1
|
Bartos M, Gumilar F, Baier CJ, Dominguez S, Bras C, Cancela LM, Minetti A, Gallegos CE. Rat developmental fluoride exposure affects retention memory, leads to a depressive-like behavior, and induces biochemical changes in offspring rat brains. Neurotoxicology 2022; 93:222-232. [DOI: 10.1016/j.neuro.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
2
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Raimann A, Haberler C, Patsch J, Ertl DA, Sadeghi K, Freilinger M, Lang S, Schmook M, Plecko B, Haeusler G. Lethal Encephalopathy in an Infant with Hypophosphatasia despite Enzyme Replacement Therapy. Horm Res Paediatr 2022; 94:390-398. [PMID: 34673643 DOI: 10.1159/000520341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
Hypophosphatasia (HPP) is an inborn error of metabolism caused by loss-of-function mutations in the biomineralization-associated alkaline phosphatase gene, encoding tissue-nonspecific alkaline phosphatase (TNSALP). Symptoms include skeletal hypomineralization and extra-skeletal manifestations such as pyridoxine (B6)-responsive seizures due to impaired cerebral B6 passage. Since the introduction of enzyme replacement therapy (ERT), skeletal manifestations and B6-responsive seizures were reported to improve significantly. Nevertheless, there is an increasing evidence of B6-independent neurological manifestation of HPP including HPP-associated encephalopathy. Here, we present for the first time the brain alterations of an infant with neonatal HPP who died of neurological complications at the age of 5 months despite early initiation of ERT. CSF analysis showed normal concentrations of biogenic amines reflecting sufficient intracellular B6 availability. Postmortem histopathology revealed severe, localized affection of the cerebral cortex including cortical lesions in layers 2 and 3 in direct proximity to TNSALP-expressing neurons and hippocampal sclerosis. Our findings confirm that TNSALP deficiency may lead to a severe encephalopathy. We hypothesize that HPP-associated encephalopathy resistant to currently available ERT may develop in addition and probably independently of typical B6-responsive seizures in some patients. Prospective, controlled studies with close neurological follow-up including brain imaging are needed to identify patients at risk for severe neurological symptoms despite ERT.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | | | - Janina Patsch
- Vienna Bone and Growth Center, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Diana-Alexandra Ertl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Kambis Sadeghi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Freilinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Susanna Lang
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Maria Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Gabriele Haeusler
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
4
|
Dragic M, Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Grkovic I, Nedeljkovic N. Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood. Neurochem Res 2022; 47:1637-1650. [PMID: 35320461 DOI: 10.1007/s11064-022-03557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
The present study demonstrates altered topographic distribution and enhanced neuronal expression of major adenosine-metabolizing enzymes, i.e. ecto-5'-nucleotidase (eN) and tissue non-specific alkaline phosphatase (TNAP), as well as adenosine receptor subtype A2A in the hippocampus and cortex of male rats from early to late adulthood (3, 6, 12 and 15 months old males). The significant effect of age was demonstrated for the increase in the activity and the protein expression of eN and TNAP. At 15-m, enzyme histochemistry demonstrated enhanced expression of eN in synapse-rich hippocampal and cortical layers, whereas the upsurge of TNAP was observed in the hippocampal and cortical neuropil, rather than in cells and layers where two enzymes mostly reside in 3-m old brain. Furthermore, a dichotomy in A1R and A2AR expression was demonstrated in the cortex and hippocampus from early to late adulthood. Specifically, a decrease in A1R and enhancement of A2AR expression were demonstrated by immunohistochemistry, the latter being almost exclusively localized in hippocampal pyramidal and cortical superficial cell layers. We did not observe any glial upregulation of A2AR, which was common for both advanced age and chronic neurodegeneration. Taken together, the results imply that the adaptative changes in adenosine signaling occurring in neuronal elements early in life may be responsible for the later prominent glial enhancement in A2AR-mediated adenosine signaling, and neuroinflammation and neurodegeneration, which are the hallmarks of both advanced age and age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Milorad Dragic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Andjela Stekic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Milica Zeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department for Molecular biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Marija Adzic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia
| | - Ivana Grkovic
- Department for Molecular biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, 11001, Belgrade, Serbia.
| |
Collapse
|
5
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
6
|
Gleizes M, Fonta C, Nowak LG. Inhibitors of ectonucleotidases have paradoxical effects on synaptic transmission in the mouse cortex. J Neurochem 2021; 160:305-324. [PMID: 34905223 DOI: 10.1111/jnc.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1 and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.
Collapse
Affiliation(s)
- Marie Gleizes
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| | - Caroline Fonta
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| | - Lionel G Nowak
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| |
Collapse
|
7
|
Nwafor DC, Brichacek AL, Ali A, Brown CM. Tissue-Nonspecific Alkaline Phosphatase in Central Nervous System Health and Disease: A Focus on Brain Microvascular Endothelial Cells. Int J Mol Sci 2021; 22:5257. [PMID: 34067629 PMCID: PMC8156423 DOI: 10.3390/ijms22105257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme bound to the plasma membranes of numerous cells via a glycosylphosphatidylinositol (GPI) moiety. TNAP's function is well-recognized from earlier studies establishing its important role in bone mineralization. TNAP is also highly expressed in cerebral microvessels; however, its function in brain cerebral microvessels is poorly understood. In recent years, few studies have begun to delineate a role for TNAP in brain microvascular endothelial cells (BMECs)-a key component of cerebral microvessels. This review summarizes important information on the role of BMEC TNAP, and its implication in health and disease. Furthermore, we discuss current models and tools that may assist researchers in elucidating the function of TNAP in BMECs.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Ahsan Ali
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| |
Collapse
|
8
|
Nezu T, Hosomi N, Yoshimura K, Kuzume D, Naito H, Aoki S, Morimoto Y, Kinboshi M, Yoshida T, Shiga Y, Kinoshita N, Furui A, Tabuchi G, Ueno H, Tsuji T, Maruyama H. Predictors of Stroke Outcome Extracted from Multivariate Linear Discriminant Analysis or Neural Network Analysis. J Atheroscler Thromb 2020; 29:99-110. [PMID: 33298664 PMCID: PMC8737069 DOI: 10.5551/jat.59642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aim:
The prediction of functional outcome is essential in the management of acute ischemic stroke patients. We aimed to explore the various prognostic factors with multivariate linear discriminant analysis or neural network analysis and evaluate the associations between candidate factors, baseline characteristics, and outcome.
