1
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes (Basel) 2024; 15:1003. [PMID: 39202362 PMCID: PMC11353898 DOI: 10.3390/genes15081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic pain is frequently associated with neuropathy, inflammation, or the malfunctioning of nerves. Chronic pain is associated with a significant burden of morbidity due to opioid use, associated with addiction and tolerance, and disability. MicroRNAs (miRs) are emerging therapeutic targets to treat chronic pain through the regulation of genes associated with inflammation, neuronal excitability, survival, or de-differentiation. In this review, we discuss the possible involvement of miRs in pain-related molecular pathways. miRs are known to regulate high-conviction pain genes, supporting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Wang C, Zhu Y, Chen R, Zhu X, Zhang X. microRNA-143 targets SIRT2 to mediate the histone acetylation of PLAUR and modulates functions of astrocytes in spinal cord injury. Chem Biol Interact 2024; 390:110854. [PMID: 38161044 DOI: 10.1016/j.cbi.2023.110854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
This study aimed to explore effects of microRNA (miR)-143 on the proliferation, apoptosis, and cytokine secretion in astrocytes after spinal cord injury (SCI). After gain- and loss-of-function assays and transforming growth factor (TGF)-β stimulation in astrocytes, the cell viability, proliferation, and apoptosis were examined. The expression of miR-143, SIRT2, and PLAUR and levels of astrocyte-related glial fibrillary acidic protein (GFAP), Vimentin, chondroitin sulfate proteoglycan (CSPG), and connective tissue growth factor (CTGF) were also measured. The binding relationship between miR-143 and SIRT2 was assessed, as well as the correlation of PLAUR with SIRT2. In established SCI rat models, the locomotion function and astrocyte hyperplasia were detected. The TGF-β stimulation decreased miR-143 but increased SIRT2 expression in astrocytes. Mechanistically, miR-143 negatively targeted SIRT2 and SIRT2 down-regulation inhibited the H3K27 deacetylation of PLAUR promoter to increase PLAUR expression. miR-143 up-regulation inhibited TGF-β stimulated-proliferation, promoted cell apoptosis, and reduced GFAP, Vimentin, CSPG, and CTGF expression in astrocytes, which was counterweighed by SIRT2 overexpression. SIRT2 silencing reduced the proliferation and GFAP, Vimentin, CSPG, and CTGF expression while augmenting the apoptosis in TGF-β stimulated astrocytes, which was abrogated by PLAUR silencing. The injection of miR-143 agomir improved the locomotion function and reduced the astrocyte hyperplasia in SCI rats, which was reversed by silencing PLAUR. miR-143 targeted SIRT2 to affect PLAUR expression via the regulation of histone acetylation, which repressed the astrocyte activation in vivo and in vitro to improve the locomotion function in SCI rats.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, PR China.
| | - Yi Zhu
- Department of Spinal Surgery, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, 365000, PR China
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, PR China
| |
Collapse
|
3
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Yang X, Huang X, Lu W, Yan F, Ye Y, Wang L, Tang X, Zeng W, Huang J, Xie J. Transcriptome Profiling of miRNA-mRNA Interactions and Associated Mechanisms in Chemotherapy-Induced Neuropathic Pain. Mol Neurobiol 2023; 60:5672-5690. [PMID: 37332017 DOI: 10.1007/s12035-023-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a dose-limiting adverse event affecting 40% of chemotherapy patients. MiRNA-mRNA interaction plays an important role in various processes. However, detailed profiling of miRNA-mRNA interactions in CINP remains unclear. Here, a rat-based CINP model was established using paclitaxel, followed by nociceptive behavioral tests related to mechanical allodynia, thermal hyperalgesia, and cold allodynia. The landscape of miRNA-mRNA interaction in the spinal dorsal horn was investigated through mRNA transcriptomics and small RNA sequencing. Under CINP condition, 86 differentially expressed mRNAs and 56 miRNAs were identified. Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated the activity of Odorant binding, postsynaptic specialization and synaptic density, extracellular matrix, mitochondrial matrix, retrograde endocannabinoid signaling, and GTPase activity. Protein-protein interaction (PPI), networks of circRNA-miRNA-mRNA, lncRNA-miRNA-mRNA, and TF-genes were demonstrated. We next explored the immune infiltration microenvironment and found a higher infiltration abundance of Th17 and a lower abundance of MDSC in CINP. RT-qPCR and dual-luciferase assays were used to verify the sequencing results, and single-cell analysis based on the SekSeeq database was conducted. Combined with bioinformatics analyses and experimental validations, Mpz, a protein-coding gene specifically expressed in Schwann cells, was found critical in maintaining CINP under miRNA regulation. Therefore, these data highlight the expression patterns of miRNA-mRNA, and the underlying mechanism in the spinal dorsal horn under CINP condition, and Mpz may serve as a promising therapeutic target for patients with CINP.
