1
|
Niitsu S, Onoue K, Tanio T, Ito H, Naka H, Nakajima H, Sakamoto Y, Someya T, Yano T, Kamito T, Endo H, Yago M. Cell death and wing reduction during the metamorphosis of sex-specific flightless morphs in winter geometrid moths. J Morphol 2023; 284:e21616. [PMID: 37458089 DOI: 10.1002/jmor.21616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Winter geometrid moths show striking sexual dimorphism by having female-specific flightless morphs. The evolutionary grades of wing reduction in winter geometrid moths vary and range from having short wings, vestigial wings, to being wingless. Although the ontogenetic processes underlying the development of the wingless or short-wing morphs in Lepidoptera has been well studied, the mechanisms underlying the development of vestigial wing morphs in winter geometrid moths during metamorphosis are poorly understood. In the winter geometrid moth Sebastosema bubonaria Warren, 1896, the males have functional wings, but the females have vestigial wings. Here, we studied the ontogenetic processes affecting wing reduction in the winter geometrid moth S. bubonaria using light microscopy and transmission electron microscopy, and compared the ontogenetic process of wing reduction in this species with that in another species of the wingless-female winter moth that we investigated previously. Our results showed that, in the vestigial-wing morphs, the loss of pupal wing epithelium was terminated in the middle of the wing degeneration process, whereas in the wingless morph, the pupal wing epithelium disappeared almost completely and the final appearance of the wings differed slightly among flightless morphs. We propose that the extent and location of cell death in the pupal wing play an important role in the various patterns of reduced wings that are observed in flightless moths.
Collapse
Affiliation(s)
- Shuhei Niitsu
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Arts and Sciences, International Christian University, Mitaka, Tokyo, Japan
| | - Kanako Onoue
- The United Graduated School of Agricultural Sciences, Tottori University, Tottori, Tottori, Japan
| | - Takashi Tanio
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hayato Ito
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideshi Naka
- Faculty of Agriculture, Tottori University, Koyama Minami, Tottori, Japan
| | - Hideo Nakajima
- 6-19-18 Shimo-sueyoshi, Tsurumi, Yokohama, Kanagawa, Japan
| | - Yusuke Sakamoto
- 1-2-12-101 Kamitsuruma-honmachi, Sagamihara, Kanagawa, Japan
| | | | | | - Takehiko Kamito
- Department of Arts and Sciences, International Christian University, Mitaka, Tokyo, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaya Yago
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Early cellular development induced by ecdysteroid in sex-specific wing degeneration of the wingless female winter moth. Cell Tissue Res 2021; 387:29-38. [PMID: 34661757 DOI: 10.1007/s00441-021-03540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
The winter moth, Nyssiodes lefuarius, exhibits striking sexual dimorphism in wing form; males have functional wings of normal size, whereas females lack wings. We previously found that the steroid hormone 20-hydroxyecdysone (20E) triggered massive programmed cell death (PCD) only in the female pupal wing epithelium; however, when and how early sexual trait development of the pupal wings is initiated during pupal-adult metamorphosis remains obscure. To clarify the detailed morphological changes and mechanisms underlying early sexual trait development and cell death, we examined the effects of 20E on early ultrastructural and histological changes in the pupal wing epithelium of both sexes. Before the onset of adult differentiation, no morphological differences were observed in the epithelial cells of both sexes at an ultrastructural level. When 5.4 µg of 20E was injected into pupae of both sexes at 15 days after the onset of pupation, retraction of the wing epithelium from the pupal cuticle was initiated at day 2 after 20E injection in both sexes. Although overt degeneration of wing tissue was not still obvious, apoptotic body-like structures and auto-phagosomes were visible at day 3 after 20E injection in females, whereas development of scale precursor cells started on day 4 after injection in males. Our results suggest that (1) the injection of 20E induced sexually dimorphic changes in the pattern of organelle distribution in wing epithelial cells, and (2) abnormally shaped mitochondria in the cytoplasm of the female wing epithelium might be involved in the PCD that occurs during wing tissue degeneration.