Methods:
Acute ischemic stroke patients (
n
=1,916) with premorbid modified Rankin Scale (mRS) scores of 0–2 were analyzed. The prediction models with multivariate linear discriminant analysis (quantification theory type II) and neural network analysis (log-linearized Gaussian mixture network) were used to predict poor functional outcome (mRS 3–6 at 3 months) with various prognostic factors added to age, sex, and initial neurological severity at admission.
Results:
Both models revealed that several nutritional statuses and serum alkaline phosphatase (ALP) levels at admission improved the predictive ability. Of the 1,484 patients without missing data, 560 patients (37.7%) had poor outcomes. The patients with poor outcomes had higher ALP levels than those without (294.3±259.5 vs. 246.3±92.5 U/l,
P
<0.001). Multivariable logistic analyses revealed that higher ALP levels (1-SD increase) were independently associated with poor stroke outcomes after adjusting for several confounding factors, including the neurological severity, malnutrition status, and inflammation (odds ratio 1.21, 95% confidence interval 1.02–1.49). Several nutritional indicators extracted from prediction models were also associated with poor outcome.
Conclusion:
Both the multivariate linear discriminant and neural network analyses identified the same indicators, such as nutritional status and serum ALP levels. These indicators were independently associated with functional stroke outcome.
Collapse
Affiliation(s)
- Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Naohisa Hosomi
- Department of Neurology, Chikamori Hospital.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University
| | | | | | - Hiroyuki Naito
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | | | | | - Yuji Shiga
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Naoto Kinoshita
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Akira Furui
- Faculty of Engineering, Hiroshima University
| | | | - Hiroki Ueno
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
9
|
Tissue-Nonspecific Alkaline Phosphatase-A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease. Biomolecules 2020; 10:biom10121648. [PMID: 33302551 PMCID: PMC7763311 DOI: 10.3390/biom10121648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Collapse
|
10
|
Investigation of alpl expression and Tnap-activity in zebrafish implies conserved functions during skeletal and neuronal development. Sci Rep 2020; 10:13321. [PMID: 32770041 PMCID: PMC7414108 DOI: 10.1038/s41598-020-70152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish (Danio rerio) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term.
Collapse
|
11
|
Nwafor DC, Chakraborty S, Brichacek AL, Jun S, Gambill CA, Wang W, Engler-Chiurazzi EB, Dakhlallah D, Pinkerton AB, Millán JL, Benkovic SA, Brown CM. Loss of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels is coupled to persistent neuroinflammation and behavioral deficits in late sepsis. Brain Behav Immun 2020; 84:115-131. [PMID: 31778743 PMCID: PMC7010562 DOI: 10.1016/j.bbi.2019.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a host response to systemic inflammation and infection that may lead to multi-organ dysfunction and eventual death. While acute brain dysfunction is common among all sepsis patients, chronic neurological impairment is prevalent among sepsis survivors. The brain microvasculature has emerged as a major determinant of sepsis-associated brain dysfunction, yet the mechanisms that underlie its associated neuroimmune perturbations and behavioral deficits are not well understood. An emerging body of data suggests that inhibition of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels may be associated with changes in endothelial cell barrier integrity. The objective of this study was to elucidate the connection between alterations in cerebrovascular TNAP enzyme activity and brain microvascular dysfunction in late sepsis. We hypothesized that the disruption of TNAP enzymatic activity in cerebral microvessels would be coupled to the sustained loss of brain microvascular integrity, elevated neuroinflammatory responses, and behavioral deficits. Male mice were subjected to cecal ligation and puncture (CLP), a model of experimental sepsis, and assessed up to seven days post-sepsis. All mice were observed daily for sickness behavior and underwent behavioral testing. Our results showed a significant decrease in brain microvascular TNAP enzyme activity in the somatosensory cortex and spinal cord of septic mice but not in the CA1 and CA3 hippocampal regions. Furthermore, we showed that loss of cerebrovascular TNAP enzyme activity was coupled to a loss of claudin-5 and increased perivascular IgG infiltration in the somatosensory cortex. Analyses of whole brain myeloid and T-lymphoid cell populations also revealed a persistent elevation of infiltrating leukocytes, which included both neutrophil and monocyte myeloid derived suppressor cells (MDSCs). Regional analyses of the somatosensory cortex, hippocampus, and spinal cord revealed significant astrogliosis and microgliosis in the cortex and spinal cord of septic mice that was accompanied by significant microgliosis in the CA1 and CA3 hippocampal regions. Assessment of behavioral deficits revealed no changes in learning and memory or evoked locomotion. However, the hot plate test uncovered a novel anti-nociceptive phenotype in our septic mice, and we speculate that this phenotype may be a consequence of sustained GFAP astrogliosis and loss of TNAP activity in the somatosensory cortex and spinal cord of septic mice. Taken together, these results demonstrate that the loss of TNAP enzyme activity in cerebral microvessels during late sepsis is coupled to sustained neuroimmune dysfunction which may underlie, in part, the chronic neurological impairments observed in sepsis survivors.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Sujung Jun
- Wilmer Eye Institute, John Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Catheryne A. Gambill
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Wei Wang
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA.
| | | | - Duaa Dakhlallah
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA.