Collapse
Affiliation(s)
- Xiaohua Yang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiqiang Huang
- Department of Anesthesiology, Zhongshan People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Weicheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Fang Yan
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yaqi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Linjie Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Xiaole Tang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Weian Zeng
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jingxiu Huang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jingdun Xie
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
5
|
Tavakoli Pirzaman A, Ebrahimzadeh Pirshahid M, Babajani B, Rahmati A, Niknezhad S, Hosseinzadeh R, Taheri M, Ebrahimi-Zadeh F, Doostmohamadian S, Kazemi S. The Role of microRNAs in Regulating Cancer Cell Response to Oxaliplatin-Containing Regimens. Technol Cancer Res Treat 2023; 22:15330338231206003. [PMID: 37849311 PMCID: PMC10586010 DOI: 10.1177/15330338231206003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023] Open
Abstract
Oxaliplatin (cyclohexane-1,2-diamine; oxalate; platinum [2+]) is a third-generation chemotherapeutic drug with anticancer effects. Oxaliplatin has a role in the treatment of several cancers. It is one of the few drugs which can eliminate the neoplastic cells of colorectal cancer. Also, it has an influential role in breast cancer, lung cancer, bladder cancer, prostate cancer, and gastric cancer. Although oxaliplatin has many beneficial effects in cancer treatment, resistance to this drug is in the way to cure neoplastic cells and reduce treatment efficacy. microRNAs are a subtype of small noncoding RNAs with ∼22 nucleotides that exist among species. They have diverse roles in physiological processes, including cellular proliferation and cell death. Moreover, miRNAs have essential roles in resistance to cancer treatment and can strengthen sensitivity to chemotherapeutic drugs and regimens. In colorectal cancer, the co-treatment of oxaliplatin with anti-miR-19a can partially reverse the oxaliplatin resistance through the upregulation of phosphatase and tensin homolog (PTEN). Moreover, by preventing the spread of gastric cancer cells and downregulating glypican-3 (GPC3), MiR-4510 may modify immunosuppressive signals in the tumor microenvironment. Treatment with oxaliplatin may develop into a specialized therapeutic drug for patients with miR-4510 inhibition and glypican-3-expressing gastric cancer. Eventually, miR-122 upregulation or Wnt/β-catenin signaling suppression boosted the death of HCC cells and made them more sensitive to oxaliplatin. Herein, we have reviewed the role of microRNAs in regulating cancer cells' response to oxaliplatin, with particular attention to gastrointestinal cancers. We also discussed the role of these noncoding RNAs in the pathophysiology of oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
| | | | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Rahmati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shokat Niknezhad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Taheri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Ebrahimi-Zadeh
- Student Research Committee, school of Medicine, Jahrom University of Medical Science, Jahrom, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Tsamou M, Carpi D, Pistollato F, Roggen EL. Sporadic Alzheimer's Disease- and Neurotoxicity-Related microRNAs Affecting Key Events of Tau-Driven Adverse Outcome Pathway Toward Memory Loss. J Alzheimers Dis 2022; 86:1427-1457. [PMID: 35213375 DOI: 10.3233/jad-215434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra VA, Italy
| | | | | |
Collapse
|
7
|
Zhu X, Li F, Wang M, Su H, Wu X, Qiu H, Zhou W, Shan C, Wang C, Wei L. Integrated Analysis of Omics Data Reveal AP-1 as a Potential Regulation Hub in the Inflammation-Induced Hyperalgesia Rat Model. Front Immunol 2021; 12:672498. [PMID: 34122430 PMCID: PMC8194263 DOI: 10.3389/fimmu.2021.672498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammation-associated chronic pain is a global clinical problem, affecting millions of people worldwide. However, the underlying mechanisms that mediate inflammation-associated chronic pain remain unclear. A rat model of cutaneous inflammation induced by Complete Freund's Adjuvant (CFA) has been widely used as an inflammation-induced pain hypersensitivity model. We present the transcriptomics profile of CFA-induced inflammation in the rat dorsal root ganglion (DRG) via an approach that targets gene expression, DNA methylation, and post-transcriptional regulation. We identified 418 differentially expressed mRNAs, 120 differentially expressed microRNAs (miRNAs), and 2,670 differentially methylated regions (DMRs), which were all highly associated with multiple inflammation-related pathways, including nuclear factor kappa B (NF-κB) and interferon (IFN) signaling pathways. An integrated analysis further demonstrated that the activator protein 1 (AP-1) network, which may act as a regulator of the inflammatory response, is regulated at both the transcriptomic and epigenetic levels. We believe our data will not only provide drug screening targets for the treatment of chronic pain and inflammation but will also shed light on the molecular network associated with inflammation-induced hyperalgesia.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Li
- The Yancheng Clinical College of XuZhou Medical University, The First People's Hospital of Yancheng, Yancheng, China
| | - Miqun Wang
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Huibin Su
- Department of Anesthesiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Xuedong Wu
- Department of Anesthesiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Haiyan Qiu
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng, China
| | - Wang Zhou
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.,Graduate School of Nantong University, Nantong, China
| | - Chunli Shan
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.,Graduate School of Nantong University, Nantong, China
| | - Cancan Wang
- Graduate School of Nantong University, Nantong, China
| | - Lei Wei