Collapse
|
3
|
Kono N, Nakamura H, Tateishi A, Numata K, Arakawa K. The balance of crystalline and amorphous regions in the fibroin structure underpins the tensile strength of bagworm silk. ZOOLOGICAL LETTERS 2021; 7:11. [PMID: 34311769 PMCID: PMC8314566 DOI: 10.1186/s40851-021-00179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Protein-based materials are considered versatile biomaterials, and their biodegradability is an advantage for sustainable development. Bagworm produces strong silk for use in unique situations throughout its life stages. Rigorous molecular analyses of Eumeta variegata suggested that the particular mechanical properties of its silk are due to the coexistence of poly-A and GA motifs. However, little molecular information on closely related species is available, and it is not understood how these properties were acquired evolutionarily or whether the motif combination is a conserved trait in other bagworms. Here, we performed a transcriptome analysis of two other bagworm species (Canephora pungelerii and Bambalina sp.) belonging to the family Psychidae to elucidate the relationship between the fibroin gene and silk properties. The obtained transcriptome assemblies and tensile tests indicated that the motif combination and silk properties were conserved among the bagworms. Furthermore, our analysis showed that C. pungelerii produces extraordinarily strong silk (breaking strength of 1.4 GPa) and indicated that the cause may be the C. pungelerii -specific balance of crystalline/amorphous regions in the H-fibroin repetitive domain. This particular H-fibroin architecture may have been evolutionarily acquired to produce strong thread to maintain bag stability during the relatively long development period of Canephora species relative to other bagworms.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata Japan
| | | | - Ayaka Tateishi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata Japan
| |
Collapse
|
4
|
von Bredow CR, von Bredow YM, Trenczek TE. The larval haematopoietic organs of Manduca sexta (Insecta, Lepidoptera): An insight into plasmatocyte development and larval haematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103858. [PMID: 32898576 DOI: 10.1016/j.dci.2020.103858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Haematopoietic organs (HOs) in Lepidoptera are widely recognised as the source for at least two haemocyte types. With new specific markers for oenocytoids and spherule cells and a method to identify prohaemocytes, the haemocytes formed in and released by the HOs of Manduca sexta are characterised. Differentiation of HO-cells to haemocytes other than plasmatocytes and prohaemocytes neither occurs in the organ itself nor in cells released in vitro by the HOs. Differential labelling patterns evidence the existence of plasmatocyte subpopulations and prohaemocytes, which might represent a gradual differentiation of haemocytes within the organs. Prohaemocytes can be identified by PNA-labelling of the cell membrane. These prohaemocytes are found in circulation and in the HOs and are released by the organs. Circulating prohaemocytes possess characteristics for granular cells, plasmatocytes or oenocytoids while HO derived prohaemocytes share characteristics only with plasmatocytes. Ablation of the HOs diminishes the plasmatocyte and prohaemocyte number, indicating a true larval haematopoietic function.
Collapse
Affiliation(s)
- Christoph-Rüdiger von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390, Gießen, Germany; Current Address: Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Zellescher Weg 20 B, 01217, Dresden, Germany.
| | - Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390, Gießen, Germany.
| | - Tina E Trenczek
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390, Gießen, Germany
| |
Collapse
|
5
|
Hanna L, Abouheif E. The origin of wing polyphenism in ants: An eco-evo-devo perspective. Curr Top Dev Biol 2021; 141:279-336. [PMID: 33602491 DOI: 10.1016/bs.ctdb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of eusociality, where solitary individuals integrate into a single colony, is a major transition in individuality. In ants, the origin of eusociality coincided with the origin of a wing polyphenism approximately 160 million years ago, giving rise to colonies with winged queens and wingless workers. As a consequence, both eusociality and wing polyphenism are nearly universal features of all ants. Here, we synthesize fossil, ecological, developmental, and evolutionary data in an attempt to understand the factors that contributed to the origin of wing polyphenism in ants. We propose multiple models and hypotheses to explain how wing polyphenism is orchestrated at multiple levels, from environmental cues to gene networks. Furthermore, we argue that the origin of wing polyphenism enabled the subsequent evolution of morphological diversity across the ants. We finally conclude by outlining several outstanding questions for future work.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Peng L, Wang L, Zou MM, Vasseur L, Chu LN, Qin YD, Zhai YL, You MS. Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene shadow in Plutella xylostella. Front Physiol 2019; 10:1120. [PMID: 31555150 PMCID: PMC6724230 DOI: 10.3389/fphys.2019.01120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids play an essential role in controlling insect development and reproduction. Their pathway is regulated by a group of enzymes called Halloween gene proteins. The relationship between the Halloween genes and ecdysteroid synthesis has yet to be clearly understood in diamondback moth, Plutella xylostella (L.), a worldwide Lepidoptera pest attacking cruciferous crops and wild plants. In this study, complete sequences for six Halloween genes, neverland (nvd), shroud (sro), spook (spo), phantom (phm), disembodied (dib), shadow (sad), and shade (shd), were identified. Phylogenetic analysis revealed a strong conservation in insects, including Halloween genes of P. xylostella that was clustered with all other Lepidoptera species. Three Halloween genes, dib, sad, and shd were highly expressed in the adult stage, while nvd and spo were highly expressed in the egg and pupal stages, respectively. Five Halloween genes were highly expressed specifically in the prothorax, which is the major site of ecdysone production. However, shd was expressed predominantly in the fat body to convert ecdysone into 20-hydroxyecdysone. RNAi-based knockdown of sad, which is involved in the last step of ecdysone biosynthesis, significantly reduced the 20E titer and resulted in a longer developmental duration and lower pupation of fourth-instar larvae, as well as caused shorter ovarioles and fewer fully developed eggs of P. xylostella. Furthermore, after the knockdown of sad, the expression levels of Vg and VgR genes were significantly decreased by 77.1 and 53.0%. Meanwhile, the number of eggs laid after 3 days was significantly reduced in sad knockdown females. These results suggest that Halloween genes may play a critical role in the biosynthesis of ecdysteroids and be involved in the development and reproduction of P. xylostella. Our work provides a solid basis for understanding the functional importance of these genes, which will help to screening potential genes for pest management of P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Jeong JS, Kim MJ, Kim SS, Kim I. Complete mitochondrial genome of the female-wingless bagworm moth, Eumeta variegata Snellen, 1879 (Lepidoptera: Psychidae). Mitochondrial DNA B Resour 2018; 3:1037-1039. [PMID: 33474406 PMCID: PMC7799688 DOI: 10.1080/23802359.2018.1511851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/10/2018] [Indexed: 11/13/2022] Open
Abstract
The complete mitochondrial genome of the female-wingless bagworm moth, Eumeta variegata Snellen, 1879 (Lepidoptera: Psychidae), is 15,660 base pairs (bp) and contains a typical set of genes (13 protein-coding genes [PCGs], 2 rRNA genes, and 22 tRNA genes) and one non-coding region, with an arrangement identical to that observed in most lepidopteran genomes. Twelve PCGs contained the typical ATN start codon, whereas COI had the atypical CGA codon, which is frequently detected in the start region of the lepidopteran COI. The A + T-rich region was unusually short with only 94 bp. A recent report of the same species originating from Japan revealed a lack of trnE and trnF and a 1,118 bp long A + T-rich region. Phylogenetic analyses with concatenated sequences of the 13 PCGs and two rRNA genes using the Bayesian inference method placed E. variegata in Psychidae, as a sister to a within-familial species, Mahasena colona, with the highest nodal support (Bayesian posterior probability = 1).
Collapse
Affiliation(s)
- Jun Seong Jeong
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Min Jee Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Soo Kim
- Research Institute for East Asian Environment and Biology, Seoul, Republic of Korea
| | - Iksoo Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Niitsu S, Sugawara H, Hayashi F. Evolution of female-specific wingless forms in bagworm moths. Evol Dev 2016; 19:9-16. [PMID: 27869366 DOI: 10.1111/ede.12213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution of winglessness in insects has been typically interpreted as a consequence of developmental and other adaptations to various environments that are secondarily derived from a winged morph. Several species of bagworm moths (Insecta: Lepidoptera, Psychidae) exhibit a case-dwelling larval life style along with one of the most extreme cases of sexual dimorphism: wingless female adults. While the developmental process that led to these wingless females is well known, the origins and evolutionary transitions are not yet understood. To examine the evolutionary patterns of wing reduction in bagworm females, we reconstruct the molecular phylogeny of over 30 Asian species based on both mitochondrial (cytochrome c oxidase subunit I) and nuclear (28S rRNA) DNA sequences. Under a parsimonious assumption, the molecular phylogeny implies that: (i) the evolutionary wing reduction towards wingless females consisted of two steps: (Step I) from functional wings to vestigial wings (nonfunctional) and (Step II) from vestigial wings to the most specialized vermiform adults (lacking wings and legs); and (ii) vermiform morphs evolved independently at least twice. Based on the results of our study, we suggest that the evolutionary changes in the developmental system are essential for the establishment of different wingless forms in insects.