| | | | - José Luis Millán
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Stanley A. Benkovic
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA,Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA,Corresponding Author: Candice M. Brown, Ph.D., Assistant Professor, Neuroscience, 108 Biomedical Road, Box 9303, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University Health Sciences, Morgantown, WV 26506, Phone: 304-293-0589,
| |
Collapse
|
12
|
Abstract
Hypophosphatasia (HPP) is a rare inherited systemic metabolic disease caused by mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. TNSALP is expressed in the liver, kidney and bone, and its substrates include TNSALP inorganic pyrophosphate, pyridoxal-5'-phosphate (PLP)/vitamin B6 and phosphoethanolamine (PEA). Autosomal recessive and dominant forms of the disease result in a range of clinical entities. Major hallmarks are low alkaline phosphatase (ALP) and elevated PLP and PEA levels. Very severe infantile forms of HPP cause premature death as a result of respiratory insufficiency and also present with hypo-mineralisation leading to deformed limbs with, in some cases, the near-absence of bones and skull altogether. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency are indicative of a poor prognosis. Craniosynostosis is frequent. HPP leads to an unusual presentation of rickets with high levels of calcium and phosphorus, resulting in hypercalciuria, nephrocalcinosis and low ALP levels. Hypercalcaemic crisis, failure to thrive and growth retardation are concerns in infants. Fractures are common in both infantile and adult forms of the disease, concomitantly occurring with unexplained chronic pain and fatigue. Dental clinical presentations, which include the premature loss of teeth, are also commonly found in HPP and specifically manifest as odontohypophosphatasia. A novel enzyme therapy for human HPP, asfotase alfa, which is specifically targeted to mineralised tissues, has been developed in the past decades. While this treatment seems very promising, especially for infantile HPP, many questions regarding its long-term effects, the management of treatment, and any potential secondary adverse effects remain unresolved.
Collapse
|
13
|
Brichacek AL, Benkovic SA, Chakraborty S, Nwafor DC, Wang W, Jun S, Dakhlallah D, Geldenhuys WJ, Pinkerton AB, Millán JL, Brown CM. Systemic inhibition of tissue-nonspecific alkaline phosphatase alters the brain-immune axis in experimental sepsis. Sci Rep 2019; 9:18788. [PMID: 31827139 PMCID: PMC6906465 DOI: 10.1038/s41598-019-55154-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme present in many cells and tissues, including the central nervous system. Yet its functions at the brain-immune axis remain unclear. The goal of this study was to use a novel small molecular inhibitor of TNAP, SBI-425, to interrogate the function of TNAP in neuroimmune disorders. Following intraperitoneal (IP) administration of SBI-425, mass spectrometry analysis revealed that the SBI-425 does not cross the blood-brain barrier (BBB) in healthy mice. To elucidate the role of TNAP at the brain-immune axis, mice were subjected to experimental sepsis and received either vehicle or SBI-425 (25 mg/kg, IP) daily for 7 days. While SBI-425 administration did not affect clinical severity outcomes, we found that SBI-425 administration suppressed CD4 + Foxp3+ CD25- and CD8 + Foxp3+ CD25- splenocyte T-cell populations compared to controls. Further evaluation of SBI-425's effects in the brain revealed that TNAP activity was suppressed in the brain parenchyma of SBI-425-treated mice compared to controls. When primary brain endothelial cells were treated with a proinflammatory stimulus the addition of SBI-425 treatment potentiated the loss of barrier function in BBB endothelial cells. To further demonstrate a protective role for TNAP at endothelial barriers within this axis, transgenic mice with a conditional overexpression of TNAP were subjected to experimental sepsis and found to have increased survival and decreased clinical severity scores compared to controls. Taken together, these results demonstrate a novel role for TNAP activity in shaping the dynamic interactions within the brain-immune axis.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Stanley A Benkovic
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Divine C Nwafor
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Wei Wang
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Duaa Dakhlallah
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | | | - José Luis Millán
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
Brown SJ, Harrington GMB, Hulme CH, Morris R, Bennett A, Tsang WH, Osman A, Chowdhury J, Kumar N, Wright KT. A Preliminary Cohort Study Assessing Routine Blood Analyte Levels and Neurological Outcome after Spinal Cord Injury. J Neurotrauma 2019; 37:466-480. [PMID: 31310157 PMCID: PMC6978787 DOI: 10.1089/neu.2019.6495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is increasing interest in the identification of biomarkers that could predict neurological outcome following a spinal cord injury (SCI). Although initial American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade is a good indicator of neurological outcome, for the patient and clinicians, an element of uncertainty remains. This preliminary study aimed to assess the additive potential of routine blood analytes following principal component analysis (PCA) to develop prognostic models for neurological outcome following SCI. Routine blood and clinical data were collected from SCI patients (n = 82) and PCA used to reduce the number of blood analytes into related factors. Outcome neurology was obtained from AIS scores at 3 and 12 months post-injury, with motor (AIS and total including all myotomes) and sensory (AIS, touch and pain) abilities being assessed individually. Multiple regression models were created for all outcome measures. Blood analytes relating to “liver function” and “acute inflammation and liver function” factors were found to significantly increase prediction of neurological outcome at both 3 months (touch, pain, and AIS sensory) and at 1 year (pain, R2 increased by 0.025 and total motor, R2 increased by 0.016). For some models “liver function” and “acute inflammation and liver function” factors were both significantly predictive, with the greatest combined R2 improvement of 0.043 occurring for 3 month pain prediction. These preliminary findings support ongoing research into the use of routine blood analytes in the prediction of neurological outcome in SCI patients.
Collapse
Affiliation(s)
- Sharon J Brown
- Institute of Science and Technology in Medicine (ISTM), Keele University, Keele, United Kingdom.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Gabriel M B Harrington
- Institute of Science and Technology in Medicine (ISTM), Keele University, Keele, United Kingdom.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Charlotte H Hulme
- Institute of Science and Technology in Medicine (ISTM), Keele University, Keele, United Kingdom.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Rachel Morris
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Anna Bennett
- Life Sciences, University of Chester, Chester, Cheshire, United Kingdom
| | - Wai-Hung Tsang
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Aheed Osman
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Joy Chowdhury
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Naveen Kumar
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Karina T Wright
- Institute of Science and Technology in Medicine (ISTM), Keele University, Keele, United Kingdom.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| |
Collapse
|
15
|
Nwafor DC, Brichacek AL, Mohammad AS, Griffith J, Lucke-Wold BP, Benkovic SA, Geldenhuys WJ, Lockman PR, Brown CM. Targeting the Blood-Brain Barrier to Prevent Sepsis-Associated Cognitive Impairment. J Cent Nerv Syst Dis 2019; 11:1179573519840652. [PMID: 31007531 PMCID: PMC6456845 DOI: 10.1177/1179573519840652] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB's role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors.