- Department of Anesthesiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Tavares-Ferreira D, Lawless N, Bird EV, Atkins S, Collier D, Sher E, Malki K, Lambert DW, Boissonade FM. Correlation of miRNA expression with intensity of neuropathic pain in man. Mol Pain 2020; 15:1744806919860323. [PMID: 31218919 PMCID: PMC6620726 DOI: 10.1177/1744806919860323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral nerve injury causes changes in expression of multiple receptors and mediators that participate in pain processing. We investigated the expression of microRNAs (miRNAs) – a class of post-transcriptional regulators involved in many physiological and pathophysiological processes – and their potential role in the development or maintenance of chronic neuropathic pain following lingual nerve injury in human and rat. Methods We profiled miRNA expression in Sprague-Dawley rat and human lingual nerve neuromas using TaqMan® low-density array cards. Expression of miRNAs of interest was validated via specific probes and correlated with nerve injury-related behavioural change in rat (time spent drinking) and clinical pain (visual analogue scale (VAS) score). Target prediction was performed using publicly available algorithms; gene enrichment and pathway analysis were conducted with MetaCore. Networks of miRNAs and putative target genes were created with Cytoscape; interaction of miRNAs and target genomes in rat and human was displayed graphically using CircosPlot. Results rno-miR-138 was upregulated in lingual nerve of injured rats versus sham controls. rno-miR-138 and rno-miR-667 expression correlated with behavioural change at day 3 post-injury (with negative (rno-miR-138) and positive (rno-miR-667) correlations between expression and time spent drinking). In human, hsa-miR-29a was downregulated in lingual nerve neuromas of patients with higher pain VAS scores (painful group) versus patients with lower pain VAS scores (non-painful). A statistically significant negative correlation was observed between expression of both hsa-miR-29a and hsa-miR-500a, and pain VAS score. Conclusions Our results show that following lingual nerve injury, there are highly significant correlations between abundance of specific miRNAs, altered behaviour and pain scores. This study provides the first demonstration of correlations between human miRNA levels and VAS scores for neuropathic pain and suggests a potential contribution of specific miRNAs to the development of chronic pain following lingual nerve injury. Putative targets for candidate miRNAs include genes related to interleukin and chemokine receptors and potassium channels.
Collapse
Affiliation(s)
| | - Nathan Lawless
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emma V Bird
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - Simon Atkins
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - David Collier
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emanuele Sher
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Karim Malki
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | | | | |
Collapse
|
9
|
Al‐Rawaf HA, Alghadir AH, Gabr SA. MicroRNAs as Biomarkers of Pain Intensity in Patients With Chronic Fatigue Syndrome. Pain Pract 2019; 19:848-860. [DOI: 10.1111/papr.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Hadeel A. Al‐Rawaf
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Sami A. Gabr
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| |
Collapse
|
10
|
Unraveling the Molecular Determinants of Manual Therapy: An Approach to Integrative Therapeutics for the Treatment of Fibromyalgia and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19092673. [PMID: 30205597 PMCID: PMC6164741 DOI: 10.3390/ijms19092673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022] Open
Abstract
Application of protocols without parameter standardization and appropriate controls has led manual therapy (MT) and other physiotherapy-based approaches to controversial outcomes. Thus, there is an urgency to carefully define standard protocols that elevate physiotherapy treatments to rigorous scientific demands. One way in which this can be achieved is by studying gene expression and physiological changes that associate to particular, parameter-controlled, treatments in animal models, and translating this knowledge to properly designed, objective, quantitatively-monitored clinical trials (CTs). Here, we propose a molecular physiotherapy approach (MPTA) requiring multidisciplinary teams, to uncover the scientific reasons behind the numerous reports that historically attribute health benefits to MT-treatments. The review focuses on the identification of MT-induced physiological and molecular responses that could be used for the treatment of fibromyalgia (FM) and chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). The systemic effects associated to mechanical-load responses are considered of particular relevance, as they suggest that defined, low-pain anatomic areas can be selected for MT treatment and yet yield overall benefits, an aspect that might result in it being essential to treat FM. Additionally, MT can provide muscle conditioning to sedentary patients without demanding strenuous physical effort, which is particularly detrimental for CFS/ME patients, placing MT as a real option for integrative medicine programs to improve FM and CFS/ME.
Collapse
|
11
|
Zhou LL, Zhu YM, Qian FY, Yuan CC, Yuan DP, Zhou XP. MicroRNA‑143‑3p contributes to the regulation of pain responses in collagen‑induced arthritis. Mol Med Rep 2018; 18:3219-3228. [PMID: 30066874 PMCID: PMC6102648 DOI: 10.3892/mmr.2018.9322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) suffer from pain, which is associated with inflammation, peripheral and central pain processing, and joint structure damage. The aim of the present study was to investigate a key microRNA (miR) and its target genes that are involved in the pain responses of RA, and to clarify the mechanism of pain regulation. Collagen‑induced arthritis (CIA) was induced in DBA/1 and C57BL/6 mice. The paw swelling, mechanical withdrawal threshold (MWT), thermal withdrawal latency (TWL), and expression levels of tumor necrosis factor (TNF)‑α and prostaglandin (PG)E2 in the sera were investigated. Decreased MWT and TWL, and increased TNF‑α and PGE2, in the CIA model group were observed in DBA/1 and C57BL/6 mice. DBA/1 mice exhibited greater hyperalgesia and higher levels of inflammatory mediators. miR‑143‑3p expression in the blood and the dorsal root ganglion (DRG) were detected, and low miR‑143‑3p expression was demonstrated in the blood and DRG tissue of CIA mice. The target genes of miR‑143 were predicted and analyzed. A total of 1,305 genes were predicted and 55 pain‑associated genes were obtained. Prostaglandin‑endoperoxide synthase 2 (Ptgs2), MAS related GPR family member E (Mrgpre), prostaglandin D2 receptor and Tnf were selected as target genes of miR‑143. DRG cells were cultured and transfected with miR‑143‑3p inhibitor or mimic. The expression of Mrgpre, Ptgs2 and Tnf was significantly inhibited following miR‑143‑3p mimic transfection, while the expression of Mrgpre, Ptgs2 and Tnf was increased following inhibitor transfection. Additionally, the expression of pain‑associated genes in the DRG of mice was investigated and the expression of Ptgs2, Mrgpre and Tnf in the DRG of CIA mice was also significantly upregulated. These results revealed that CIA mice exhibited marked hyperalgesia and high levels of inflammatory pain mediators. Low expression of miR‑143‑3p negatively regulated the pain‑associated target genes, including Mrgpre, Ptgs2 and Tnf, thereby affecting chronic inflammatory pain and neuropathic pain in RA.