Collapse
Affiliation(s)
- Shuhei Niitsu
- Department of Biology, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Hirotaka Sugawara
- Department of Biology, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Fumio Hayashi
- Department of Biology, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
9
|
Chiang YN, Tan KJ, Chung H, Lavrynenko O, Shevchenko A, Yew JY. Steroid Hormone Signaling Is Essential for Pheromone Production and Oenocyte Survival. PLoS Genet 2016; 12:e1006126. [PMID: 27333054 PMCID: PMC4917198 DOI: 10.1371/journal.pgen.1006126] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/25/2016] [Indexed: 01/04/2023] Open
Abstract
Many of the lipids found on the cuticles of insects function as pheromones and communicate information about age, sex, and reproductive status. In Drosophila, the composition of the information-rich lipid profile is dynamic and changes over the lifetime of an individual. However, the molecular basis of this change is not well understood. To identify genes that control cuticular lipid production in Drosophila, we performed a RNA interference screen and used Direct Analysis in Real Time and gas chromatography mass spectrometry to quantify changes in the chemical profiles. Twelve putative genes were identified whereby transcriptional silencing led to significant differences in cuticular lipid production. Amongst them, we characterized a gene which we name spidey, and which encodes a putative steroid dehydrogenase that has sex- and age-dependent effects on viability, pheromone production, and oenocyte survival. Transcriptional silencing or overexpression of spidey during embryonic development results in pupal lethality and significant changes in levels of the ecdysone metabolite 20-hydroxyecdysonic acid and 20-hydroxyecdysone. In contrast, inhibiting gene expression only during adulthood resulted in a striking loss of oenocyte cells and a concomitant reduction of cuticular hydrocarbons, desiccation resistance, and lifespan. Oenocyte loss and cuticular lipid levels were partially rescued by 20-hydroxyecdysone supplementation. Taken together, these results identify a novel regulator of pheromone synthesis and reveal that ecdysteroid signaling is essential for the maintenance of cuticular lipids and oenocytes throughout adulthood. Pheromones are used by many animals to control social behaviors such as mate choice and kin recognition. The pheromone profile of insects is dynamic and can change depending on environmental, physiological, and social conditions. While many genes responsible for the biosynthesis of insect pheromones have been identified, much less is known about how pheromone production is systemically regulated over the lifetime of an animal. In this work, we identify 12 genes in Drosophila melanogaster that play a role in pheromone production. We characterized the function of one gene, which we name spidey, and which encodes a steroid dehydrogenase. Silencing spidey expression during the larval stage results in the rapid inactivation of an essential insect steroid, 20-hydroxyecdysone, and developmental arrest. In adults, spidey is needed for maintaining the viability of oenocytes, specialized cells that produce pheromones and also regulate energy homeostasis. Our work reveals a novel role for ecdysteroids in the adult animal and uncovers a regulatory mechanism for oenocyte activity. Potentially, ecdysteroid signaling serves as a mechanism by which environmental or social conditions shape pheromone production. Exploitation of this conserved pathway could be useful for interfering with the mating behavior and lifespan of disease-bearing insects or agricultural pests.
Collapse
Affiliation(s)
- Yin Ning Chiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Kah Junn Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
10
|
Niitsu S, Toga K, Tomizuka S, Maekawa K, Machida R, Kamito T. Ecdysteroid-induced programmed cell death is essential for sex-specific wing degeneration of the wingless-female winter moth. PLoS One 2014; 9:e89435. [PMID: 24558499 PMCID: PMC3928446 DOI: 10.1371/journal.pone.0089435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 01/21/2014] [Indexed: 01/11/2023] Open
Abstract
The winter moth, Nyssiodes lefuarius, has a unique life history in that adults appear during early spring after a long pupal diapause from summer to winter. The moth exhibits striking sexual dimorphism in wing form; males have functional wings of normal size, whereas females lack wings. We previously found that cell death of the pupal epithelium of females appears to display condensed chromatin within phagocytes. To provide additional detailed data for interpreting the role of cell death, we performed light microscopy, transmission electron microscopy, and TUNEL assay. We consequently detected two modes of cell death, i.e., dying cells showed both DNA fragmentation derived from epithelial nuclei and autophagic vacuole formation. To elucidate the switching mechanism of sex-specific wing degeneration in females of N. lefuarius, we tested the effects of the steroid hormone 20-hydroxyecdysone (20E) on pupal diapause termination and wing morphogenesis in both sexes. When 20E (5.4 µg) was injected into both sexes within 2 days of pupation, wing degeneration started 4 days after 20E injection in females, whereas wing morphogenesis and scale formation started 6 days after 20E injection in males. We discuss two important findings: (1) degeneration of the pupal wing epithelium of females was not only due to apoptosis and phagocytotic activation but also to autophagy and epithelial cell shrinkage; and (2) 20E terminated the summer diapause of pupae, and triggered selective programmed cell death only of the female-pupal wing epithelium in the wingless female winter moth.
Collapse
Affiliation(s)
- Shuhei Niitsu
- Department of Life Science, International Christian University, Tokyo, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- * E-mail:
| | - Kouhei Toga
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Shigekazu Tomizuka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano, Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Ryuichiro Machida
- Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano, Japan
| | - Takehiko Kamito
- Department of Life Science, International Christian University, Tokyo, Japan
| |
Collapse
|
11
|
Niitsu S, Lobbia S, Kamito T. In vitro effects of juvenile hormone analog on wing disc morphogenesis under ecdysteroid treatment in the female-wingless bagworm moth Eumeta variegata (Insecta: Lepidoptera, Psychidae). Tissue Cell 2011; 43:143-50. [DOI: 10.1016/j.tice.2011.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/26/2022]
|