Collapse
Affiliation(s)
- Divine C Nwafor
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Allison L Brichacek
- Immunology and Microbial Pathogenesis, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Afroz S Mohammad
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Jessica Griffith
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Brandon P Lucke-Wold
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Stanley A Benkovic
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Paul R Lockman
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Candice M Brown
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Immunology and Microbial Pathogenesis, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
Brichacek AL, Brown CM. Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metab Brain Dis 2019; 34:3-19. [PMID: 30284677 PMCID: PMC6351214 DOI: 10.1007/s11011-018-0322-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death in the U.S., with more than 100,000 deaths annually. There are a multitude of risks associated with stroke, including aging, cardiovascular disease, hypertension, Alzheimer's disease (AD), and immune suppression. One of the many challenges, which has so far proven to be unsuccessful, is the identification of a cost-effective diagnostic or prognostic biomarker for stroke. Alkaline phosphatase (AP), an enzyme first discovered in the 1920s, has been evaluated as a potential biomarker in many disorders, including many of the co-morbidities associated with stroke. This review will examine the basic biology of AP, and its most common isoenzyme, tissue nonspecific alkaline phosphatase (TNAP), with a specific focus on the central nervous system. It examines the preclinical and clinical evidence which supports a potential role for AP in stroke and suggests potential mechanism(s) of action for AP isoenzymes in stroke. Lastly, the review speculates on the clinical utility of AP isoenzymes as potential blood biomarkers for stroke or as AP-targeted treatments for stroke patients.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA.
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA.
| |
Collapse
|
17
|
Abstract
We review here clinical, pathophysiological, diagnostic, genetic and molecular aspects of Hypophosphatasia (HPP), a rare inherited metabolic disorder. The clinical presentation is a continuum ranging from a prenatal lethal form with no skeletal mineralization to a mild form with late adult onset presenting with nonpathognomonic symptoms. The prevalence of severe forms is low, whereas less severe forms are more frequently observed. The disease is caused by loss-of-function mutations in the ALPL gene encoding the Tissue Nonspecific Alkaline Phosphatase (TNSALP), a central regulator of mineralization. Severe forms are recessively inherited, whereas moderate forms are either recessively or dominantly inherited, and the more severe the disease is, the more often it is subject to recessive inheritance. The diagnosis is based on a constantly low alkaline phosphatase (AP) activity in serum and genetic testing that identifies ALPL mutations. More than 340 mutations have been identified and are responsible for the extraordinary clinical heterogeneity. A clear but imperfect genotype-phenotype correlation has been observed, suggesting that other genetic or environmental factors modulate the phenotype. Enzyme replacement therapy is now available for HPP, and other approaches, such as gene therapy, are currently being investigated.
Collapse
Affiliation(s)
- Etienne Mornet
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay, France.
| |
Collapse
|
18
|
Gallegos CE, Baier CJ, Bartos M, Bras C, Domínguez S, Mónaco N, Gumilar F, Giménez MS, Minetti A. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory. Neurotox Res 2018; 34:363-374. [PMID: 29611151 DOI: 10.1007/s12640-018-9894-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/18/2023]
Abstract
Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina.
| | - Carlos Javier Baier
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Sergio Domínguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - María Sofía Giménez
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, IMIBIO-SL, CONICET, San Luis, Argentina
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
19
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
20
|
de Castro CA, dos Santos Dias MM, da Silva KA, dos Reis SA, da Conceição LL, De Nadai Marcon L, de Sousa Moraes LF, do Carmo Gouveia Peluzio M. Liver Biomarkers and Their Applications to Nutritional Interventions in Animal Studies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-94-007-7675-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lee SY, Yi JK, Yun HM, Bae CH, Cho ES, Lee KS, Kim EC. Expression of Caveolin-1 in Periodontal Tissue and Its Role in Osteoblastic and Cementoblastic Differentiation In Vitro. Calcif Tissue Int 2016; 98:497-510. [PMID: 26686692 DOI: 10.1007/s00223-015-0095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
It has been previously reported that caveolin-1 (Cav-1) knockout mice exhibit increased bone size and stiffness. However, the expression and role of Cav-1 on periodontal tissue is poorly understood. The aim of this study was to investigate the immunohistochemical expression of Cav-1 in the mouse periodontium and explore the role of Cav-1 on osteoblastic and cementoblastic differentiation in human periodontal ligament cells (hPDLCs), cementoblasts, and osteoblasts. To reveal the molecular mechanisms of Cav-1 activity, associated signaling pathways were also examined. Immunolocalization of Cav-1 was studied in mice periodontal tissue. Differentiation was evaluated by ALP activity, alizarin red S staining, and RT-PCR for marker genes. Signal transduction was analyzed using Western blotting and confocal microscopy. Cav-1 expression was observed in hPDLCs, cementoblasts, and osteoblasts of the periodontium both in vivo and in vitro. Inhibition of Cav-1 expression by methyl-β-cyclodextrin (MβCD) and knockdown of Cav-1 by siRNA promoted osteoblastic and cementoblastic differentiation by increasing ALP activity, calcium nodule formation, and mRNA expression of differentiation markers in hPDLCs, cementoblasts, and osteoblasts. Osteogenic medium-induced BMP-2 and BMP-7 expression, and phosphorylation of Smad1/5/8 were enhanced by MβCD and siRNA knockdown of Cav-1, which was reversed by BMP inhibitor noggin. MβCD and Cav-1 siRNA knockdown increased OM-induced AMPK, Akt, GSK3β, and CREB phosphorylation, which were reversed by Ara-A, a specific AMPK inhibitor. Moreover, OM-induced activation of p38, ERK, JNK, and NF-κB was enhanced by Cav-1 inhibition. This study demonstrates, for the first time, that Cav-1 is expressed in developing periodontal tissue and in vitro in periodontal-related cells. Cav-1 inhibition positively regulates osteoblastic differentiation in hPDLCs, cementoblasts, and osteoblasts via BMP, AMPK, MAPK, and NF-κB pathway. Thus, Cav-1 inhibition may be a novel molecular target for therapeutic approaches in periodontitis or osteolytic disease.