Collapse
Affiliation(s)
- Ling-Ling Zhou
- School of Pharmacy, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Ya-Mei Zhu
- School of Pharmacy, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Fei-Ya Qian
- School of Pharmacy, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Cheng-Chen Yuan
- School of Pharmacy, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Dong-Ping Yuan
- School of Pharmacy, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xue-Ping Zhou
- School of Pharmacy, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
12
|
Xie XJ, Ma LG, Xi K, Fan DM, Li JG, Zhang Q, Zhang W. Effects of microRNA-223 on morphine analgesic tolerance by targeting NLRP3 in a rat model of neuropathic pain. Mol Pain 2018; 13:1744806917706582. [PMID: 28580822 PMCID: PMC5464520 DOI: 10.1177/1744806917706582] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective To investigate the effects of microRNA-223 on morphine analgesic tolerance by targeting NLRP3 in a rat model of neuropathic pain. Methods Our study selected 100 clean grade healthy Sprague-Dawley adult male rats weighing 200 to 250 g. After establishment of a rat model of chronic constriction injury, these rats were divided into 10 groups (10 rats in each group): the normal control, sham operation, chronic constriction injury, normal saline, morphine, miR-223, NLRP3, miR-223 + morphine, NLRP3 + morphine, and miR-223 + NLRP3 + morphine groups. The real-time quantitative polymerase chain reaction assay, Western blotting, and enzyme-linked immunosorbent assay were used for detecting the mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, Interleukin (IL)-1β, and IL-18 in sections of lumbar spinal cord. Immunohistochemistry was applied for detecting the positive rates of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18. Results The paw withdrawal threshold and percentage maximum possible effect (%MPE) were higher in chronic constriction injury group when compared with the normal control and sham operation groups. Behavioral tests showed that compared with the chronic constriction injury and normal saline groups, the morphine and miR-223 + morphine groups showed obvious analgesic effects. Expressions of miR-223 in the miR-223, miR-223 + morphine, and miR-223 + NLRP3 + morphine were significantly higher than those in the chronic constriction injury, normal saline, and morphine groups. Compared with chronic constriction injury, normal saline and morphine groups, the mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18 were significantly decreased in the miR-223 and miR-223 + morphine groups, while mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18 were significantly increased in the NLRP3 and NLRP3 + morphine group. Conclusion Our study provides strong evidence that miR-223 could suppress the activities of NLRP3 inflammasomes (NLRP3, apoptosis-associated speck-like protein, and Caspase-1) to relieve morphine analgesic tolerance in rats by down-regulating NLRP3.
Collapse
Affiliation(s)
- Xiao-Juan Xie
- 1 Department of Anesthesia, First Affiliated Hospital, College of Clinical Medicine of Henan University of science and technology, Luoyang, China
| | - Li-Gang Ma
- 1 Department of Anesthesia, First Affiliated Hospital, College of Clinical Medicine of Henan University of science and technology, Luoyang, China
| | - Kai Xi
- 2 Department of ENT, First Affiliated Hospital, College of Clinical Medicine of Henan University of science and technology, Luoyang, China
| | - Dong-Mei Fan
- 3 Department of Gynaecology and Obstestrics, First Affiliated Hospital, College of Clinical Medicine of Henan University of science and technology, Luoyang, China
| | - Jian-Guo Li
- 4 Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Quan Zhang
- 4 Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Wei Zhang
- 5 Department of Anesthesia, the First Affiliated Hospital of Zhengzhou University, Luoyang, China
| |
Collapse
|
13
|
Dai Z, Chu H, Ma J, Yan Y, Zhang X, Liang Y. The Regulatory Mechanisms and Therapeutic Potential of MicroRNAs: From Chronic Pain to Morphine Tolerance. Front Mol Neurosci 2018; 11:80. [PMID: 29615865 PMCID: PMC5864932 DOI: 10.3389/fnmol.2018.00080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic pain, including cancer-related pain, is a pain condition often caused by inflammation or dysfunctional nerves. Chronic pain treatment poses a significant health care challenge, where opioids especially morphine are widely used and patients often develop tolerance over time with aggravated pain. microRNA (miRNA) is known to play important roles in regulating gene expressions in the nervous system to affect neuronal network plasticity related to algogenesis and the developing of morphine tolerance. In this article, we reviewed studies conducted in rodent animal models investigating the mechanisms of miRNAs regulation in chronic pain with different phenotypes and morphine tolerance. In addition, the potential of targeting miRNAs for chronic pain and morphine tolerance treatment is also reviewed. Finally, we point out the directions of the future research in chronic pain and morphine tolerance.
