune check point inhibitors.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, GVP Hospital and Medical College, Visakhapatnam 530048, India.
| |
Collapse
|
3
|
Das UN. Can Bioactive Lipids Augment Anti-cancer Action of Immunotherapy and Prevent Cytokine Storm? Arch Med Res 2019; 50:342-349. [DOI: 10.1016/j.arcmed.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
|
4
|
Gal Y, Sapoznikov A, Falach R, Ehrlich S, Aftalion M, Kronman C, Sabo T. Total Body Irradiation Mitigates Inflammation and Extends the Therapeutic Time Window for Anti-Ricin Antibody Treatment against Pulmonary Ricinosis in Mice. Toxins (Basel) 2017; 9:toxins9090278. [PMID: 28891987 PMCID: PMC5618211 DOI: 10.3390/toxins9090278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/02/2022] Open
Abstract
Ricin, a highly toxic plant-derived toxin, is considered a potential weapon in biowarfare and bioterrorism due to its pronounced toxicity, high availability, and ease of preparation. Pulmonary exposure to ricin results in the generation of an acute edematous inflammation followed by respiratory insufficiency and death. Massive neutrophil recruitment to the lungs may contribute significantly to ricin-mediated morbidity. In this study, total body irradiation (TBI) served as a non-pharmacological tool to decrease the potential neutrophil-induced lung injury. TBI significantly postponed the time to death of intranasally ricin-intoxicated mice, given that leukopenia remained stable following intoxication. This increase in time to death coincided with a significant reduction in pro-inflammatory marker levels, and led to marked extension of the therapeutic time window for anti-ricin antibody treatment.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
5
|
Giresha AS, Pramod SN, Sathisha AD, Dharmappa KK. Neutralization of Inflammation by Inhibiting In vitro and In vivo Secretory Phospholipase A 2 by Ethanol Extract of Boerhaavia diffusa L. Pharmacognosy Res 2017; 9:174-181. [PMID: 28539742 PMCID: PMC5424559 DOI: 10.4103/0974-8490.204650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inflammation is a normal and necessary prerequisite to healing of the injured tissues. Inflammation contributes to all disease process including immunity, vascular pathology, trauma, sepsis, chemical, and metabolic injuries. The secretory phospholipase A2 (sPLA2) is a key enzyme in the production of pro-inflammatory mediators in chronic inflammatory disorders such as rheumatoid arthritis, coronary heart disease, diabetes, and asthma. The sPLA2 also contribute to neuroinflammatory disorders such as Parkinson's, Alzheimer's, and Crohn's disease. AIMS The present study aims to investigate the inhibition of human sPLA2 by a popular medicinal herb Boerhaavia diffusa Linn. as a function of anti-inflammatory activity. MATERIALS AND METHODS The aqueous and different organic solvents extracts of B. diffusa were prepared and evaluated for human synovial fluid, human pleural fluid, as well as Vipera russelli and Naja naja venom sPLA2 enzyme inhibition. RESULTS Among the extracts, the ethanol extract of B. diffusa (EEBD) showed the highest sPLA2 inhibition and IC50 values ranging from 17.8 to 27.5 μg. Further, antioxidant and lipid peroxidation activities of B. diffusa extract were checked using 2,2-diphenyl-1-picrylhydrazyl radical, thiobarbituric acid, and rat liver homogenate. The antioxidant activity of EEBD was more or less directly proportional to in vitro sPLA2 inhibition. Eventually, the extract was subjected to neutralize sPLA2-induced mouse paw edema and indirect hemolytic activity. The EEBD showed similar potency in both the cases. CONCLUSIONS The findings suggest that the bioactive molecule/s from the EEBD is/are potentially responsible for the observed in vitro and in vivo sPLA2 inhibition and antioxidant activity. SUMMARY The present study aims to investigate the inhibition of human sPLA2 by a popular medicinal herb Boerhaavia diffusa Linn. as a function of anti inflammatory activity. Abbreviation Used: EEBD: Ethanolic extract of boerhaavia diffusa, sPLA2: Secretory phospholipase A2, HSF: Human synovial fluid, HPF: Human pleural fluid, VRV-PLA2-V: Vipera russelli phospholipase A2, NN-PLA2-I: Naja naja phospholipase A2.