Collapse
Affiliation(s)
- So-Youn Lee
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Jin-Kyu Yi
- Department of Conservative Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Cheol-Hyeon Bae
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Kook-Sun Lee
- Division of Dentistry, Department of Oral and Maxillofacial Radiology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, 14 Kyungheedae-ro Dongdaemun-gu, Seoul, 02453, Republic of Korea.
| |
Collapse
|
22
|
Abstract
Hypophosphatasia (HPP) is due to deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNAP). This enzyme cleaves extracellular substrates inorganic pyrophosphates (PPi), pyridoxal-5'-phosphate (PLP), phosphoethanolamine (PEA) and nucleotides, and probably other substrates not yet identified. During the last 15 years the role of TNAP in mineralization, and to a less degree in brain, has been investigated, providing hypotheses and explanations for both bone and neuronal HPP phenotypes. ALPL, the gene encoding TNAP, is subject to many mutations, mostly missense mutations. A few number of mutations are recurrently found and may be quite frequent in particular populations. This reflects founder effects. The great variety of mutations results in a great number of compound heterozygous genotypes and in highly variable clinical expressivity. A good correlation was observed between the severity of the disease and in vitro enzymatic activity of the mutant protein measured after site-directed mutagenesis. Many missense mutations found in severe hypophosphatasia produced a mutant protein that failed to reach the cell membrane , was accumulated in the cis-Golgi and was subsequently degraded in the proteasome. Missense mutations located in the catalytic site or in the homodimer interface were often shown by site-directed mutagenesis to have a dominant negative effect. Currently molecular diagnosis of HPP is based on the sequencing of the coding sequence of ALPL that allows detection of approximately 95 % of mutations in severe cases. In addition, other genes, especially genes encoding proteins involved in the regulation of extracellular PPi concentration, could modify the phenotype (modifier genes).
Collapse
|
23
|
Deracinois B, Lenfant AM, Dehouck MP, Flahaut C. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem 2016. [PMID: 26219710 DOI: 10.1007/978-94-017-7197-9_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microvessels of the brain represent around 3-4 % of the brain compartment but constitute the most important length (400 miles) and surface of exchange (20 m(2)) between the blood and the parenchyma of brain. Under influence of surrounding tissues, the brain microvessel endothelium expresses a specific phenotype that regulates and restricts the entry of compounds and cells from blood to brain, and defined the so-called blood-brain barrier (BBB). Evidences that alkaline phosphatase (AP) is a characteristic feature of the BBB phenotype that allows differentiating capillary endothelial cells from brain to those of the periphery have rapidly emerge. Thenceforth, AP has been rapidly used as a biomarker of the blood-brain barrier phenotype. In fact, brain capillary endothelial cells (BCECs) express exclusively tissue non-specific alkaline phosphatase (TNAP). There are several lines of evidence in favour of an important role for TNAP in brain function. TNAP is thought to be responsible for the control of transport of some compounds across the plasma membrane of the BCECs. Here, we report that levamisole-mediated inhibition of TNAP provokes an increase of the permeability to Lucifer Yellow of the endothelial monolayer. Moreover, we illustrate the disruption of the cytoskeleton organization. Interestingly, all observed effects were reversible 24 h after levamisole removal and correlated with the return of a full activity of the TNAP. This reversible effect remains to be studied in details to evaluate the potentiality of a levamisole treatment to enhance the entry of drugs in the brain parenchyma.
Collapse
|
24
|
Multiple Functions of MSCA-1/TNAP in Adult Mesenchymal Progenitor/Stromal Cells. Stem Cells Int 2015; 2016:1815982. [PMID: 26839555 PMCID: PMC4709781 DOI: 10.1155/2016/1815982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/30/2015] [Indexed: 01/09/2023] Open
Abstract
Our knowledge about mesenchymal stem cells has considerably grown in the last years. Since the proof of concept of the existence of such cells in the 70s by Friedenstein et al., a growing mass of reports were conducted for a better definition of these cells and for the reevaluation from the term “mesenchymal stem cells” to the term “mesenchymal stromal cells (MSCs).” Being more than a semantic shift, concepts behind this new terminology reveal the complexity and the heterogeneity of the cells grouped in MSC family especially as these cells are present in nearly all adult tissues. Recently, mesenchymal stromal cell antigen-1 (MSCA-1)/tissue nonspecific alkaline phosphatase (TNAP) was described as a new cell surface marker of MSCs from different tissues. The alkaline phosphatase activity of this protein could be involved in wide range of MSC features described below from cell differentiation to immunomodulatory properties, as well as occurrence of pathologies. The present review aims to decipher and summarize the role of TNAP in progenitor cells from different tissues focusing preferentially on brain, bone marrow, and adipose tissue.