Collapse
Affiliation(s)
- Zhao Dai
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiahai Ma
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Ying Yan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueying Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongxin Liang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Ciccacci C, Latini A, Greco C, Politi C, D'Amato C, Lauro D, Novelli G, Borgiani P, Spallone V. Association between a MIR499A polymorphism and diabetic neuropathy in type 2 diabetes. J Diabetes Complications 2018; 32:11-17. [PMID: 29108839 DOI: 10.1016/j.jdiacomp.2017.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
AIMS Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) affect a large percentage of diabetic people and impact severely on quality of life. As it seems that miRNAs and their variations might play a role in these complications, we investigated whether the rs3746444 SNP in the MIR499A gene could be associated with susceptibility to DPN and/or CAN. METHODS We analyzed 150 participants with type 2 diabetes. DNA was extracted from peripheral blood samples and genotyping was performed by TaqMan genotyping assay. Cardiovascular tests, MNSI-Q and MDNS for neuropathic symptoms and signs, VPT, and thermal thresholds were used for CAN and DPN assessment. We performed a genotype-phenotype correlation analysis. RESULTS We observed that the GG genotype was associated with a higher risk of developing CAN (P=0.002 and OR=16.08, P=0.0005 and OR=35.02, for early and confirmed CAN, respectively) and DPN (P=0.037 and OR=6.56), after correction for BMI, sex, age, HbA1c and disease duration. Moreover, the GG genotype was associated with worse values of MDNS (P=0.017), VPT (P=0.01), thermal thresholds (P=0.01), and CAN score (P<0.001). A logistic multivariate analysis confirmed that MIR499A GG genotype, disease duration and HbA1c contributed to early CAN (R2=0.26), while the same variables and age contributed to DPN (R2=0.21). With a multiple linear regression, we observed that GG genotype (P=0.001) and disease duration (P=0.035) were the main variables contributing to the CAN score (R2=0.35). CONCLUSIONS We described for the first time that the MIR499A genetic variation could be involved in diabetic neuropathies susceptibility. In particular, patients carrying the rs3746444 GG genotype had a higher risk of CAN development, together with a more severe form of CAN.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Carla Greco
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy.
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| |
Collapse
|
15
|
Xu B, Cao J, Zhang J, Jia S, Wu S, Mo K, Wei G, Liang L, Miao X, Bekker A, Tao YX. Role of MicroRNA-143 in Nerve Injury-Induced Upregulation of Dnmt3a Expression in Primary Sensory Neurons. Front Mol Neurosci 2017; 10:350. [PMID: 29170626 PMCID: PMC5684171 DOI: 10.3389/fnmol.2017.00350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
Peripheral nerve injury increased the expression of the DNA methyltransferase 3A (Dnmt3a) mRNA and its encoding Dnmt3a protein in injured dorsal root ganglia (DRG). This increase is considered as an endogenous instigator in neuropathic pain genesis through epigenetic silencing of pain-associated genes (such as Oprm1) in injured DRG. However, how DRG DNMT3a is increased following peripheral nerve injury is still elusive. We reported here that peripheral nerve injury caused by the fifth spinal nerve ligation (SNL) downregulated microRNA (miR)-143 expression in injured DRG. This downregulation was required for SNL-induced DRG Dnmt3a increase as rescuing miR-143 downregulation through microinjection of miR-143 mimics into injured DRG blocked the SNL-induced increase in Dnmt3a and restored the SNL-induced decreases in Oprm1 mRNA and its encoding mu opioid receptor (MOR) in injured DRG, impaired spinal cord central sensitization and neuropathic pain, and improved morphine analgesic effects following SNL. Mimicking SNL-induced DRG miR-143 downregulation through DRG microinjection of miR143 inhibitors in naive rats increased the expression of Dnmt3a and reduced the expression of Oprm1 mRNA and MOR in injected DRG and produced neuropathic pain-like symptoms. These findings suggest that miR-143 is a negative regulator in Dnmt3a expression in the DRG under neuropathic pain conditions and may be a potential target for therapeutic management of neuropathic pain.