Collapse
Affiliation(s)
- Aladahalli S. Giresha
- Department of Post Graduate Studies and Research in Biochemistry, Post Graduate Centre, Mangalore University, Kodagu, Karnataka, India
| | - Siddanakoppalu N. Pramod
- Department of Studies and Research in Biochemistry, Laboratory of Immunomodulation and inflammation Biology, Sahyadri Science College (Autonomous), Kuvempu University, Shimoga, Karnataka, India
| | - A. D. Sathisha
- Department of Biochemistry, Institute of Biomedical Sciences, College of Health Sciences, Ayder Referral Hospital, Mekelle University, Mekelle, Ethiopia
| | - K. K. Dharmappa
- Department of Post Graduate Studies and Research in Biochemistry, Post Graduate Centre, Mangalore University, Kodagu, Karnataka, India
| |
Collapse
|
6
|
Eom S, Park Y, Kim Y. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila. J Microbiol 2014; 52:161-8. [DOI: 10.1007/s12275-014-3251-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 01/29/2023]
|
7
|
Menschikowski M, Platzbecker U, Hagelgans A, Vogel M, Thiede C, Schönefeldt C, Lehnert R, Eisenhofer G, Siegert G. Aberrant methylation of the M-type phospholipase A(2) receptor gene in leukemic cells. BMC Cancer 2012; 12:576. [PMID: 23217014 PMCID: PMC3561142 DOI: 10.1186/1471-2407-12-576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/28/2012] [Indexed: 11/18/2022] Open
Abstract
Background The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Methods Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Results Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. Conclusions The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis.
Collapse
Affiliation(s)
- Mario Menschikowski
- Institut für Klinische Chemie und Laboratoriumsmedizin, Technische Universität Dresden, Fetscherstrasse 74, D-01307, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barbosa CMV, Leon CMMP, Nogueira-Pedro A, Wasinsk F, Araújo RC, Miranda A, Ferreira AT, Paredes-Gamero EJ. Differentiation of hematopoietic stem cell and myeloid populations by ATP is modulated by cytokines. Cell Death Dis 2011; 2:e165. [PMID: 21633388 PMCID: PMC3168991 DOI: 10.1038/cddis.2011.49] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular nucleotides are emerging as important regulators of inflammation, cell proliferation and differentiation in a variety of tissues, including the hematopoietic system. In this study, the role of ATP was investigated during murine hematopoiesis. ATP was able to reduce the percentage of hematopoietic stem cells (HSCs), common myeloid progenitors and granulocyte–macrophage progenitors (GMPs), whereas differentiation into megakaryocyte–erythroid progenitors was not affected. In addition, in vivo administration of ATP to mice reduced the number of GMPs, but increased the number of Gr-1+Mac-1+ myeloid cells. ATP also induced an increased proliferation rate and reduced Notch expression in HSCs and impaired HSC-mediated bone marrow reconstitution in sublethally irradiated mice. Moreover, the effects elicited by ATP were inhibited by suramin, a P2 receptor antagonist, and BAPTA, an intracellular Ca2+ chelator. We further investigated whether the presence of cytokines might modulate the observed ATP-induced differentiation. Treatment of cells with cytokines (stem cell factor, interleukin-3 and granulocyte–monocyte colony stimulator factor) before ATP stimulation led to reduced ATP-dependent differentiation in long-term bone marrow cultures, thereby restoring the ability of HSCs to reconstitute hematopoiesis. Thus, our data suggest that ATP induces the differentiation of murine HSCs into the myeloid lineage and that this effect can be modulated by cytokines.