Collapse
|
25
|
Seemann F, Peterson DR, Witten PE, Guo BS, Shanthanagouda AH, Ye RR, Zhang G, Au DWT. Insight into the transgenerational effect of benzo[a]pyrene on bone formation in a teleost fish (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:60-67. [PMID: 26456900 DOI: 10.1016/j.cbpc.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023]
Abstract
Recent cross-generational studies in teleost fish have raised the awareness that high levels of benzo[a]pyrene (BaP) could affect skeletal integrity in the directly exposed F0 and their F1-F2. However, no further details were provided about the causes for abnormalities on the molecular and cellular level and the persistence of such sub-organismal impairments at the transgenerational scale (beyond F2). Adult Oryzias latipes were exposed to 1μg/L BaP for 21days. The F1-F3 were examined for skeletal deformities, histopathological alterations of vertebral bodies and differential expression of key genes of bone metabolism. Significant increase of dorsal-ventral vertebral compression was evident in ancestrally exposed larvae. Histopathological analysis revealed abnormal loss of notochord sheath, a lack of notochord epithelial integrity, reduced bone tissue and decreased osteoblast abundance. A significant downregulation of ATF4 and/or osterix and a high biological variability of COL10, coupled with a significant deregulation of SOX9a/b in the F1-F3 suggest that ancestral BaP exposure most likely perturbed chordoblasts, chondroblast and osteoblast differentiation, resulting in defective notochord sheath repair and rendering the vertebral column more vulnerable to compression. The present findings provide novel molecular and cellular insights into BaP-induced transgenerational bone impairment in the unexposed F3. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant, which exerts a far-reaching impact on fish survival and fitness. Given that basic mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on the genesis of skeletal diseases in humans.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - P Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bao-Sheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Adamane H Shanthanagouda
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Rui R Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
26
|
Graser S, Mentrup B, Schneider D, Klein-Hitpass L, Jakob F, Hofmann C. Overexpression of tissue-nonspecific alkaline phosphatase increases the expression of neurogenic differentiation markers in the human SH-SY5Y neuroblastoma cell line. Bone 2015; 79:150-61. [PMID: 26032516 DOI: 10.1016/j.bone.2015.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/24/2015] [Accepted: 05/23/2015] [Indexed: 12/16/2022]
Abstract
Patients suffering from the rare hereditary disease hypophosphatasia (HPP), which is based on mutations in the ALPL gene, tend to develop central nervous system (CNS) related issues like epileptic seizures and neuropsychiatric illnesses such as anxiety and depression, in addition to well-known problems with the mineralization of bones and teeth. Analyses of the molecular role of tissue-nonspecific alkaline phosphatase (TNAP) in transgenic SH-SY5Y(TNAPhigh) neuroblastoma cells compared to SH-SY5Y(TNAPlow) cells indicate that the enzyme influences the expression levels of neuronal marker genes like RNA-binding protein, fox-1 homolog 3 (NEUN) and enolase 2, gamma neuronal (NSE) as well as microtubule-binding proteins like microtubule-associated protein 2 (MAP2) and microtubule-associated protein tau (TAU) during neurogenic differentiation. Fluorescence staining of SH-SY5Y(TNAPhigh) cells reveals TNAP localization throughout the whole length of the developed projection network and even synapsin Ι co-localization with strong TNAP signals at some spots at least at the early time points of differentiation. Additional immunocytochemical staining shows higher MAP2 expression in SH-SY5Y(TNAPhigh) cells and further a distinct up-regulation of tau and MAP2 in the course of neurogenic differentiation. Interestingly, transgenic SH-SY5Y(TNAPhigh) cells are able to develop longer cellular processes compared to control cells after stimulation with all-trans retinoic acid (RA). Current therapies for HPP prioritize improvement of the bone phenotype. Unraveling the molecular role of TNAP in extraosseous tissues, like in the CNS, will help to improve treatment strategies for HPP patients. Taking this rare disease as a model may also help to dissect TNAP's role in neurodegenerative diseases and even improve future treatment of common pathologies.
Collapse
Affiliation(s)
- Stephanie Graser
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Birgit Mentrup
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Doris Schneider
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University of Duisburg-Essen, Germany
| | - Franz Jakob
- Orthopedic Department, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Germany
| | - Christine Hofmann
- Children's Hospital, Section of Pediatric Rheumatology and Osteology, University of Wuerzburg, Germany.
| |
Collapse
|
27
|
Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 2015; 33:253-64. [PMID: 25205248 DOI: 10.1002/stem.1846] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
Abstract
Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.
Collapse
Affiliation(s)
- Kristine Gampe
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
An autosomal recessive syndrome of hyperphosphatasia (elevated circulating alkaline phosphatase (AP), seizures and neurologic deficits) was first described by Mabry and colleagues in 1970. Over the ensuing four decades, few cases were reported. In 2010, however, new families were identified and the syndromic nature of the disorder confirmed. Shortly thereafter, next generation sequencing was used to characterize causative defects in the glycosyl phosphatidylinositol (GPI) biosynthetic pathway, based partly on our understanding of how AP is anchored by GPI to the plasma membrane. Whether the seizures and cognitive defects seen in Mabry syndrome patients are attributable in part to the constant hyperphosphatasia is not known, as there are more than 250 other proteins dependent on GPI for their anchoring to the plasma membrane. However, Mabry syndrome may provide a new window on AP function in growth and development.
Collapse
Affiliation(s)
- David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,
| | | |
Collapse
|
29
|
Abstract
Hypophosphatasia (HPP) is due to mutations of the tissue non-specific alkaline phosphatase (TNAP) gene expressed in the liver, kidney, and bone. TNAP substrates include inorganic pyrophosphate cleaved into inorganic phosphate (Pi) in bone, pyridoxal-5'-phosphate (PLP), the circulating form of vitamin B6, and phosphoethanolamine (PEA). As an autosomal recessive or dominant disease, HPP results in a range of clinical forms. Its hallmarks are low alkaline phosphatase (AP) and elevated PLP and PEA levels. Perinatal HPP may cause early death with respiratory insufficiency and hypomineralization resulting in deformed limbs and sometimes near-absence of bones and skull. Infantile HPP is diagnosed before 6 months of life. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency in the brain indicate poor prognosis. Craniosynostosis is frequent. Unlike in other forms of rickets, calcium and phosphorus are not decreased, resulting in hypercalciuria and nephrocalcinosis. Hypercalcemic crisis may occur. Failure to thrive and growth retardation are concerns. In infantile and adult forms of HPP, non-traumatic fractures may be the prominent manifestation, with otherwise unexplained chronic pain. Progressive myopathy has been described. Dental manifestations with early loss of teeth are usual in HPP and in a specific form, odontohypophosphatasia. HPP has been studied in knock-out mice models which mimic its severe form. Animal models have made a major contribution to the development of an original enzyme therapy for human infantile HPP, which is however essentially targeted at mineralized tissues. Better knowledge of its extraskeletal manifestations, including pain and neurological symptoms, is therefore required.