Collapse
Affiliation(s)
- Bo Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Anesthesiology, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jing Cao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Anesthesiology, Union Medical Center, Tianjin, China
| | - Shushan Jia
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaogen Wu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Kai Mo
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Guihua Wei
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Lingli Liang
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Xuerong Miao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Neuroscience Research Institute, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
16
|
Liu CC, Cheng JT, Li TY, Tan PH. Integrated analysis of microRNA and mRNA expression profiles in the rat spinal cord under inflammatory pain conditions. Eur J Neurosci 2017; 46:2713-2728. [DOI: 10.1111/ejn.13745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Chien Cheng Liu
- Department of Biological Sciences; National Sun Yat-sen University; No. 70 Lienhai Rd. Gushan Dist. Kaohsiung City 80424 Taiwan
- Department of Anesthesiology; E-Da Hospital/I-Shou University; Kaohsiung City Taiwan
| | - Jiin Tsuey Cheng
- Department of Biological Sciences; National Sun Yat-sen University; No. 70 Lienhai Rd. Gushan Dist. Kaohsiung City 80424 Taiwan
| | - Tien Yui Li
- Department of Anesthesiology; E-Da Hospital/I-Shou University; Kaohsiung City Taiwan
| | - Ping Heng Tan
- Department of Anesthesiology; Chi Mei Medical Center; No. 901 Zhonghua Rd. Yongkang Dist. Tainan City 71004 Taiwan
| |
Collapse
|
17
|
Luchting B, Heyn J, Hinske LC, Azad SC. Expression of miRNA-124a in CD4 Cells Reflects Response to a Multidisciplinary Treatment Program in Patients With Chronic Low Back Pain. Spine (Phila Pa 1976) 2017; 42:E226-E233. [PMID: 28207662 DOI: 10.1097/brs.0000000000001763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective evaluation of microRNA (miRNA) expression in patients with chronic low back pain (CLBP). OBJECTIVE The aim of this study was to evaluate whether pain- and T cell-related miRNAs are differentially expressed in CLBP when compared with healthy volunteers and whether these miRNAs may distinguish between responders and nonresponders to a multidisciplinary treatment program. SUMMARY OF BACKGROUND DATA CLBP is a common health problem worldwide. Multidisciplinary pain treatment programs have been proven as an effective treatment option. miRNAs are known to be important mediators of gene regulation in various processes, including pathophysiology of pain. The expression of miRNAs in CLBP and changes due to a multidisciplinary treatment programs are still unknown. METHODS Thirty-four patients with CLBP were enrolled (46.5 ± 12.7 yrs). CLBP was defined as low back pain with an average intensity of numerical rating scale (NRS) ≥3 during the last 4 weeks, persisting longer than 6 months, and not attributable to a recognized specific pathological condition. Expression of pain- and T cell-related miRNAs in human CD4 cells were determined using TaqMan assays and RealTime PCR. MiRNA expression in patients with CLBP was compared with the expression in healthy volunteers before a multidisciplinary treatment program started. The multidisciplinary outpatient program (4 weeks, 5 days a week, 8 h per day) is a clinically established outpatient program and comprises medical (examination, education), physical (exercise), work-related, and psychological therapy components. After the program, differentially expressed miRNAs in CLBP (before treatment) were analyzed once more. Expression of these miRNAs in patients who respond to the treatment (n = 14) was compared with those who did not respond (n = 20). Response to therapy was defined as reduction of pain of ≥50% (NRS) from baseline. RESULTS MiRNA-124a (patients: 0.79 ± 0.63 vs. healthy volunteers: 0.30 ± 0.16; P < 0.001), miRNA-150 (patients: 0.75 ± 0.21 vs. healthy volunteers: 0.56 ± 0.20; P = 0.025), and miRNA-155 (patients: 0.55 ± 0.14 vs. healthy volunteers: 0.38 ± 0.16; P = 0.017) were significantly upregulated in CLBP patients when compared with healthy volunteers. After the multidisciplinary treatment program, patients who respond to the treatment showed only an increase of miRNA-124a expression (before treatment: 0.54 ± 0.26 vs. after treatment: 1.05 ± 0.56, P = 0.007). CONCLUSION MiRNA-124a upregulation is associated with therapy response in a multidisciplinary treatment programs and might help to identify more specific and mechanism-based treatment strategies for CLBP. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Benjamin Luchting
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
18
|
Computational functional genomics based analysis of pain-relevant micro-RNAs. Hum Genet 2015; 134:1221-38. [DOI: 10.1007/s00439-015-1600-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
|
19
|
Kestell GR, Anderson RL, Clarke JN, Haberberger RV, Gibbins IL. Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice. J Comp Neurol 2015; 523:2555-69. [PMID: 26010480 DOI: 10.1002/cne.23804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.
Collapse
Affiliation(s)
- Garreth R Kestell
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rebecca L Anderson
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jennifer N Clarke
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rainer V Haberberger
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Ian L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
20
|
Zhang J, Banerjee B. Role of MicroRNA in Visceral Pain. J Neurogastroenterol Motil 2015; 21:159-71. [PMID: 25843071 PMCID: PMC4398244 DOI: 10.5056/jnm15027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
The long-lasting nociceptive transmission under various visceral pain conditions involves transcriptional and/or translational alteration in neurotransmitter and receptor expression as well as modification of neuronal function, morphology and synaptic connections. Although it is largely unknown how such changes in posttranscriptional expression induce visceral pain, recent evidence strongly suggests an important role for microRNAs (miRNAs, small non-coding RNAs) in the cellular plasticity underlying chronic visceral pain. MicroRNAs are small noncoding RNA endogenously produced in our body and act as a major regulator of gene expression by either through cleavage or translational repression of the target gene. This regulation is essential for the normal physiological function but when disturbed can result in pathological conditions. Usually one miRNA has multiple targets and target mRNAs are regulated in a combinatorial fashion by multiple miRNAs. In recent years, many studies have been performed to delineate the posttranscriptional regulatory role of miRNAs in different tissues under various nociceptive stimuli. In this review, we intend to discuss the recent development in miRNA research with special emphases on miRNAs and their targets responsible for long term sensitization in chronic pain conditions. In addition, we review miRNAs expression and function data for different animal pain models and also the recent progress in research on miRNA-based therapeutic targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| |
Collapse
|
21
|
Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 2015; 456:615-20. [DOI: 10.1016/j.bbrc.2014.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
|
22
|
Sakai A, Suzuki H. Emerging roles of microRNAs in chronic pain. Neurochem Int 2014; 77:58-67. [DOI: 10.1016/j.neuint.2014.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/19/2022]
|
23
|
Abstract
Chronic pain, a common clinical symptom, is often treated inadequately or ineffectively in part due to the incomplete understanding of molecular mechanisms that initiate and maintain this disorder. Newly identified noncoding RNAs govern gene expression. Recent studies have shown that peripheral noxious stimuli drive expressional changes in noncoding RNAs and that these changes are associated with pain hypersensitivity under chronic pain conditions. This review first presents current evidence for the peripheral inflammation/nerve injury-induced change in the expression of two types of noncoding RNAs, microRNAs, and Kcna2 antisense RNA, in pain-related regions, particularly in the dorsal root ganglion. The authors then discuss how peripheral noxious stimuli induce such changes. The authors finally explore potential mechanisms of how expressional changes in dorsal root ganglion microRNAs and Kcna2 antisense RNA contribute to the development and maintenance of chronic pain. An understanding of these mechanisms may propose novel therapeutic strategies for preventing and/or treating chronic pain.