Collapse
Affiliation(s)
- C M V Barbosa
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu 862, 2° Andar, 04023-062 São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Involvement of epigenetic mechanisms in the regulation of secreted phospholipase A2 expressions in Jurkat leukemia cells. Neoplasia 2008; 10:1195-203. [PMID: 18953428 DOI: 10.1593/neo.08640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 02/03/2023] Open
Abstract
Epigenetic changes provide a frequent mechanism for transcriptional silencing of genes in cancer cells. We previously established that epigenetic mechanisms are important for control of group IIA phospholipase A(2) (PLA2G2A) gene transcription in human DU-145 prostate cells. In this study, we analyzed the involvement of such mechanisms in the regulation of five sPLA(2) isozymes and the M-type receptor of sPLA(2) (sPLA(2)-R) in human leukemic Jurkat cells. These cells constitutively expressed sPLA(2)-IB, sPLA(2)-III, sPLA(2)-X, and sPLA(2)-R but not sPLA(2)-IIA and sPLA(2)-V. Transcription of sPLA(2)-IIA and sPLA(2)-V was, however, detected after exposure of cells to the DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC). Expression of sPLA(2)-IIA was further enhanced by additional exposure to interferon-gamma and blocked by inhibitors of specificity protein 1, nuclear factor kappaB, and Janus kinase/signal transducer and activator of transcription-dependent pathways. Sequence analysis and methylation-specific polymerase chain reaction of bisulfite-modified genomic DNA revealed two 5'-CpG sites (-111 and -82) in the sPLA(2)-IIA proximal promoter that were demethylated after 5-aza-dC treatment. These sites may be involved in the DNA binding of specificity protein 1 and other transcription factors. Similar findings after treatment of human U937 leukemia cells with 5-aza-dC indicate that this mechanism of PLA2G2A gene silencing is not restricted to Jurkat and DU-145 cells. These data establish that regulation of sPLA(2)-IIA and sPLA(2)-V in Jurkat and other cells involves epigenetic silencing by DNA hypermethylation.
Collapse
|
10
|
Costa-Junior HM, Mendes AN, Davis GHNG, da Cruz CM, Ventura ALM, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio RDC, Persechini PM. ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 2008; 88:51-61. [PMID: 18984060 DOI: 10.1016/j.prostaglandins.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/16/2008] [Accepted: 09/29/2008] [Indexed: 01/10/2023]
Abstract
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X(7) receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP(e) in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6h after an induction period of 20 min in the presence of ATP. Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect on apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3), inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+)-independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X(7) in macrophages.
Collapse
Affiliation(s)
- Helio Miranda Costa-Junior
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
de Kruif MD, Lemaire LC, Giebelen IA, Groot AP, Pater JM, van den Pangaart PS, Elliott PJ, van der Poll T. Effects of prednisolone on the systemic release of mediators of cell-mediated cytotoxicity during human endotoxemia. Shock 2008; 29:458-61. [PMID: 17909456 DOI: 10.1097/shk.0b013e3181598a6a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corticosteroids are widely used for the suppression of cell-mediated cytoxicity. This process is mediated by natural killer cells and cytotoxic T lymphocytes, and their activation can be monitored by levels of the chemokines CXCL9 and CXCL10, the degranulation product granzymes A and B, and by levels of secretory phospholipase A2. The current study aimed to determine the effects of increasing doses of prednisolone on the release of these mediators in healthy humans exposed to LPS. Therefore, 32 healthy men received prednisolone orally at doses of 0, 3, 10, or 30 mg (n = 8 per group) at 2 h before intravenous injection of Escherichia coil LPS (4 ng/kg). Prednisolone dose-dependently attenuated the LPS-induced rises in the plasma concentrations of the chemokines CXCL9 and CXCL10, as well as of granzymes A and B levels. CXCL10 and granzyme B release were most sensitive to prednisolone, with a significant inhibition already achieved at the lowest prednisolone dose (3 mg). The levels of secretory phospholipase A2 were increased after LPS administration but were not significantly affected by prednisolone. This study demonstrates that prednisolone differentially inhibits the systemic release of mediators involved in cell-mediated cytotoxicity in humans in vivo.
Collapse
Affiliation(s)
- Martijn D de Kruif
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|