Collapse
Affiliation(s)
- Jean Pierre Salles
- Unité d'Endocrinologie Maladies Osseuses, Hôpital Des Enfants, CHU de Toulouse and Inserm UMR 1043 UPS, Toulouse Cedex, France,
| |
Collapse
|
30
|
Abstract
Two observations stimulated the interest in vitamin B-6 and alkaline phosphatase in brain: the marked increase in plasma pyridoxal phosphate and the occurrence of pyridoxine responsive seizures in hypophosphatasia. The increase in plasma pyridoxal phosphate indicates the importance of tissue non-specific alkaline phosphatase (TNAP) in transferring vitamin B-6 into the tissues. Vitamin B-6 is involved in the biosynthesis of most of the neurotransmitters. Decreased gamma-aminobutyrate (GABA) appears to be most directly related to the development of seizures in vitamin B-6 deficiency. Cytosolic pyridoxal phosphatase/chronophin may interact with vitamin B-6 metabolism and neuronal development and function. Ethanolaminephosphate phospholyase interacts with phosphoethanolamine metabolism. Extracellular pyridoxal phosphate may interact with purinoceptors and calcium channels. In conclusion, TNAP clearly influences extracellular and intracellular metabolism of vitamin B-6 in brain, particularly during developmental stages. While effects on GABA metabolism appear to be the major contributor to seizures, multiple other intra- and extra-cellular metabolic systems may be affected directly and/or indirectly by altered vitamin B-6 hydrolysis and uptake resulting from variations in alkaline phosphatase activity.
Collapse
|
31
|
Nowak LG, Rosay B, Czégé D, Fonta C. Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex. Subcell Biochem 2015. [PMID: 26219715 DOI: 10.1007/978-94-017-7197-9_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro. We used tetramisole, a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949. The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels. Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.
Collapse
Affiliation(s)
- Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549 , Toulouse, France,
| | | | | | | |
Collapse
|
32
|
Pike AF, Kramer NI, Blaauboer BJ, Seinen W, Brands R. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration. Chem Biol Interact 2014; 226:30-9. [PMID: 25500268 DOI: 10.1016/j.cbi.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/23/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrianne F Pike
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Willem Seinen
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Ruud Brands
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| |
Collapse
|
33
|
Hofmann C, Liese J, Schwarz T, Kunzmann S, Wirbelauer J, Nowak J, Hamann J, Girschick H, Graser S, Dietz K, Zeck S, Jakob F, Mentrup B. Compound heterozygosity of two functional null mutations in the ALPL gene associated with deleterious neurological outcome in an infant with hypophosphatasia. Bone 2013; 55:150-7. [PMID: 23454488 DOI: 10.1016/j.bone.2013.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
Hypophosphatasia (HPP) is a heterogeneous rare, inherited disorder of bone and mineral metabolism caused by different mutations in the ALPL gene encoding the isoenzyme, tissue-nonspecific alkaline phosphatase (TNAP). Prognosis is very poor in severe perinatal forms with most patients dying from pulmonary complications of their skeletal disease. TNAP deficiency, however, may also result in neurological symptoms such as neonatal seizures. The exact biological role of TNAP in the human brain is still not known and the pathophysiology of neurological symptoms due to TNAP deficiency in HPP is not understood in detail. In this report, we describe the clinical features and functional studies of a patient with severe perinatal HPP which presented with rapidly progressive encephalopathy caused by new compound heterozygous mutations in the ALPL gene which result in a functional ALPL "knock out", demonstrated in vitro. In contrast, an in vitro simulation of the genetic status of his currently asymptomatic parents who are both heterozygous for one mutation, showed a residual in vitro AP activity of above 50%. Interestingly, in our patient, the fatal outcome was due to progressive encephalopathy which was refractory to antiepileptic therapy including pyridoxine, rather than hypomineralization and respiratory insufficiency often seen in HPP patients. The patient's cranial MRI showed progressive cystic degradation of the cortex and peripheral white matter with nearly complete destruction of the cerebrum. To our knowledge, this is the first MRI-based report of a deleterious neurological clinical outcome due to a progressive encephalopathy in an infant harboring a functional human ALPL "knock out". This clinical course of disease suggests that TNAP is involved in development and may be responsible for multiple functions of the human brain. According to our data, a certain amount of residual TNAP activity might be mandatory for normal CNS function in newborns and early childhood.
Collapse
Affiliation(s)
- C Hofmann
- Children's Hospital, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the "adenosine hypothesis". Purinergic Signal 2013; 9:599-608. [PMID: 23771238 DOI: 10.1007/s11302-013-9370-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5'-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5'-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness.
Collapse
|
35
|
|
36
|
Kvarnung M, Nilsson D, Lindstrand A, Korenke GC, Chiang SCC, Blennow E, Bergmann M, Stödberg T, Mäkitie O, Anderlid BM, Bryceson YT, Nordenskjöld M, Nordgren A. A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations inPIGT. J Med Genet 2013; 50:521-8. [DOI: 10.1136/jmedgenet-2013-101654] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Deracinois B, Duban-Deweer S, Pottiez G, Cecchelli R, Karamanos Y, Flahaut C. TNAP and EHD1 are over-expressed in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties. PLoS One 2012; 7:e48428. [PMID: 23119012 PMCID: PMC3485243 DOI: 10.1371/journal.pone.0048428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022] Open
Abstract
Although the physiological properties of the blood-brain barrier (BBB) are relatively well known, the phenotype of the component brain capillary endothelial cells (BCECs) has yet to be described in detail. Likewise, the molecular mechanisms that govern the establishment and maintenance of the BBB are largely unknown. Proteomics can be used to assess quantitative changes in protein levels and identify proteins involved in the molecular pathways responsible for cellular differentiation. Using the well-established in vitro BBB model developed in our laboratory, we performed a differential nano-LC MALDI-TOF/TOF-MS study of Triton X-100-soluble protein species from bovine BCECs displaying either limited BBB functions or BBB functions re-induced by glial cells. Due to the heterogeneity of the crude extract, we increased identification yields by applying a repeatable, reproducible fractionation process based on the proteins' relative hydrophobicity. We present proteomic and biochemical evidence to show that tissue non-specific alkaline phosphatase (TNAP) and Eps15 homology domain-containing protein 1(EDH1) are over-expressed by bovine BCECs after the re-induction of BBB properties. We discuss the impact of these findings on current knowledge of endothelial and BBB permeability.