Collapse
Affiliation(s)
- Brianna Marie Lutz
- From the Department of Anesthesiology, Rutgers Graduate School of Biomedical Sciences (B.M.L.), Department of Anesthesiology (A.B.), and Departments of Anesthesiology, Cell Biology and Molecular Medicine, Pharmacology and Physiology, and Neurology and Neuroscience (Y.-X.T.), New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | | | | |
Collapse
|
24
|
Lu A, Huang Z, Zhang C, Zhang X, Zhao J, Zhang H, Zhang Q, Wu S, Yi X. Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regen Res 2014; 9:1031-40. [PMID: 25206756 PMCID: PMC4146302 DOI: 10.4103/1673-5374.133164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identified whose expression was significantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3'-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization verified that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a combination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neurons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that microRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.
Collapse
Affiliation(s)
- Anjie Lu
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zufa Huang
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chaoyue Zhang
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xianfang Zhang
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Jiuhong Zhao
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Haiying Zhang
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Quanpeng Zhang
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Song Wu
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xinan Yi
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
25
|
MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol Dis 2014; 71:159-68. [PMID: 25119878 DOI: 10.1016/j.nbd.2014.08.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 12/15/2022] Open
Abstract
The post-transcriptional regulator molecules, microRNAs, have emerged as important biomarkers and modulators of numerous pathophysiological processes including oncogenesis and cardiovascular diseases. Recently, a significant number of dysregulations in microRNAs have been reported in patients suffering from painful disorders such as complex regional pain syndrome, cystitis-induced chronic pain and irritable bowel disorder, in both affected tissues and the circulation. Moreover, microRNAs are known to be involved in pain processing based on several recent findings in animal models of inflammatory and neuropathic pain. The basis of this review was to cover and summarize available articles in English encompassing "microRNA and pain". In animal pain models widespread microRNA modulation is present and manifests on multiple levels i.e.: the dorsal root ganglia, the spinal dorsal horn and the brain. Numerous functional in vivo studies have found that dysregulated microRNAs are involved in the post-transcriptional modulation of genes implicated in pain generation and maintenance. Lastly, a few animal studies have delivered promising results as to the possibility of applying microRNAs as therapeutics to alleviate established pain and several clinical studies have highlighted the potential in applying microRNAs as biomarkers in painful conditions such as complex regional pain syndrome and fibromyalgia. This review briefly introduces the basics of microRNAs, their biogenesis and function, and mainly focuses on the recent advances made in understanding the role of microRNAs in relation to pain processing and painful conditions. It also provides an overview of widely diverse methodological approaches and results with a potential for future implications of microRNAs in the diagnosis and treatment of pain.
Collapse
|
26
|
Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med 2014; 20:437-48. [PMID: 24986063 PMCID: PMC4123187 DOI: 10.1016/j.molmed.2014.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
A comprehensive understanding of diverse ncRNAs in modulating pain is lacking. Among ncRNAs, miRNAs have been relatively well studied in pain regulation. lncRNAs also hold large potential for pain regulation. ncRNAs offer potential therapeutic options for treating chronic pain.
Although noncoding RNAs (ncRNAs) were initially considered to be transcriptional byproducts, recent technological advances have led to a steady increase in our understanding of their importance in gene regulation and disease pathogenesis. In keeping with these developments, pain research is also experiencing rapid growth in the investigation of links between ncRNAs and pathological pain. Although the initial focus was on analyzing expression and dysregulation of candidate miRNAs, elucidation of other ncRNAs and ncRNA-mediated functional mechanisms in pain modulation has just commenced. Here we review the major ncRNA literature available to date with respect to pain modulation and discuss tools and opportunities available for testing the impact of other types of ncRNA on pain.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Institute for Pharmacology, Im Neuenheimer Feld 366, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit with European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | - Rohini Kuner
- Institute for Pharmacology, Im Neuenheimer Feld 366, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit with European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
27
|
King DE. Acute DSS colitis alters EphB6 receptor expression in neurons of the spinal dorsal horn. Neurosci Lett 2014; 559:105-10. [PMID: 24309292 DOI: 10.1016/j.neulet.2013.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 10/26/2022]
Abstract
The ephrin family of receptors (Eph) and their ephrin ligands are involved in pain associated hyperalgesia, but the underlying mechanisms involved have not been fully elucidated. The EphB6 receptor is a distinctive member of the EphB subclass in that its kinase domain contains several alterations in the conserved amino acids and thus lacks catalytic activity. We sought to identify a role for EphB6 in inflammatory pain, with the murine dextran sulfate sodium (DSS) colitis model of inflammatory bowel disease (IBD). Colitis, induced with the administration of 4% (wt./vol.) DSS in the drinking water, significantly decreased EphB6 protein expression levels in neurons of the lower thoracic superficial layers of spinal dorsal horns, the location of neurons that receive the majority of nociceptive information from the colon, via the primary afferents. A shift towards increased EphB/ephrinB forward signaling, mediated by EphB6 down-regulation in neurons of the dorsal horn, may play a role in inflammatory pain caused by IBD.
