1
|
Sommerfeld LC, Holmes AP, Yu TY, O'Shea C, Kavanagh DM, Pike JM, Wright T, Syeda F, Aljehani A, Kew T, Cardoso VR, Kabir SN, Hepburn C, Menon PR, Broadway-Stringer S, O'Reilly M, Witten A, Fortmueller L, Lutz S, Kulle A, Gkoutos GV, Pavlovic D, Arlt W, Lavery GG, Steeds R, Gehmlich K, Stoll M, Kirchhof P, Fabritz L. Reduced plakoglobin increases the risk of sodium current defects and atrial conduction abnormalities in response to androgenic anabolic steroid abuse. J Physiol 2024; 602:4409-4436. [PMID: 38345865 DOI: 10.1113/jp284597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.
Collapse
Affiliation(s)
- Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ting Y Yu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Deirdre M Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Jeremy M Pike
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Thomas Wright
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Areej Aljehani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Tania Kew
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Victor R Cardoso
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claire Hepburn
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Priyanka R Menon
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Anika Witten
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
| | - Lisa Fortmueller
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Kulle
- Division of Paediatric Endocrinology and Diabetes, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Georgios V Gkoutos
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR), Midlands Site, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Medical Research Council London Institute of Medical Sciences, London UK & Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Richard Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Monika Stoll
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Bacqué-Cazenave J, Bouvet F, Fossat P, Cattaert D, Delbecque JP. Control of motor activity in crayfish by the steroid hormone 20-hydroxyecdysone via motoneuron excitability and sensory-motor integration. J Exp Biol 2013; 216:1808-18. [PMID: 23393273 DOI: 10.1242/jeb.080176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the effects of the molting hormone 20-hydroxyecdysone (20E) on leg sensory-motor networks of the red swamp crayfish, Procambarus clarkii. The hormone was injected in isolated crayfish and network activity was analyzed 3 days after injection using electrophysiology on an in vitro preparation of the leg locomotor network. This 20E treatment deeply reduced motor activity, by affecting both intrinsic motoneuron (MN) properties and sensory-motor integration. Indeed, we noticed a general decrease in motor nerve tonic activities, principally in depressor and promotor nerves. Moreover, intracellular recordings of depressor MNs confirmed a decrease of MN excitability due to a drop in input resistance. In parallel, sensory inputs originating from a proprioceptor, which codes joint movements controlled by these MNs, were also reduced. The shape of excitatory post-synaptic potentials (PSPs) triggered in MNs by sensory activity of this proprioceptor showed a reduction of polysynaptic components, whereas inhibitory PSPs were suppressed, demonstrating that 20E acted also on interneurons relaying sensory to motor inputs. Consequently, 20E injection modified the whole sensory-motor loop, as demonstrated by the alteration of the resistance reflex amplitude. These locomotor network changes induced by 20E were consistent with the decrease of locomotion observed in a behavioral test. In summary, 20E controls locomotion during crayfish premolt by acting on both MN excitability and sensory-motor integration. Among these cooperative effects, the drop of input resistance of MNs seems to be mostly responsible for the reduction of motor activity.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Biologie Animale, Bâtiment B2, 33405 Talence Cedex, France
| | | | | | | | | |
Collapse
|