Collapse
Affiliation(s)
- Barbara Deracinois
- Université Lille Nord de France, Lille, France
- Université d’Artois, LBHE, Lens, France
- IMPRT-IFR114, Lille, France
| | - Sophie Duban-Deweer
- Université Lille Nord de France, Lille, France
- Université d’Artois, LBHE, Lens, France
- IMPRT-IFR114, Lille, France
| | - Gwënaël Pottiez
- Université Lille Nord de France, Lille, France
- Université d’Artois, LBHE, Lens, France
- IMPRT-IFR114, Lille, France
| | - Roméo Cecchelli
- Université Lille Nord de France, Lille, France
- Université d’Artois, LBHE, Lens, France
- IMPRT-IFR114, Lille, France
| | - Yannis Karamanos
- Université Lille Nord de France, Lille, France
- Université d’Artois, LBHE, Lens, France
- IMPRT-IFR114, Lille, France
| | - Christophe Flahaut
- Université Lille Nord de France, Lille, France
- Université d’Artois, LBHE, Lens, France
- IMPRT-IFR114, Lille, France
- * E-mail:
| |
Collapse
|
38
|
Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 2012; 349:459-71. [PMID: 22696173 DOI: 10.1007/s00441-012-1455-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in skeletal and dental hypomineralization and severe neurological symptoms. TNAP is expressed in the synaptic cleft and the node of Ranvier in normal adults. Using TNAP knockout (KO) mice (Akp2(-/-)), we studied synaptogenesis and myelination with light- and electron microscopy during the early postnatal days. Ablation of TNAP function resulted in a significant decrease of the white matter of the spinal cord accompanied by ultrastructural evidence of cellular degradation around the paranodal regions and a decreased ratio and diameter of the myelinated axons. In the cerebral cortex, myelinated axons, while present in wild-type, were absent in the Akp2( -/- ) mice and these animals also displayed a significantly increased proportion of immature cortical synapses. The results suggest that TNAP deficiency could contribute to neurological symptoms related to myelin abnormalities and synaptic dysfunction, among which epilepsy, consistently present in the Akp2(-/-) mice and observed in severe cases of hypophosphatasia.
Collapse
|
39
|
Ünak P, Biber Müftüler FZ, İçhedef Ç, Medine Eİ, Özmen K, Ünak T, Kilçar AY, Gümüşer FG, Parlak Y, Bilgin ES. Synthesis, radiolabeling and in vivo biodistribution of diethylstilbestrol phosphate derivative (DES-P). J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1755-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Massé K, Dale N. Purines as potential morphogens during embryonic development. Purinergic Signal 2012; 8:503-21. [PMID: 22270538 PMCID: PMC3360092 DOI: 10.1007/s11302-012-9290-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022] Open
Abstract
Components of purinergic signalling are expressed in the early embryo raising the possibility that ATP, ADP and adenosine may contribute to the mechanisms of embryonic development. We summarize the available data from four developmental models—mouse, chick, Xenopus and zebrafish. While there are some notable examples where purinergic signalling is indeed important during development, e.g. development of the eye in the frog, it is puzzling that deletion of single components of purinergic signalling often results in rather minor developmental phenotypes. We suggest that a key step in further analysis is to perform combinatorial alterations of expression of purinergic signalling components to uncover their roles in development. We introduce the concept that purinergic signalling could create novel morphogenetic fields to encode spatial location via the concentration of ATP, ADP and adenosine. We show that using minimal assumptions and the known properties of the ectonucleotidases, complex spatial patterns of ATP and adenosine can be set up. These patterns may provide a new way to assess the potential of purinergic signalling in developmental processes.
Collapse
Affiliation(s)
- Karine Massé
- Univ. Bordeaux, CIRID, UMR 5164, F-33000, Bordeaux, France
| | | |
Collapse
|
41
|
Pelligrino DA, Vetri F, Xu HL. Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 2011; 22:229-36. [PMID: 21329762 DOI: 10.1016/j.semcdb.2011.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/11/2011] [Accepted: 02/07/2011] [Indexed: 01/23/2023]
Abstract
Regional elevations in cerebral blood flow (CBF) often occur in response to localized increases in cerebral neuronal activity. An ever expanding literature has linked this neurovascular coupling process to specific signaling pathways involving neuronal synapses, astrocytes and cerebral arteries and arterioles. Collectively, these structures are termed the "neurovascular unit" (NVU). Astrocytes are thought to be the cornerstone of the NVU. Thus, not only do astrocytes "detect" increased synaptic activity, they can transmit that information to proximal and remote astrocytic sites often through a Ca(2+)- and ATP-related signaling process. At the vascular end of the NVU, a Ca(2+)-dependent formation and release of vasodilators, or substances linked to vasodilation, can occur. The latter category includes ATP, which upon its appearance in the extracellular compartment, can be rapidly converted to the potent vasodilator, adenosine, via the action of ecto-nucleotidases. In the present review, we give consideration to experimental model-specific variations in purinergic influences on gliovascular signaling mechanisms, focusing on the cerebral cortex. In that discussion, we compare findings obtained using in vitro (rodent brain slice) models and multiple in vivo models (2-photon imaging; somatosensory stimulation-evoked cortical hyperemia; and sciatic nerve stimulation-evoked pial arteriolar dilation). Additional attention is given to the importance of upstream (remote) vasodilation; the key role played by extracellular ATP hydrolysis (via ecto-nucleotidases) in gliovascular coupling; and interactions among multiple signaling pathways.
Collapse
Affiliation(s)
- Dale A Pelligrino
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|