Collapse
Affiliation(s)
- Dale E King
- College of Veterinary Medicine, Jeju National University, Jeju City Republic of Korea.
| |
Collapse
|
28
|
Kynast KL, Russe OQ, Geisslinger G, Niederberger E. Novel findings in pain processing pathways: implications for miRNAs as future therapeutic targets. Expert Rev Neurother 2014; 13:515-25. [DOI: 10.1586/ern.13.34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol 2014; 49:1309-26. [PMID: 24385256 DOI: 10.1007/s12035-013-8603-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are short nucleotides sequences that regulate the expression of genes in different eukaryotic cell types. A tremendous amount of knowledge on miRNAs has rapidly accumulated over the last few years, revealing the growing interest in this field of research. On the other hand, clarifying the physiological regulation of gene expression in the central nervous system is important for establishing a reference for comparison to the diseased state. It is well known that the fine tuning of neuronal networks relies on intricate molecular mechanisms, such as the adjustment of the synaptic transmission. As determined by recent studies, regulation of neuronal interactions by miRNAs has critical consequences in the development, adaptation to ambient demands, and degeneration of the nervous system. In contrast, activation of synaptic receptors triggers downstream signaling cascades that generate a vast array of effects, which includes the regulation of novel genes involved in the control of the miRNA life cycle. In this review, we have examined the hot topics on miRNA gene-regulatory activities in the broad field of neuronal communication-related processes. Furthermore, in addition to indicating the newly described effect of miRNAs on the regulation of specific neurotransmitter systems, we have pointed out how these systems affect the expression, transport, and stability of miRNAs. Moreover, we discuss newly described and under-investigation mechanisms involving the intercellular transfer of miRNAs, aided by exosomes and gap junctions. Thus, in the current review, we were able to highlight recent findings related to miRNAs that indisputably contributed towards the understanding of the nervous system in health and disease.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Atlântica 420, 09060-000, Santo André, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Tan PH, Pao YY, Cheng JK, Hung KC, Liu CC. MicroRNA-based therapy in pain medicine: Current progress and future prospects. ACTA ACUST UNITED AC 2013; 51:171-6. [PMID: 24529673 DOI: 10.1016/j.aat.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules of 18-25 nucleotides in length that regulate gene expression involved in fundamental cell processes. The induction and chronification of pain is associated with many expressional changes in pain-related proteins. miRNA has the potential to regulate gene and protein expression associated with the induction and chronification of pain. Thus, miRNAs might have promise in therapy and as a diagnostic and prognostic biomarker in pain medicine. The application of miRNA has been an emerging field in pain research in recent years. Many studies focusing on the regulation of miRNAs under different tissue and nociceptive stimuli have been performed in recent years. In this review, we intend to introduce the most recent research in the field of miRNA related with pain medicine such as the expression and function of miRNA in different animal pain model, the challenge of application and delivery of miRNA in vivo, the potential toxic effects of miRNA and future problems in clinical application that need to be resolved. This review focuses on the results of miRNA in animal studies and the prospect for future success.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Yun-Ying Pao
- Department of Anesthesiology, E-Da Hospital, Kaohsiung, Taiwan
| | - Jen-Kun Cheng
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, E-Da Hospital, Kaohsiung, Taiwan
| | - Chien-Cheng Liu
- Department of Anesthesiology, E-Da Hospital, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Kress M, Hüttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg D, Bednarik J, Heppenstall P, Kronenberg F, Malcangio M, Rittner H, üçeyler N, Trajanoski Z, Mouritzen P, Birklein F, Sommer C, Soreq H. microRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci 2013; 6:33. [PMID: 24151455 PMCID: PMC3798051 DOI: 10.3389/fnmol.2013.00033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 01/09/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.
Collapse
Affiliation(s)
- Michaela Kress
- Department of Physiology and Medical Physics, Division of Physiology, Medical University InnsbruckInnsbruck, Austria
| | | | - Marc Landry
- UMR 5297, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, University of BordeauxBordeaux, France
| | | | - Alexandre Favereaux
- UMR 5297, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, University of BordeauxBordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | - Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological chemistry, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
32
|
Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain 2013; 154 Suppl 1:S2-9. [PMID: 23711480 DOI: 10.1016/j.pain.2013.05.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.
Collapse
Affiliation(s)
- David B Reichling
- Department of Medicine, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|